CN113516413B - 一种基于大数据的水培床环境监管系统 - Google Patents

一种基于大数据的水培床环境监管系统 Download PDF

Info

Publication number
CN113516413B
CN113516413B CN202110909651.2A CN202110909651A CN113516413B CN 113516413 B CN113516413 B CN 113516413B CN 202110909651 A CN202110909651 A CN 202110909651A CN 113516413 B CN113516413 B CN 113516413B
Authority
CN
China
Prior art keywords
bed
hydroponic
value
water culture
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110909651.2A
Other languages
English (en)
Other versions
CN113516413A (zh
Inventor
朱晓彪
包训发
吕钊彦
侯华兰
王伦
包明霞
龙道宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoxun Fa Family Farm Hepeng Town Shucheng County
Shucheng Shunfa Vegetable Professional Cooperative
Anhui Xunfa Agricultural Technology Co ltd
Original Assignee
Baoxun Fa Family Farm Hepeng Town Shucheng County
Shucheng Shunfa Vegetable Professional Cooperative
Anhui Xunfa Agricultural Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoxun Fa Family Farm Hepeng Town Shucheng County, Shucheng Shunfa Vegetable Professional Cooperative, Anhui Xunfa Agricultural Technology Co ltd filed Critical Baoxun Fa Family Farm Hepeng Town Shucheng County
Priority to CN202110909651.2A priority Critical patent/CN113516413B/zh
Publication of CN113516413A publication Critical patent/CN113516413A/zh
Application granted granted Critical
Publication of CN113516413B publication Critical patent/CN113516413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于大数据的水培床环境监管系统,属于水培领域,用于解决水培床无法对水培环境进行自行监管,不能依据水培床的水培环境和生长情况采取相应监管力度的问题,包括监管划分模块、环境监管模块营养统计模块和排布优化模块,环境监管模块用于对水培床中植物的生长环境进行监管,计算得出水培床的生长环境值,监管划分模块用于对水培床的监管力度进行划分,营养统计模块用于对水培床植物的营养消耗进行统计计算,统计计算得到每个水培床植物的营养消耗值,本发明方便对水培床的水培环境进行自行监管,并对针对水培床的水培环境和生长情况采取相应的监管力度,实现水培床中水培植物的优良培养。

Description

一种基于大数据的水培床环境监管系统
技术领域
本发明属于水培领域,涉及故障监测技术,具体是一种基于大数据的水培床环境监管系统。
背景技术
水培是一种新型的植物无土栽培方式,是无土栽培中的一个重要分支,主要包括深液流培和营养液膜培等,又名营养液培,其核心是将植物的根系直接浸润于营养液中,这种营养液能替代土壤,向植物提供水分、养分、氧气等生长因子,使植物能够正常生长,也正是由于水培蔬菜有着生长效率高、环保、产品清洁、品质好、管理方便等诸多优点,即近年来人们对水培的研究越来越多,其中利用新技术开发新型的水培方式和其配套的设施已成为人们的研究热点;
而在现有技术中,水培床无法对水培环境进行自行监管,也无法针对水培环境和生长情况采取相应的监管力度;同时,没有对水培床中水培植物进行排布优化,以保证其优良的培育;
为此,我们提出一种基于大数据的水培床环境监管系统。
发明内容
针对现有技术存在的不足,本发明目的是提供一种基于大数据的水培床环境监管系统。
本发明所要解决的技术问题为:
(1)如何对水培床的水培环境进行自行监管的问题;
(2)如何针对水培床的水培环境和生长情况采取相应监管力度的问题;
(3)如何对水培床中的水培植物进行排布优化以保证其优良培养的问题。
本发明的目的可以通过以下技术方案实现:
一种基于大数据的水培床环境监管系统,包括用户终端、监管划分模块、环境监管模块、大数据模块、营养统计模块、排布优化模块、数据采集模块以及服务器;
所述环境监管模块用于对水培床中植物的生长环境进行监管,监管过程具体如下:
步骤一:将水培床标记u,获取水培床中的植物Zui,并得到对应水培床中植物的生长高度GDZui、茎秆直径JZJZui、叶片直径YZJZui,利用公式SZZui=GDZui×a1+JZJZui×a2+YZJZui×a3计算得到水培床植物的生长值SZZui;式中a1、a2和a3均为比例系数固定数值,且a1、a2和a3的取值均大于零;
步骤二:将水培床中的植物数记为SLu,将水培床植物的生长值相加求和得到水培床植物的生长总值,生长总值比对水培床的植物数得到水培床的生长均值SZu;
步骤三:获取水培床中水培营养液的养分贮量YFu、含氧量HYu和施肥次数SFu,利用公式YYu=YFu×b1+HYu×b2+SFu×b3计算得出水培床营养液的营养值YYu;式中b1、b2和b3比例系数固定数值,且b1、b2和b3的取值均大于零;
步骤四:获取水培床的温度值WDu、湿度值SDu、光照值GZu和空气质量值KQu,水培床的温度值、湿度值、光照值和空气质量值分别对应有温度阈值WDY、湿度阈值SDY、光照阈值GZY和空气质量阈值KQY;
步骤五:利用公式HCu=|(WDu-WDY)×c1+(SDu-SDY)×c2+(GZu-GZY)×c3+(KQu-KQY)×c4|计算得到水培床的环境差值HCu;式中c1、c2、c3和c4均为比例系数固定数值,且c1、c2、c3和c4的取值均大于零;
步骤六:将水培床的生长均值SZu、水培床营养液的营养值YYu和水培床的环境差值HCu代入公式
Figure 100002_DEST_PATH_IMAGE001
计算得出水培床的生长环境值SHu;式中d1、d2和d3均为比例系数固定数值,且d1、d2和d3的取值均大于零,e为自然常数;
所述环境监管模块将水培床的生长环境值发送至服务器,所述服务器将水培床的生长环境值发送至监管划分模块;
所述监管划分模块接收到服务器发送的水培床的生长环境值后,用于对水培床的监管力度进行划分,划分过程具体如下:
步骤S1:通过数据采集模块获取水培床植物的植物图片,依据植物图片通过大数据模块比对得到水培床植物的植物信息,植物信息包括植物名称、植物纲类和植物科属:
步骤S2:获取水培床内的植物Zui;获取水培床植物的植物种类,并将植物种类标记为Zuio;统计水培床中对应植物种类的数量,并将对应植物种类的数量记为SZuio
步骤S3:获取系统前一月对应植物种类的市场价格,计算均价后得到对应植物种类的市场均价JJZuio;利用公式SJZuio=JJZuio×SZuio计算得出水培床对应植物种类的种类价值SJZuio,水培床若干个植物种类的种类价值相加求和得到水培床的植物总价ZJu;
步骤S4:获取水培床的植物总价ZJu结合水培床的生长环境值SHu;通过JGu=ZJu/SHu公式计算得到水培床的监管力度值JGu:
步骤S5:当水培床的监管值JGu≥X2时,水培床为重点保护种植区,产生重点保护信号;
步骤S6:当水培床的监管值X2>JGu≥X1时,水培床为中等保护种植区,产生中等保护信号;
步骤S7:当水培床的监管值JGu<X1时,水培床为普通保护种植区,产生普通保护信号;式中,X1和X2为设定阈值,且X2>X1>0;
所述监管划分模块将重点保护信号、中等保护信号和普通保护信号发送至服务器,所述服务器将重点保护信号、中等保护信号和普通保护信号发送至用户终端,用户终端依据重点保护信号、中等保护信号和普通保护信号对水培床采取对应的监管力度;
所述营养统计模块用于对水培床植物的营养消耗进行统计计算,统计计算得到每个水培床植物的营养消耗值;所述营养统计模块将不同种类水培植物的营养消耗值发送至服务器中。
进一步地,用户终端与服务器通信连接,用户终端用于用户输入个人信息后注册登录水培床环境监管系统;所述数据采集模块用于采集水培床中植物的生长环境数据,并将采集到的生长环境数据发送至服务器,所述服务器将接收到的生长环境数据发送至环境监管模块。
进一步地,所述大数据模块与互联网相连接,大数据模块用于获取大量植物的生长环境数据,并将大量植物的生长环境数据发送至环境监管模块。
进一步地,所述营养统计模块的统计计算具体如下:
在水培床种植若干个同种类的水培植物,统计水培植物的数量,设定一个单位检测时间,在检测开始时间,获取水培床中营养液的初始液面,在检测结束时间,获取水培床中营养液的实时液面,初始液面减去实时液面得到水培床中营养值的消耗液面差,计算水培床的液面面积和消耗液面差得到营养液的消耗体积,消耗体积除以水培植物数得到在单位检测时间内水培植物的营养消耗值,经过多次试验和检测,得到对应种类水培植物的营养消耗值,以此类推,得到不同种类水培植物的营养消耗值。
进一步地,所述服务器将不同种类水培植物的营养消耗值发送至排布优化模块,排布优化模块依据不同种类水培植物的营养消耗值对水培床中的水培植物进行排布优化,排布优化步骤具体如下:
步骤SS1:获取水培床中营养液的体积量、水培植物以及水培植物对应的种类,统计水培植物的营养消耗值;
步骤SS2:利用水培床中营养液的体积量比对水培植物的营养消耗值得到水培床中营养液的当前消耗时间:
步骤SS3:获取系统前一个月中水培床营养液的上次添加时间与当前添加时间的时间差,多个时间差相加求均值得到时间均差,时间均差即为水培床营养液的平均消耗时间;
步骤SS4:将当前消耗时间与平均消耗时间进行比对,若当前消耗时间小于等于平均消耗时间,则水培床无需进行排布优化;
步骤SS5:若当前消耗时间大于平均消耗时间,则水培床需要进行排布优化,生成排布优化信号。
进一步地,所述排布优化模块将排布优化信号发送至服务器,所述服务器将排布优化信号反馈至用户终端,用户终端接收到排布优化信号后用于对对应的水培床进行排布优化。
进一步地,排布优化具体为:调整水培床中水培植物的种植数、调整水培营养值的体积量、调整水培营养液的添加时间。
与现有技术相比,本发明的有益效果是:
1、本发明通过环境监管模块对水培床中植物的生长环境进行监管,依据水培床植物的生长值、水培床的生长均值、水培床营养液的营养值以及水培床的环境差值,结合公式计算得出水培床的生长环境值,环境监管模块将水培床的生长环境值发送至监管划分模块,通过监管划分模块对水培床的监管力度进行划分,水培床的植物总价结合水培床的生长环境值,利用公式计算得到水培床的监管力度值,水培床的监管值比对阈值将水培床为重点保护种植区、中等保护种植区和普通保护种植区,并产生相应的保护信号,依据保护信号对水培床采取对应的监管力度,该设计方便对水培床的水培环境进行自行监管,并依据水培床的水培环境和生长情况采取相应监管力度;
2、本发明通过营养统计模块对水培床植物的营养消耗进行统计计算,计算得到不同种类水培植物的营养消耗值,不同种类水培植物的营养消耗值发送至排布优化模块,利用排布优化模块依据不同种类水培植物的营养消耗值对水培床中的水培植物进行排布优化,依据水培植物的营养消耗值计算得到水培床中营养液的当前消耗时间,当前消耗时间比对水培床营养液的平均消耗时间,生成排布优化信号,用户终端接收到排布优化信号后用于对对应的水培床进行排布优化,该设计方便对水培床中的水培植物进行排布优化,从而以保证水培植物的优良培养。
附图说明
为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明;
图1为本发明的整体系统框图。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1所示,一种基于大数据的水培床环境监管系统,包括用户终端、监管划分模块、环境监管模块、大数据模块、营养统计模块、排布优化模块、数据采集模块以及服务器;
用户终端与服务器通信连接,用户终端用于用户输入个人信息后注册登录水培床环境监管系统;
需要具体说明的是:个人信息包括用户的姓名、实名认证的手机号码等;
数据采集模块用于采集水培床中植物的生长环境数据,并将采集到的生长环境数据发送至服务器,服务器将接收到的生长环境数据发送至环境监管模块;数据采集模块具体为水培床上安装的温湿度传感器、光照传感器、摄像头、溶氧仪、氧气传感器、养分检测仪等;
大数据模块与互联网相连接,大数据模块用于获取大量植物的生长环境数据,并将大量植物的生长环境数据发送至环境监管模块;环境监管模块用于对水培床中植物的生长环境进行监管,监管过程具体如下:
步骤一:将水培床标记u,u=1,2,……,z,z为正整数;获取水培床中的植物Zui,i=1,2,……,x,i代表植物的编号,x为正整数,并得到对应水培床中植物的生长高度GDZui、茎秆直径JZJZui、叶片直径YZJZui,利用公式SZZui=GDZui×a1+JZJZui×a2+YZJZui×a3计算得到水培床植物的生长值SZZui,式中a1、a2和a3均为比例系数固定数值,且a1、a2和a3的取值均大于零;
步骤二:将水培床中的植物数记为SLu,将水培床植物的生长值相加求和得到水培床植物的生长总值,生长总值比对水培床的植物数得到水培床的生长均值SZu;
步骤三:获取水培床中水培营养液的养分贮量YFu、含氧量HYu和施肥次数SFu,利用公式YYu=YFu×b1+HYu×b2+SFu×b3计算得出水培床营养液的营养值YYu,式中b1、b2和b3比例系数固定数值,且b1、b2和b3的取值均大于零;
步骤四:获取水培床的温度值WDu、湿度值SDu、光照值GZu和空气质量值KQu,水培床的温度值、湿度值、光照值和空气质量值分别对应有温度阈值WDY、湿度阈值SDY、光照阈值GZY和空气质量阈值KQY;
步骤五:利用公式HCu=|(WDu-WDY)×c1+(SDu-SDY)×c2+(GZu-GZY)×c3+(KQu-KQY)×c4|计算得到水培床的环境差值HCu,式中c1、c2、c3和c4均为比例系数固定数值,且c1、c2、c3和c4的取值均大于零;
步骤六:将水培床的生长均值SZu、水培床营养液的营养值YYu和水培床的环境差值HCu代入公式计算得出水培床的生长环境值SHu,公式具体如下:
Figure 696660DEST_PATH_IMAGE001
,式中d1、d2和d3均为比例系数固定数值,且d1、d2和d3的取值均大于零,e为自然常数;
需要具体说明的是,测量水培床中植物的茎秆直径时,从水培床植物底部土地部分,从上到下或由下而上的固定高度处对水培床植物的茎秆直径进行测量,为防止测量的数据不准确,也可多次测量,纪录并分析数据,有利于数值更精确;同时,水培床植物的叶片直径为所有叶片直径之和比对叶片数得来的叶片直径均值;
环境监管模块将水培床的生长环境值发送至服务器,服务器将水培床的生长环境值发送至监管划分模块,监管划分模块接收到服务器发送的水培床的生长环境值后,用于对水培床的监管力度进行划分,划分过程具体如下:
步骤S1:通过数据采集模块获取水培床植物的植物图片,依据植物图片通过大数据模块比对得到水培床植物的植物信息,植物信息包括植物名称、植物纲类和植物科属:
步骤S2:获取水培床内的植物Zui;获取水培床植物的植物种类,并将植物种类标记为Zuio,o=1,2,……,v,o代表植物种类的编号,v为正整数;统计水培床中对应植物种类的数量,并将对应植物种类的数量记为SZuio
步骤S3:获取系统前一月对应植物种类的市场价格,计算均价后得到对应植物种类的市场均价JJZuio;利用公式SJZuio=JJZuio×SZuio计算得出水培床对应植物种类的种类价值SJZuio,水培床若干个植物种类的种类价值相加求和得到水培床的植物总价ZJu;
步骤S4:获取水培床的植物总价ZJu结合水培床的生长环境值SHu;通过JGu=ZJu/SHu公式计算得到水培床的监管力度值JGu:
步骤S5:当水培床的监管值JGu≥X2时,水培床为重点保护种植区,产生重点保护信号;
步骤S6:当水培床的监管值X2>JGu≥X1时,水培床为中等保护种植区,产生中等保护信号;
步骤S7:当水培床的监管值JGu<X1时,水培床为普通保护种植区,产生普通保护信号;式中,X1和X2为设定阈值,且X2>X1>0;
监管划分模块将重点保护信号、中等保护信号和普通保护信号发送至服务器,服务器将重点保护信号、中等保护信号和普通保护信号发送至用户终端,用户终端依据重点保护信号、中等保护信号和普通保护信号对水培床采取对应的监管力度;
具体的,营养统计模块用于对水培床植物的营养消耗进行统计计算,统计计算得到每个水培床植物的营养消耗值YXZui,具体如下:
在水培床种植若干个同种类的水培植物,统计水培植物的数量,设定一个单位检测时间,在检测开始时间,获取水培床中营养液的初始液面,在检测结束时间,获取水培床中营养液的实时液面,初始液面减去实时液面得到水培床中营养值的消耗液面差,计算水培床的液面面积和消耗液面差得到营养液的消耗体积,消耗体积除以水培植物数得到在单位检测时间内水培植物的营养消耗值YXZui,经过多次试验和检测,得到对应种类水培植物的营养消耗值,以此类推,可以得到不同种类水培植物的营养消耗值;
营养统计模块将不同种类水培植物的营养消耗值发送至服务器中,服务器将不同种类水培植物的营养消耗值发送至排布优化模块,排布优化模块依据不同种类水培植物的营养消耗值对水培床中的水培植物进行排布优化,排布优化步骤具体如下:
步骤SS1:获取水培床中营养液的体积量、水培植物以及水培植物对应的种类,统计水培植物的营养消耗值;
步骤SS2:利用水培床中营养液的体积量比对水培植物的营养消耗值得到水培床中营养液的当前消耗时间:
步骤SS3:获取系统前一个月中水培床营养液的上次添加时间与当前添加时间的时间差,多个时间差相加求均值得到时间均差,时间均差即为水培床营养液的平均消耗时间;
步骤SS4:将当前消耗时间与平均消耗时间进行比对,若当前消耗时间小于等于平均消耗时间,则水培床无需进行排布优化;
步骤SS5:若当前消耗时间大于平均消耗时间,则水培床需要进行排布优化,生成排布优化信号;
排布优化模块将排布优化信号发送至服务器,服务器将排布优化信号反馈至用户终端,用户终端接收到排布优化信号后用于对对应的水培床进行排布优化,排布优化具体为:调整水培床中水培植物的种植数、调整水培营养值的体积量、调整水培营养液的添加时间。
一种基于大数据的水培床环境监管系统,工作时,通过数据采集模块采集水培床中植物的生长环境数据,并将采集到的生长环境数据发送至服务器,利用环境监管模块对水培床中植物的生长环境进行监管,获取水培床中的植物Zui并得到对应水培床中植物的生长高度GDZui、茎秆直径JZJZui、叶片直径YZJZui,利用公式SZZui=GDZui×a1+JZJZui×a2+YZJZui×a3计算得到水培床植物的生长值SZZui,同时将水培床中的植物数记为SLu,将水培床植物的生长值相加求和得到水培床植物的生长总值,生长总值比对水培床的植物数得到水培床的生长均值SZu,而后获取水培床中水培营养液的养分贮量YFu、含氧量HYu和施肥次数SFu,利用公式YYu=YFu×b1+HYu×b2+SFu×b3计算得出水培床营养液的营养值YYu,最后获取水培床的温度值WDu、湿度值SDu、光照值GZu和空气质量值KQu,水培床的温度值、湿度值、光照值和空气质量值分别对应有温度阈值WDY、湿度阈值SDY、光照阈值GZY和空气质量阈值KQY,利用公式HCu=|(WDu-WDY)×c1+(SDu-SDY)×c2+(GZu-GZY)×c3+(KQu-KQY)×c4|计算得到水培床的环境差值HCu,将水培床的生长均值SZu、水培床营养液的营养值YYu和水培床的环境差值HCu代入公式
Figure 826290DEST_PATH_IMAGE001
计算得出水培床的生长环境值SHu,环境监管模块将水培床的生长环境值发送至监管划分模块;
通过监管划分模块对水培床的监管力度进行划分,数据采集模块获取水培床植物的植物图片,依据植物图片通过大数据模块比对得到水培床植物的植物信息,获取水培床内的植物Zui得到获取水培床植物的植物种类Zuio,统计水培床中对应植物种类的数量,并将对应植物种类的数量SZuio,而后获取系统前一月对应植物种类的市场价格,计算均价后得到对应植物种类的市场均价JJZuio,利用公式SJZuio=JJZuio×SZuio计算得出水培床对应植物种类的种类价值SJZuio,水培床若干个植物种类的种类价值相加求和得到水培床的植物总价ZJu,结合获取水培床的植物总价ZJu结合水培床的生长环境值SHu,通过JGu=ZJu/SHu公式计算得到水培床的监管力度值JGu,当水培床的监管值JGu≥X2时,水培床为重点保护种植区,产生重点保护信号,当水培床的监管值X2>JGu≥X1时,水培床为中等保护种植区,产生中等保护信号,当水培床的监管值JGu<X1时,水培床为普通保护种植区,产生普通保护信号,监管划分模块将重点保护信号、中等保护信号和普通保护信号发送至用户终端,用户终端依据重点保护信号、中等保护信号和普通保护信号对水培床采取对应的监管力度;
同时,还通过营养统计模块对水培床植物的营养消耗进行统计计算,在水培床种植若干个同种类的水培植物,统计水培植物的数量,设定一个单位检测时间,在检测开始时间,获取水培床中营养液的初始液面,在检测结束时间,获取水培床中营养液的实时液面,初始液面减去实时液面得到水培床中营养值的消耗液面差,计算水培床的液面面积和消耗液面差得到营养液的消耗体积,消耗体积除以水培植物数得到在单位检测时间内水培植物的营养消耗值YXZui,经过多次试验和检测,得到对应种类水培植物的营养消耗值,以此类推,可以得到不同种类水培植物的营养消耗值;
营养统计模块将不同种类水培植物的营养消耗值发送至服务器中,服务器将不同种类水培植物的营养消耗值发送至排布优化模块,通过排布优化模块依据不同种类水培植物的营养消耗值对水培床中的水培植物进行排布优化,获取水培床中营养液的体积量、水培植物以及水培植物对应的种类,统计水培植物的营养消耗值,利用水培床中营养液的体积量比对水培植物的营养消耗值得到水培床中营养液的当前消耗时间,获取系统前一个月中水培床营养液的上次添加时间与当前添加时间的时间差,多个时间差相加求均值得到时间均差,时间均差即为水培床营养液的平均消耗时间,将当前消耗时间与平均消耗时间进行比对,若当前消耗时间小于等于平均消耗时间,则水培床无需进行排布优化,若当前消耗时间大于平均消耗时间,则水培床需要进行排布优化,生成排布优化信号,排布优化模块将排布优化信号发送至用户终端,用户终端接收到排布优化信号后用于对对应的水培床进行排布优化。
上述公式均是去量纲取其数值计算,公式是由采集大量数据进行软件模拟得到最近真实情况的一个公式,公式中的预设参数由本领域的技术人员根据实际情况进行设置。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (7)

1.一种基于大数据的水培床环境监管系统,其特征在于,包括用户终端、监管划分模块、环境监管模块、大数据模块、营养统计模块、排布优化模块、数据采集模块以及服务器;
所述环境监管模块用于对水培床中植物的生长环境进行监管,监管过程具体如下:
步骤一:将水培床标记u,获取水培床中的植物Zui,并得到对应水培床中植物的生长高度GDZui、茎秆直径JZJZui、叶片直径YZJZui,利用公式SZZui=GDZui×a1+JZJZui×a2+YZJZui×a3计算得到水培床植物的生长值SZZui;式中a1、a2和a3均为比例系数固定数值,且a1、a2和a3的取值均大于零;
步骤二:将水培床中的植物数记为SLu,将水培床植物的生长值相加求和得到水培床植物的生长总值,生长总值比对水培床的植物数得到水培床的生长均值SZu;
步骤三:获取水培床中水培营养液的养分贮量YFu、含氧量HYu和施肥次数SFu,利用公式YYu=YFu×b1+HYu×b2+SFu×b3计算得出水培床营养液的营养值YYu;式中b1、b2和b3比例系数固定数值,且b1、b2和b3的取值均大于零;
步骤四:获取水培床的温度值WDu、湿度值SDu、光照值GZu和空气质量值KQu,水培床的温度值、湿度值、光照值和空气质量值分别对应有温度阈值WDY、湿度阈值SDY、光照阈值GZY和空气质量阈值KQY;
步骤五:利用公式HCu=|(WDu-WDY)×c1+(SDu-SDY)×c2+(GZu-GZY)×c3+(KQu-KQY)×c4|计算得到水培床的环境差值HCu;式中c1、c2、c3和c4均为比例系数固定数值,且c1、c2、c3和c4的取值均大于零;
步骤六:将水培床的生长均值SZu、水培床营养液的营养值YYu和水培床的环境差值HCu代入公式
Figure DEST_PATH_IMAGE001
计算得出水培床的生长环境值SHu;式中d1、d2和d3均为比例系数固定数值,且d1、d2和d3的取值均大于零,e为自然常数;
所述环境监管模块将水培床的生长环境值发送至服务器,所述服务器将水培床的生长环境值发送至监管划分模块;
所述监管划分模块接收到服务器发送的水培床的生长环境值后,用于对水培床的监管力度进行划分,划分过程具体如下:
步骤S1:通过数据采集模块获取水培床植物的植物图片,依据植物图片通过大数据模块比对得到水培床植物的植物信息,植物信息包括植物名称、植物纲类和植物科属:
步骤S2:获取水培床内的植物Zui;获取水培床植物的植物种类,并将植物种类标记为Zuio;统计水培床中对应植物种类的数量,并将对应植物种类的数量记为SZuio
步骤S3:获取系统前一月对应植物种类的市场价格,计算均价后得到对应植物种类的市场均价JJZuio;利用公式SJZuio=JJZuio×SZuio计算得出水培床对应植物种类的种类价值SJZuio,水培床若干个植物种类的种类价值相加求和得到水培床的植物总价ZJu;
步骤S4:获取水培床的植物总价ZJu结合水培床的生长环境值SHu;通过JGu=ZJu/SHu公式计算得到水培床的监管力度值JGu:
步骤S5:当水培床的监管值JGu≥X2时,水培床为重点保护种植区,产生重点保护信号;
步骤S6:当水培床的监管值X2>JGu≥X1时,水培床为中等保护种植区,产生中等保护信号;
步骤S7:当水培床的监管值JGu<X1时,水培床为普通保护种植区,产生普通保护信号;式中,X1和X2为设定阈值,且X2>X1>0;
所述监管划分模块将重点保护信号、中等保护信号和普通保护信号发送至服务器,所述服务器将重点保护信号、中等保护信号和普通保护信号发送至用户终端,用户终端依据重点保护信号、中等保护信号和普通保护信号对水培床采取对应的监管力度;
所述营养统计模块用于对水培床植物的营养消耗进行统计计算,统计计算得到每个水培床植物的营养消耗值;所述营养统计模块将不同种类水培植物的营养消耗值发送至服务器中。
2.根据权利要求1所述的一种基于大数据的水培床环境监管系统,其特征在于,用户终端与服务器通信连接,用户终端用于用户输入个人信息后注册登录水培床环境监管系统;所述数据采集模块用于采集水培床中植物的生长环境数据,并将采集到的生长环境数据发送至服务器,所述服务器将接收到的生长环境数据发送至环境监管模块。
3.根据权利要求1所述的一种基于大数据的水培床环境监管系统,其特征在于,所述大数据模块与互联网相连接,大数据模块用于获取大量植物的生长环境数据,并将大量植物的生长环境数据发送至环境监管模块。
4.根据权利要求1所述的一种基于大数据的水培床环境监管系统,其特征在于,所述营养统计模块的统计计算具体如下:
在水培床种植若干个同种类的水培植物,统计水培植物的数量,设定一个单位检测时间,在检测开始时间,获取水培床中营养液的初始液面,在检测结束时间,获取水培床中营养液的实时液面,初始液面减去实时液面得到水培床中营养值的消耗液面差,计算水培床的液面面积和消耗液面差得到营养液的消耗体积,消耗体积除以水培植物数得到在单位检测时间内水培植物的营养消耗值,经过多次试验和检测,得到对应种类水培植物的营养消耗值,以此类推,得到不同种类水培植物的营养消耗值。
5.根据权利要求1所述的一种基于大数据的水培床环境监管系统,其特征在于,所述服务器将不同种类水培植物的营养消耗值发送至排布优化模块,排布优化模块依据不同种类水培植物的营养消耗值对水培床中的水培植物进行排布优化,排布优化步骤具体如下:
步骤SS1:获取水培床中营养液的体积量、水培植物以及水培植物对应的种类,统计水培植物的营养消耗值;
步骤SS2:利用水培床中营养液的体积量比对水培植物的营养消耗值得到水培床中营养液的当前消耗时间:
步骤SS3:获取系统前一个月中水培床营养液的上次添加时间与当前添加时间的时间差,多个时间差相加求均值得到时间均差,时间均差即为水培床营养液的平均消耗时间;
步骤SS4:将当前消耗时间与平均消耗时间进行比对,若当前消耗时间小于等于平均消耗时间,则水培床无需进行排布优化;
步骤SS5:若当前消耗时间大于平均消耗时间,则水培床需要进行排布优化,生成排布优化信号。
6.根据权利要求5所述的一种基于大数据的水培床环境监管系统,其特征在于,所述排布优化模块将排布优化信号发送至服务器,所述服务器将排布优化信号反馈至用户终端,用户终端接收到排布优化信号后用于对对应的水培床进行排布优化。
7.根据权利要求6所述的一种基于大数据的水培床环境监管系统,其特征在于,排布优化具体为:调整水培床中水培植物的种植数、调整水培营养值的体积量、调整水培营养液的添加时间。
CN202110909651.2A 2021-08-09 2021-08-09 一种基于大数据的水培床环境监管系统 Active CN113516413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110909651.2A CN113516413B (zh) 2021-08-09 2021-08-09 一种基于大数据的水培床环境监管系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110909651.2A CN113516413B (zh) 2021-08-09 2021-08-09 一种基于大数据的水培床环境监管系统

Publications (2)

Publication Number Publication Date
CN113516413A CN113516413A (zh) 2021-10-19
CN113516413B true CN113516413B (zh) 2022-03-01

Family

ID=78068011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110909651.2A Active CN113516413B (zh) 2021-08-09 2021-08-09 一种基于大数据的水培床环境监管系统

Country Status (1)

Country Link
CN (1) CN113516413B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327560B2 (ja) * 2014-06-30 2018-05-23 パナソニックIpマネジメント株式会社 水耕栽培方法および水耕栽培装置
CN112581083B (zh) * 2020-12-14 2021-06-18 浙江弄潮儿智慧科技有限公司 一种基于卫星技术的林木生长监测系统
CN112882517B (zh) * 2021-01-12 2022-04-22 上海左岸芯慧电子科技有限公司 基于大数据和物联网的智慧农业种植环境监测方法和云监测平台

Also Published As

Publication number Publication date
CN113516413A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
CN104077725B (zh) 马铃薯种植物联网监测、控制及信息服务云平台综合系统
CN110719336B (zh) 一种基于物联网的灌溉用水分析监控系统
CN110455340A (zh) 一种基于大数据的农产品种植环境检测系统
CN112581083B (zh) 一种基于卫星技术的林木生长监测系统
CN114190264B (zh) 一种精准灌溉方案确定方法、系统及终端设备
CN113469112B (zh) 农作物生长状况图像识别方法及系统
CN109819882A (zh) 确定灌溉制度的方法及装置
CN110545529A (zh) 一种温室大棚环境监测与管理服务系统
CN115938083B (zh) 一种基于移动终端农业监测预警方法及系统
CN114982606A (zh) 一种园林土壤智慧管理方法、装置、计算机及存储介质
CN112215522A (zh) 农作物长势监测系统、方法、计算机设备及存储介质
CN108985664A (zh) 一种智能农场现场监测管理系统及方法
CN113516413B (zh) 一种基于大数据的水培床环境监管系统
CN113933299B (zh) 基于物联网的果蔬种植管理系统
CN115310680A (zh) 一种番茄种苗模型建模与生长预测方法
CN117314024B (zh) 一种智慧农业病虫害云平台
CN112273026A (zh) 一种潮汐育苗营养液精准决策方法和系统
CN113179925B (zh) 一种新型垂直绿化墙灌溉系统
CN115034617A (zh) 一种面向农业信息一体化的云计算系统
CN114246043B (zh) 基于土壤和植物检测的番茄施肥校正方法及装置
CN115486358A (zh) 一种多年生牧草滴灌自动化灌溉管理决策控制系统
CN109089789B (zh) 一种基于源库关系确定玉米适宜群体容量的方法
Bhatia et al. IoT Enabled Smart Irrigation Techniques With Leaf Disease Detection
CN111667167B (zh) 一种农业粮食产量估算方法和系统
CN106897828A (zh) 一种花卉无土栽培技术员绩效计算系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant