CN113514445A - 一种基于荧光偏振的去泛素化酶活性检测方法 - Google Patents

一种基于荧光偏振的去泛素化酶活性检测方法 Download PDF

Info

Publication number
CN113514445A
CN113514445A CN202110903587.7A CN202110903587A CN113514445A CN 113514445 A CN113514445 A CN 113514445A CN 202110903587 A CN202110903587 A CN 202110903587A CN 113514445 A CN113514445 A CN 113514445A
Authority
CN
China
Prior art keywords
deubiquitinase
probe
linker
bodipy
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110903587.7A
Other languages
English (en)
Other versions
CN113514445B (zh
Inventor
易华伟
张嫦丽
王清清
范文
罗伟
辛陈琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingzhou No1 People's Hospital (jingzhou Tumor Hospital First Affiliated Hospital Of Yangtze University)
Original Assignee
Jingzhou No1 People's Hospital (jingzhou Tumor Hospital First Affiliated Hospital Of Yangtze University)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingzhou No1 People's Hospital (jingzhou Tumor Hospital First Affiliated Hospital Of Yangtze University) filed Critical Jingzhou No1 People's Hospital (jingzhou Tumor Hospital First Affiliated Hospital Of Yangtze University)
Priority to CN202110903587.7A priority Critical patent/CN113514445B/zh
Publication of CN113514445A publication Critical patent/CN113514445A/zh
Application granted granted Critical
Publication of CN113514445B publication Critical patent/CN113514445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/8139Cysteine protease (E.C. 3.4.22) inhibitors, e.g. cystatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/95Fusion polypeptide containing a motif/fusion for degradation (ubiquitin fusions, PEST sequence)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种基于荧光偏振的去泛素化酶活性检测方法。所述方法包括如下步骤:1、去泛素化酶检测探针的制备,包括制备融合蛋白Ub‑linker‑Cys、连接BODIPY探针、质谱检测;2、检测去泛素化酶的活性,包括选择去泛素化酶、去泛素化对探针FP值的影响、实时检测去泛素化酶的活性。该检测方法是基于检测荧光偏振,荧光偏振检测的是平行方向和垂直方向荧光强度的比例关系,其不易受荧光探针的浓度、溶液温度和pH以及其他荧光信号的干扰,在测量去泛素化酶的活性时,步骤简单、耗时短,且探针和去泛素化酶的用量少。此外,该方法中制备的探针也可用于去泛素化酶抑制剂的筛选,且是高通量的。

Description

一种基于荧光偏振的去泛素化酶活性检测方法
技术领域
本发明涉及生物医学技术领域,特别涉及到一种基于荧光偏振的去泛素化酶活性检测方法。
背景技术
泛素化修饰广泛存在于真核细胞中,泛素(Ubiquitin, Ub)所形成的“泛素密码”几乎可以调控所有的生理过程。泛素化修饰也是可逆的,泛素可被去泛素化酶(deubiquitinase, DUB)从底物或者泛素链中分解释放出来。去泛素化酶在泛素-蛋白酶体通路、自噬通路等都起着调控作用,很多神经退行性疾病、肿瘤也与去泛素化酶有关,所以去泛素化酶是非常重要的药物靶点。检测去泛素化酶的活性是研究其生物学功能的重要途径,也是药物筛选的必要手段。目前,检测去泛素化酶活性的主要方法如下:通过检测蛋白质的分子量(SDS-PAGE或者Western blot)来研究去泛素化酶的活性(Peterson LF等,Blood, The Journal of the American Society of Hematology, 2015, 125(23):3588-3597)。泛素不仅可以形成各种不同的泛素链,也可共价连接到底物蛋白上去,去泛素化酶可将泛素链、以及底物上的泛素(链)降解,通过SDS-PAGE或者Western blot来检测泛素链或者底物分子量的变化,从而检测去泛素化酶的活性。该方法存在费时费力,一般只能做定性分析等缺陷。此外,在去泛素化酶抑制剂筛选方面,该方法难以实现高通量筛选。
目前,现有技术中已有基于稳态荧光的测定方法来检测去泛素化酶的活性,如利用7-氨基-4-甲基香豆素标记泛素蛋白 (Ub-AMC),或罗丹明110标记泛素蛋白 (Ub-Rho)。这些标记蛋白可作为底物被各种去泛素化酶有效裂解或水解,释放出荧光的部分,该方法已被广泛用于去泛素化酶活性的检测(Jiao L等,Protein & cell, 2014, 5(8): 616-630)。但是,上述方法所用的检测探针不仅价格昂贵,且在用于去泛素化抑制剂筛选时有一个显著的缺点,其检测的荧光容易受到许多小分子表现出的荧光所干扰。
陈云飞等人开发了Ub-Nanoluc和Ub-Ub-GS-Nanoluc报告基因系统来检测去泛素化酶的活性(专利号:CN104844704A),其技术特点是将Ub-Nanoluc或者Ub-Ub-GS-Nanoluc融合蛋白固定在固相介质上,然后加入去泛素化酶将Nanoluc荧光素酶释放,离心除去固相介质以及介质上融合蛋白,在上清液中加入Nanoluc底物检测Nanoluc发光,从而可测得去泛素化酶的活性。该方法存在以下几个问题:1)该方法是通过His-tag来固定融合蛋白的,His-tag和固相基质的结合强度有限很容易脱落下来从而影响检测结果;2)将探针的一端固定在介质上,因固定产生的空间位阻可能会影响去泛素化酶对探针的降解;3)该方法用于去泛素化酶抑制剂筛选时,由于Nanoluc荧光素酶是一个分子量为19.1 kDa的蛋白质,某些小分子可能会与Nanoluc相互作用干扰其活性测量。
发明内容
本发明的目的在于提供一种基于荧光偏振(Fluorescence Polarization,FP)的去泛素化酶活性检测方法。本发明所需解决的技术问题是:制备探针——Ub-linker-BODIPY,并将该探针用于去泛素化酶的活性检测。该探针是基于荧光偏振来检测去泛素化酶活性的,具有探针用量少、检测灵敏度高,不易受探针浓度和其他荧光信号干扰等优点。
本发明的设计思想是:利用检测荧光偏振而非检测荧光强度来设计探针,从而达到能快速、准确地检测去泛素化酶活性的目的。基于该设计思想,申请人在泛素(Ubiquitin, Ub)的碳末端连接了FP探针——BODIPY。为了减少去泛素化酶降解时的空间位阻,在Ub和BODIPY之间加了一段linker,构建了检测去泛素化酶活性的探针——Ub-linker-BODIPY。去泛素化酶可降解该探针并将BODIPY释放出来,游离BODIPY的FP值会显著低于Ub-linker-BODIPY,通过检测FP可以表征去泛素化酶的活性。
为实现上述目的,本发明的技术方案为:
一种基于荧光偏振的去泛素化酶活性检测方法,所述方法包括如下步骤:
1、去泛素化酶检测探针的制备:
(1)制备融合蛋白Ub-linker-Cys:将Ub-linker-Cys的基因序列克隆到pET11a载体上(Novagen),酶切位点为NdeI和BamHI,以BL21 star为表达宿主,对该融合蛋白进行表达,当OD600达到0.6-0.8时,加入终浓度为200-1000 μM IPTG ,在温度为25-37°C诱导3-6小时,在纯化Ub-linker-Cys融合蛋白时,依次用P Seoharose Fast Flow, Sephacryl S100以及Source-S columns(GE Healthcare)进行纯化获得高纯度的蛋白,融合蛋白Ub-linker-Cys的氨基酸序列以及基因序列分别见SEQ ID NO.1和SEQ ID NO.2;
(2)连接BODIPY探针:BODIPY-maleimide探针的连接为现有技术,探针连接时需将Ub-linker-Cys蛋白置换到浓度为20 mM磷酸盐缓冲液中,缓冲液的pH 为7.2-8.0,以摩尔比1:2-1:5分别加入蛋白质和BODIPY探针,室温反应1-3小时,然后通过Source-S columns进行纯化,连接上荧光探针的样品在280 nm、544 nm处均有吸收;
(3)质谱检测:通过质谱对制备的Ub-linker-Cys融合蛋白进行检测,其检测结果与理论分子量10875.3 Da相一致,利用质谱对连接BODIPY探针后的样品进行检测,其质谱检测结果为11437.72 Da,该值正好为Ub-linker-Cys与BODIPY-maleimide分子量之和(BODIPY-maleimide的理论分子量为562.42 Da),这表明BODIPY探针连接成功;
2、检测去泛素化酶的活性:
(1)选择去泛素化酶:根据氨基酸序列的保守性,现有的去泛素化酶分为6大家族,分别是USPs、UCHs、MJDs、OUTs、MINDYs和JAMMs,理论上,Ub-linker-BODIPY探针能用于所有去泛素化酶活性的检测;
(2)去泛素化对探针荧光偏振值(FP)的影响:选择待检测的去泛素化酶,在该去泛素化酶所在的缓冲条件下,以1:10-1:100的比例加入去泛素化酶和Ub-linker-BODIPY探针,探针的浓度为0.5-5 μM,在待测去泛素化酶的最适酶切温度下进行保温直至去泛素化反应完成,利用荧光光谱仪检测探针的荧光偏振值(FP),同时,在相同的缓冲条件下,加入相同浓度的Ub-linker-BODIPY探针作为对照,并检测其荧光偏振值(FP);
(3)实时检测去泛素化酶的活性:在待检测去泛素化酶的缓冲溶液中,加入0.5-5μM Ub-linker-BODIPY探针,并以摩尔比为500:1-50:1加入去泛素化酶,利用荧光光谱仪多次连续的检测反应体系的荧光偏振值(FP),检测的时间间隔为1-5分钟,在荧光偏振值(FP)检测时,激发波长和发射波长分别设置为544 nm和573 nm,狭缝宽度设为3-5 nm。
该方案中所使用的材料、试剂、仪器等,如无特殊说明,均为可从正规商业途径购买。
与现有技术相比,本发明的积极效果为:
1、该检测方法是基于检测荧光偏振,荧光偏振检测的是平行方向和垂直方向荧光强度的比例关系,其不易受荧光探针的浓度、溶液温度和pH以及其他荧光信号的干扰;
2、该方法是基于荧光偏振,可以用于实时检测去泛素化酶的活性;
3、通过检测荧光偏振即可测量去泛素化酶的活性,步骤简单、耗时短,且探针和去泛素化酶的用量少;
4、去泛素化酶检测探针可根据本发明所述方法来制备,成本低;
5、该方法中制备的探针可用于去泛素化酶抑制剂的筛选,且是高通量的;
6、该方法不仅可用于去泛素化酶的功能研究,也为去泛素化酶抑制剂筛选提供了强有力的工具。
附图说明
图1、基于荧光偏振检测去泛素化酶活性的示意图。图中A)是检测Ub-linker-BODIPY探针的荧光偏振; B)是加入去泛素化酶,实时检测Ub-linker-BODIPY的荧光偏振;去泛素化酶可降解Ub-linker-BODIPY,将BODIPY逐渐释放出来,从而降低了FP值;当不加入去泛素化酶时,探针的FP值不会改变。
图2、去泛素化酶检测探针的质谱结果图。图中A)是融合蛋白质Ub-linker-Cys质谱检测结果,其具体氨基酸序列见SEQ ID NO.1;B) 是将A中的蛋白质连接荧光探针BODIPY-maleimide(Thermo Fisher,货号B30466),生成Ub-linker-BODIPY并进行质谱检测;C) 用去泛素化酶YUH1降解Ub-linker-BODIPY然后进行质谱检测,该分子量与Ub的分子量完全一致。
图3、荧光偏振(FP)检测去泛素化酶YUH1的活性图。图中A) 是测量Ub-linker-BODIPY探针以及利用去泛素化酶YUH1降解该探针后的荧光偏振结果,探针的浓度是2 μM,共6组平行实验;B) 是在2 μM Ub-linker-BODIPY探针中加入去泛素化酶YUH1,每隔2分钟测量一次荧光偏振结果,图3B中为3组平行实验的结果。在不含有去泛素化酶时,探针Ub-linker-BODIPY的FP值基本不改变,当加入去泛素化酶后,FP值逐渐降低。利用单指数衰减曲线对图3B中的曲线进行拟合,加入去泛素化酶后,FP的半衰期为4.5 min。
具体实施方式
下面结合实施例进一步对本发明的技术方案进行清楚、完整的描述。
实施例
YUH1是一种非常典型的Ub碳端水解酶,属于UCHs家族(Yu HA等,Proteinexpression and purification, 2007, 56(1): 20-26)。以去泛素化酶YUH1为例,利用Ub-linker-BODIPY探针来检测YUH1的活性。去泛素化酶YUH1的酶切缓冲条件为20 mM Tris,1mM DTT,1mM EDTA,pH7.5,最佳酶切温度为25°C。需要明确指出的是,本发明设计的探针对其他去泛素化酶活性检测也同样适用。
所述方法包括如下步骤:
1、去泛素化酶检测探针的制备:
(1)制备融合蛋白Ub-linker-Cys:将Ub-linker-Cys的基因序列克隆到pET11a载体上(Novagen),酶切位点为NdeI和BamHI,以BL21 star为表达宿主,对该融合蛋白进行表达,当OD600达到0.8时,加入终浓度为500 μM IPTG ,在温度为37°C诱导4小时,在纯化Ub-linker-Cys融合蛋白时,依次用P Seoharose Fast Flow, Sephacryl S100以及Source-Scolumns(GE Healthcare)进行纯化获得高纯度的蛋白,融合蛋白Ub-linker-Cys的氨基酸序列以及基因序列分别见SEQ ID NO.1和SEQ ID NO.2;
(2)连接BODIPY探针:BODIPY-maleimide探针的连接为现有技术,需将Ub-linker-Cys蛋白置换到浓度为20 mM 磷酸盐缓冲液中, 缓冲液的pH 为7.2,以摩尔比1:3分别加入蛋白质和BODIPY探针,室温反应2小时,然后通过Source-S columns进行纯化,连接上荧光探针的样品在280 nm、544 nm处均有吸收;
(3)质谱检测:通过质谱(Agilent G6530 Q-TOF)对制备的Ub-linker-Cys融合蛋白进行检测,其检测结果与理论分子量10875.3 Da相一致,利用质谱对连接BODIPY探针后的样品进行检测,其质谱检测结果为11437.72 Da,该值正好为Ub-linker-Cys与BODIPY-maleimide分子量之和(BODIPY-maleimide的理论分子量为562.42 Da),这结果表明BODIPY探针连接成功;
2、检测去泛素化酶的活性:
(1)选择去泛素化酶:以去泛素化酶YUH1为例,利用探针Ub-linker-BODIPY来检测YUH1的去泛素化酶活性;
(2)去泛素化对探针FP值的影响:在YUH1酶切缓冲液中,加入2μM Ub-linker-BODIPY探针和0.02 μM 去泛素化酶YUH1,在温度为25°C条件下反应1小时,通过质谱检测反应后探针的分子量,如图2C所示。同时,利用荧光光谱仪检测去泛素化酶酶切前后探针的荧光偏振(FP)结果,将激发波长和发射波长分别设置为544 nm和573 nm,狭缝宽度均设置为4nm,测得的荧光偏振结果如图3A所示,共做了6组平行实验,具体数值见表1。
(3)实时检测去泛素化酶的活性:在YUH1酶切缓冲液中以100:1摩尔比加入Ub-linker-BODIPY探针和YUH1,探针浓度为2μM。将样品用25℃的循环水浴进行保温,然后每间隔2 分钟进行FP检测,共检测了24 分钟,如图3B所示。图中为3次平行实验的结果,具体FP数据见表2所示。
实例检测结果
通过质谱对YUH1降解后探针的分子量进行检测,结果如图2C所示,质谱测得的分子量为8564.84 Da,该值与野生型Ub的分子量是完全一致的,这表明YUH1可将融合蛋白Ub-linker-BODIPY降解生成Ub。
将激发波长和发射波长分别设置为544 nm和573 nm,狭缝宽度均设置为4 nm,测得的荧光偏振结果如图3A所示,共做了6组平行实验,具体数值见表1。在不加入YUH1去泛素化酶时,Ub-linker-BODIPY的FP平均值为0.15左右,当加入YUH1后,平均FP值下降到了0.09左右。利用unpaired t test对两组荧光偏振数据进行统计学分析,数据用平均值±标准偏差表示(N=6),****P <0.0001,表明这两组数据具有明显差异。
以上结果表明:去泛素化酶YUH1可对探针Ub-linker-BODIPY进行去泛素化,经YUH1酶切后,Ub-linker-BODIPY的FP值显著降低。
表1:检测加入去泛素化酶(DUB)前后探针的荧光偏振
Figure 451591DEST_PATH_IMAGE001
实时检测YUH1去泛素化酶活性的结果如图3B所示,图中为3次平行实验的结果,具体FP数据见表2所示。在不含有去泛素化酶时,探针Ub-linker-BODIPY在24 分钟内的FP值基本不改变,均为0.150左右,该结果与表1的结果也是一致的;当加入去泛素化酶YUH1后,FP值会随着时间逐渐降低,将探针的FP值从0.150降低到0.093左右,24 分钟后FP值基本不变,表明探针Ub-linker-BODIPY已被去泛素化酶YUH1完全降解。以上结果表明:通过检测FP值,可以实时检测去泛素化酶的活性。此外,也可利用单指数衰减曲线对图3B中的数据进行拟合,拟合公式为FP=A*exp(-t/t0)+y0,其中t为降解时间,t0为FP的半衰期,A和y0为常数。利用该公式进行拟合可知,加入去泛素化酶YUH1后,FP的半衰期约为4.5分钟。
表2:实时检测去泛素化酶(DUB)的活性
Figure 742895DEST_PATH_IMAGE002
本说明书中公开的所有特征,或公开的所有原料的组合及掺量、处理过程的步骤,除了互相排斥的特征和/或步骤以外,均可以任何合理的方式组合。本说明书(包括权利要求、摘要)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
以上所述仅是本发明的非限定实施方式,还可以衍生出大量的实施例,对于本领域的普通技术人员来说,在不脱离本发明创造构思和不作出创造性劳动的前提下,还可以做出若干变形和改进的实施例,这些都属于本发明的保护范围。
序列表
Figure 9928DEST_PATH_IMAGE003
Figure 208828DEST_PATH_IMAGE004

Claims (4)

1.一种基于荧光偏振的去泛素化酶活性检测方法,其特征在于:所述方法包括如下步骤:
(1)去泛素化酶检测探针的制备:①制备融合蛋白Ub-linker-Cys:将Ub-linker-Cys的基因序列克隆到pET11a载体上(Novagen),酶切位点为NdeI和BamHI,以BL21 star为表达宿主,对该融合蛋白进行表达,当OD600达到0.6-0.8时,加入终浓度为200-1000μM IPTG ,在温度为25-37°C诱导3-6小时,在纯化Ub-linker-Cys融合蛋白时,依次用P Seoharose FastFlow, Sephacryl S100以及Source-S columns进行纯化获得高纯度的蛋白,融合蛋白Ub-linker-Cys的氨基酸序列以及基因序列分别见SEQ ID NO.1和SEQ ID NO.2;②连接BODIPY探针:BODIPY-maleimide探针的连接为现有技术,将Ub-linker-Cys蛋白置换到浓度为20mM 磷酸盐缓冲液中,缓冲液的pH 为7.2-8.0,以摩尔比1:2-1:5分别加入蛋白质和BODIPY探针,室温反应1-3小时,然后通过Source-S columns进行纯化,连接上荧光探针的样品在280 nm、544 nm处均有吸收;③质谱检测:通过质谱对制备的Ub-linker-Cys融合蛋白进行检测,其检测结果与理论分子量10875.3 Da相一致,利用质谱对连接BODIPY探针后的样品进行检测,其质谱检测结果为11437.72 Da,该值正好为Ub-linker-Cys与BODIPY-maleimide分子量之和,BODIPY-maleimide的理论分子量为562.42 Da,这表明BODIPY探针连接成功;
(2)检测去泛素化酶的活性:①选择去泛素化酶:根据氨基酸序列的保守性,现有的去泛素化酶分为6大家族,分别是USPs、UCHs、MJDs、OUTs、MINDYs和JAMMs,Ub-linker-BODIPY探针几乎能用于所有去泛素化酶的检测;②去泛素化对探针荧光偏振值(FP)的影响:选择待检测的去泛素化酶,活性检测的缓冲条件与待测去泛素化酶的缓冲条件是一致的,以1:10-1:100的比例加入去泛素化酶和Ub-linker-BODIPY探针,探针的浓度为0.5-5 μM,在待测去泛素化酶的最适反应温度下进行保温直至去泛素化反应完成,利用荧光光谱仪检测探针的荧光偏振值(FP),同时,在相同的缓冲条件下,加入相同浓度的Ub-linker-BODIPY探针作为对照,并检测其荧光偏振值(FP);③实时检测去泛素化酶的活性:在待检测去泛素化酶的缓冲溶液中,加入0.5-5μM Ub-linker-BODIPY探针,并以摩尔比为500:1-50:1加入去泛素化酶,利用荧光光谱仪多次连续地检测反应体系的荧光偏振值(FP),检测的时间间隔为1-5分钟,在荧光偏振值(FP)检测时,激发波长和发射波长分别设置为544 nm和573 nm,狭缝宽度设为3-5 nm。
2.根据权利要求1所述的基于荧光偏振的去泛素化酶活性检测方法,其特征在于:所述方法步骤(1)中的融合蛋白Ub-linker-Cys的氨基酸序列如表中SEQ ID NO.1所述。
3.根据权利要求1所述的基于荧光偏振的去泛素化酶活性检测方法,其特征在于:所述方法步骤(1)中的融合蛋白Ub-linker-Cys的基因序列如表中SEQ ID NO.2所述。
4.根据权利要求1所述的基于荧光偏振的去泛素化酶活性检测方法的用途,其特征在于:所述方法能用于去泛素化酶抑制剂的筛选。
CN202110903587.7A 2021-08-05 2021-08-05 一种基于荧光偏振的去泛素化酶活性检测方法 Active CN113514445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110903587.7A CN113514445B (zh) 2021-08-05 2021-08-05 一种基于荧光偏振的去泛素化酶活性检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110903587.7A CN113514445B (zh) 2021-08-05 2021-08-05 一种基于荧光偏振的去泛素化酶活性检测方法

Publications (2)

Publication Number Publication Date
CN113514445A true CN113514445A (zh) 2021-10-19
CN113514445B CN113514445B (zh) 2023-12-26

Family

ID=78068419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110903587.7A Active CN113514445B (zh) 2021-08-05 2021-08-05 一种基于荧光偏振的去泛素化酶活性检测方法

Country Status (1)

Country Link
CN (1) CN113514445B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804395A (en) * 1995-12-01 1998-09-08 The United States Of America As Represented By The Secretary Of The Navy Fluorescence polarization assays of enzymes and substrates therefore
CN1297487A (zh) * 1998-03-06 2001-05-30 诺沃挪第克公司 荧光偏振筛选法
US20080038768A1 (en) * 2006-08-08 2008-02-14 Ireos Filipuzzi Assay for ubiquitin mediated proteolysis
US20170044515A1 (en) * 2014-04-24 2017-02-16 Nanyang Technological University Asx-specific protein ligase
CN108285919A (zh) * 2017-01-09 2018-07-17 复旦大学 一种蛋白体外泛素化修饰快速检测试剂盒
US20180274003A1 (en) * 2015-10-01 2018-09-27 Nanyang Technological University Butelase-mediated peptide ligation
CN110835641A (zh) * 2019-10-23 2020-02-25 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 基于nanoBRET的促蛋白泛素化降解药物筛选系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804395A (en) * 1995-12-01 1998-09-08 The United States Of America As Represented By The Secretary Of The Navy Fluorescence polarization assays of enzymes and substrates therefore
CN1297487A (zh) * 1998-03-06 2001-05-30 诺沃挪第克公司 荧光偏振筛选法
US20080038768A1 (en) * 2006-08-08 2008-02-14 Ireos Filipuzzi Assay for ubiquitin mediated proteolysis
US20170044515A1 (en) * 2014-04-24 2017-02-16 Nanyang Technological University Asx-specific protein ligase
US20180274003A1 (en) * 2015-10-01 2018-09-27 Nanyang Technological University Butelase-mediated peptide ligation
CN108285919A (zh) * 2017-01-09 2018-07-17 复旦大学 一种蛋白体外泛素化修饰快速检测试剂盒
CN110835641A (zh) * 2019-10-23 2020-02-25 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 基于nanoBRET的促蛋白泛素化降解药物筛选系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王清清: "支链多聚泛素的结构和功能研究", 中国优秀硕士学位论文全文数据库 (基础科学辑), no. 1 *
蒋佳: "诱导Galectin-3降解的PROTACs小分子的设计、合成及活性研究", 中国优秀硕士学位论文全文数据库 (医药卫生科技辑), no. 1 *

Also Published As

Publication number Publication date
CN113514445B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
Luo et al. Avidin-biotin coupling as a general method for preparing enzyme-based fiber-optic sensors
WANG et al. The iron‐sulfur clusters in the two related forms of mitochondrial NADH: ubiquinone oxidoreductase made by Neurospora crassa
JP2004004128A (ja) 蛍光偏光測定用装置
CN105132524A (zh) ExoIII辅助的循环和DNAzyme循环的双重放大反应用于Hg2+检测
Chai et al. A near-infrared fluorescent probe for monitoring leucine aminopeptidase in living cells
Polo et al. Factors influencing fluorescence spectra of free porphyrins.
US20170370916A1 (en) High-sensitive fluorescent energy transfer assay using fluorescent amino acids and fluorescent proteins
Xu et al. A red-NIR fluorescent probe for rapid and visual detection of acrolein
Plazas-Mayorca et al. Quantitative proteomics reveals direct and indirect alterations in the histone code following methyltransferase knockdown
El Hamd et al. An integrative analytical approach designed for feasible tranexamic acid assay using O‐phthalaldehyde as a fluorogenic probe: applications to tablets, ampoules, and urine
CN113514445A (zh) 一种基于荧光偏振的去泛素化酶活性检测方法
US20080145885A1 (en) Proteome Standards for Mass Spectrometry
CN111855625B (zh) 一种基于Cu-MOF的CA125检测试剂盒及其应用
Soualmia et al. Amino‐methyl coumarin as a potential SERS@ Ag probe for the evaluation of protease activity and inhibition
CN116179654B (zh) 一种检测水中镉离子的滚环扩增检测体系及其应用
CN113880922B (zh) 一种检测sirt7酶活性的荧光多肽底物
Geary et al. Hydrolysis of the soluble fluorescent molecule carboxyumbelliferyl-beta-d-glucuronide by E. coli beta-glucuronidase as applied in a rugged, in situ optical sensor
CN110964817A (zh) 基于核酸外切酶Ⅲ的功能化发夹探针、组合物及提高检测Pax-5a基因灵敏度的方法
CN111257405B (zh) 一种利用质谱定量技术对基因毒性物质进行鉴定的方法
Ishikawa et al. Measurement of chloroplastic NAD kinase activity and whole tissue NAD kinase assay
Yue et al. Three asymmetric BODIPY derivatives as fluorescent probes for highly selective and sensitive detection of cysteine in living cells
Yoo et al. Aldehyde N, N-dimethylhydrazone-based fluorescent substrate for peroxidase-mediated assays
Basusarkar et al. The Colchicine‐Binding and Pyrene‐Excimer‐Formation Activities of Tubulin Involve a Common Cysteine Residue in the β Subunit
US8450066B2 (en) Methods for identifying the activity of gene products
Cheng et al. Development and application of activity-based fluorescent probes for high-throughput screening

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant