CN113512110B - BVDV nano antibody and preparation method and application thereof - Google Patents
BVDV nano antibody and preparation method and application thereof Download PDFInfo
- Publication number
- CN113512110B CN113512110B CN202110392556.XA CN202110392556A CN113512110B CN 113512110 B CN113512110 B CN 113512110B CN 202110392556 A CN202110392556 A CN 202110392556A CN 113512110 B CN113512110 B CN 113512110B
- Authority
- CN
- China
- Prior art keywords
- bvdv
- protein
- nano antibody
- lane
- ns5a
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000710780 Bovine viral diarrhea virus 1 Species 0.000 title claims abstract description 25
- PPBOKXIGFIBOGK-BDTUAEFFSA-N bvdv Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)C(C)C)[C@@H](C)CC)C1=CN=CN1 PPBOKXIGFIBOGK-BDTUAEFFSA-N 0.000 title claims abstract 4
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 76
- 102000004169 proteins and genes Human genes 0.000 abstract description 51
- 101800001014 Non-structural protein 5A Proteins 0.000 abstract description 40
- 239000013604 expression vector Substances 0.000 abstract description 16
- 238000002965 ELISA Methods 0.000 abstract description 13
- 230000009465 prokaryotic expression Effects 0.000 abstract description 13
- 102000036639 antigens Human genes 0.000 abstract description 12
- 108091007433 antigens Proteins 0.000 abstract description 12
- 238000002823 phage display Methods 0.000 abstract description 12
- 238000000746 purification Methods 0.000 abstract description 12
- 241001416177 Vicugna pacos Species 0.000 abstract description 11
- 239000000427 antigen Substances 0.000 abstract description 11
- 238000001514 detection method Methods 0.000 abstract description 6
- 238000012216 screening Methods 0.000 abstract description 6
- 230000003053 immunization Effects 0.000 abstract description 5
- 229940031551 inactivated vaccine Drugs 0.000 abstract description 5
- 238000003780 insertion Methods 0.000 abstract description 5
- 230000037431 insertion Effects 0.000 abstract description 5
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 abstract description 4
- 238000007857 nested PCR Methods 0.000 abstract description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 48
- 235000018102 proteins Nutrition 0.000 description 42
- 239000006228 supernatant Substances 0.000 description 29
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 27
- 230000014509 gene expression Effects 0.000 description 19
- 239000003550 marker Substances 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 210000003000 inclusion body Anatomy 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 238000001262 western blot Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 150000001413 amino acids Chemical class 0.000 description 8
- 238000010828 elution Methods 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 8
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 239000007983 Tris buffer Substances 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 238000001962 electrophoresis Methods 0.000 description 7
- 239000013613 expression plasmid Substances 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 7
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 238000001042 affinity chromatography Methods 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000012474 protein marker Substances 0.000 description 6
- 238000004153 renaturation Methods 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 235000020183 skimmed milk Nutrition 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 4
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- OOYGSFOGFJDDHP-KMCOLRRFSA-N kanamycin A sulfate Chemical compound OS(O)(=O)=O.O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N OOYGSFOGFJDDHP-KMCOLRRFSA-N 0.000 description 4
- 229960002064 kanamycin sulfate Drugs 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 101710144111 Non-structural protein 3 Proteins 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 101710172711 Structural protein Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000003698 anagen phase Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000000287 crude extract Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000009630 liquid culture Methods 0.000 description 3
- 238000004091 panning Methods 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 2
- 241000710781 Flaviviridae Species 0.000 description 2
- 108010053070 Glutathione Disulfide Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 239000006167 equilibration buffer Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 241000710777 Classical swine fever virus Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010011732 Cyst Diseases 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 101710125507 Integrase/recombinase Proteins 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101800001020 Non-structural protein 4A Proteins 0.000 description 1
- 101800001019 Non-structural protein 4B Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000710778 Pestivirus Species 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 102100021696 Syncytin-1 Human genes 0.000 description 1
- 239000006180 TBST buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 206010051511 Viral diarrhoea Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 210000004777 protein coat Anatomy 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000002702 ribosome display Methods 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
- C07K16/1081—Togaviridae, e.g. flavivirus, rubella virus, hog cholera virus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/005—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies constructed by phage libraries
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/569—Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Virology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention belongs to the field of biotechnology detection, and discloses an anti-BVDV-important functional protein nano antibody, a preparation method and application thereof, wherein an NS5A protein is purified mainly by constructing a BVDV-NS5A expression vector; immunizing alpaca with BVDV inactivated vaccine, separating alpaca peripheral blood lymphocyte, obtaining VHH gene by nested PCR, constructing nanometer antibody phage display library with target gene insertion rate of 90.8% and library capacity of 1.02 × 10 7 CFU/mL, capacity of 1.68 × 10 of nano antibody phage display library established by M13K07 phage rescue 16 CFU/mL; BVDV-important functional protein is used as a target antigen, three rounds of affinity screening are carried out on a phage display library obtained by propagation, a nano antibody specifically combined with E0/E2/NS5A/NS 3protein is screened out from the library, the reactionogenicity of the nano antibody is detected by ELISA, the nano antibody with good specificity is sequenced and analyzed for sequence, then the gene of the specific nano antibody is obtained, a prokaryotic expression vector is constructed, prokaryotic expression, purification and identification are carried out on the prokaryotic expression vector, the required nano antibodies Nb-Y1, nb-Y2 and Nb-Y3 are obtained, and the reactionogenicity of the nano antibody and the BVDV important functional protein is verified by blob.
Description
Technical Field
The invention belongs to the field of biotechnology detection, and particularly relates to a preparation method and application of a nano antibody for resisting an important functional protein of BVDV (BVDV). The method comprises the steps of firstly expressing and purifying to obtain BVDV-NS5A protein, immunizing alpaca by using a BVDV inactivated vaccine, separating lymphocytes and serum, screening a specific nano antibody by using four functional proteins of BVDV-E0, E2 and NS5A, NS through constructing a nano antibody phage display library, detecting the reactogenicity by ELISA (enzyme-linked immuno sorbent assay), expressing and purifying the nano antibody with good specificity, and verifying the specificity of the nano antibody by using Wb.
Background
Bovine Viral Diarrhea/mucosal disease (BVD-MD) is an infectious disease caused by Bovine Viral Diarrhea Virus (BVDV). Cattle of various ages are susceptible to infection, with the highest susceptibility to calves. The infection sources mainly comprise secretion, excrement, blood, spleen and the like of sick livestock, and the transmission modes are two direct contact modes or indirect contact modes. The sick cattle have acute onset of disease, the body temperature is suddenly increased to 40-42 ℃, the appetite is exhausted, the digestive tract mucosa is seriously injured, the early stage of the disease is usually watery diarrhea, the feces have blood and mucosa at the later stage, and the death rate can reach 90 percent. BVD-MD is therefore one of the diseases of great economic significance in the cattle industry and one of the diseases to be mainly prevented in import quarantine. The disease is worldwide distributed according to literature reports, and more than 20 provinces and municipalities such as Sinkiang, inner Mongolia, ningxia, shandong and Sichuan are popular in China at different degrees.
BVDV belongs to a single-stranded positive-strand RNA virus of pestivirus of flaviviridae, is a circular enveloped membrane, and is a virus of the same genus as classical swine fever virus and sheep boundary virus. BVDV has mainly four structural proteins, capsid protein (C), envelope protein (Erns, E1 and E2) and 7 non-structural proteins (P7, NS2/NS3, NS4A, NS4B, NS5A and NS 5B).
In 1993, hamers et al found that an antibody naturally lacking a light chain, called a Nanobody (Nb), existed in camels. The nanobody has a molecular size of only 15kDa, a single-chain variable fragment (30 kDa), a Fab fragment (60 kDa) and a whole antibody (150 kDa). Although different subfamilies can be distinguished in the dromedary by the length of CDR2 and the position of another cysteine in CDR1 or frame-2, all nanobodies belong to the same sequence family, closely related to the family of group III human VH 3; the antibody only has a variable region of a heavy chain, has the advantages of good water solubility, high temperature resistance, easy expression in a prokaryotic system, strong tissue penetrability, high stability, even oral absorption without degradation, high affinity of antigen combination and the like, and is an ideal research tool and can be used for developing complex nano biotechnology; after the alpaca is inoculated in the test, the VHH gene can be cloned into a phagemid vector, and then antigen-specific VHH can be selected through phage display aiming at the antigen. Due to the characteristics of small volume and natural solubility and the unique capability of targeting alternative epitopes, the nano-body is very attractive in the aspects of tumor targeting, diagnosis, even in-vivo treatment and the like.
Disclosure of Invention
The invention aims to provide a method for preparing a specific nano antibody of an important functional protein for resisting BVDV;
the current antibody obtaining methods comprise monoclonal antibodies, ribosome display libraries, phage display libraries and the like, wherein the most widely applied technology is the phage display libraries;
compared with the conventional antibody, the nano antibody screened by the technology has the characteristics of small relative molecular mass, strong stability, good solubility, good antigen binding property, easy expression, low immunogenicity and the like, and has wider application range than the conventional antibody.
Aiming at the defects in the prior art, the invention aims to provide a method for preparing an anti-BVDV nano antibody and application thereof.
In order to realize the purpose of the invention, the invention provides the following technical scheme:
the nano antibody has the characteristics which are not possessed by the traditional antibody, and has the advantages of high water solubility, strong stability, strong antigen recognition capability, low immunogenicity, strong penetrability and the like; one current focus of research on nanobodies is on their unique epitopes that conventional antibodies do not possess.
In the structural protein of the BVDV, the E0 protein belongs to a protein with high conservation, has certain immunogenicity, and plays an important role in the pathogenic process of the same virus; the C end of the E2 protein contains a hydrophobic membrane anchoring area which is positioned on the surface of the cyst membrane and stimulates an organism to generate immune response and virus neutralizing antibodies; the NS 3protein is not an essential protein for viral replication and the specific function is not known; the NS5A protein is hydrophilic. Both serine and threonine residues of NS5A are phosphorylated in members of the flaviviridae family, which contributes to the propagation of the virus and plays an important role in the virus life cycle.
The genome of a BVDV NADL strain is taken as a template, a target NS5A gene is amplified, is cloned into a prokaryotic expression vector pET-30a, is respectively transformed into an escherichia coli Top10 clone bacterium and a BL21 (DE 3) expression bacterium, is subjected to IPTG induced expression and Ni-IDA affinity chromatography column purification to obtain a recombinant protein, and the reactogenicity is detected through WB.
The nano antibody is prepared by the following steps: immunizing alpaca by using a BVDV inactivated vaccine, separating lymphocytes and serum, constructing a nano antibody library, carrying out auxiliary phage M13K07 rescue and propagation on the nano antibody library, and obtaining a nano antibody phage display library. And then taking BVDV-important functional protein as a target antigen, carrying out three rounds of 'adsorption-elution-amplification' affinity screening on a phage display library obtained by amplification, randomly picking and screening a nano antibody monoclonal to carry out ELISA (enzyme-linked immuno sorbent assay) to detect the reactogenicity of the nano antibody, sending the nano antibody to a biotechnology company to carry out sequencing, analyzing a sequence, and purifying Nb-Y1, nb-Y2 and Nb-Y3 proteins by using His (His tag) nickel columns through constructing prokaryotic expression vectors pET30a-Nb-Y1, pET30a-Nb-Y2 and pET30a-Nb-Y3 to express the nano antibodies Nb-Y1, nb-Y2 and Nb-Y3 with good specificity. The binding capacity of purified nano-antibodies Nb-Y1, nb-Y2 and Nb-Y3 and recombinant protein BVVD-E0/E2/NS5A/NS 3protein is verified by Western blotting.
The invention screens the specific and affinity nano-antibody of the BVDV-important functional protein; provides a foundation for establishing a method for detecting BVDV antigen based on nano-antibody ELISA and provides a material basis for the research and development of nano-antibody biological preparations.
The invention belongs to the field of biotechnology detection, and discloses a preparation method and application of a BVDV-important functional protein nano antibody, wherein an NS5A protein is purified mainly by constructing a BVDV-NS5A expression vector; immunizing alpaca with BVDV inactivated vaccine, separating alpaca peripheral blood lymphocyte, obtaining VHH gene by nested PCR, constructing nanometer antibody phage display library with target gene insertion rate of 90.8% and library capacity of 1.02 × 10 7 cfu/mL, capacity of 1.68 x 10 of nano antibody phage display library established by M13 phage rescue 16 CFU/mL; BVDV-important functional protein is used as a target antigen, three rounds of affinity screening are carried out on a phage display library obtained by propagation, a nano antibody specifically combined with E0/E2/NS5A/NS 3protein is screened out from the library, the reactogenicity of the nano antibody is detected by ELISA, the nano antibody with good specificity is sequenced and analyzed for sequence, then the gene of the specific nano antibody is obtained, a prokaryotic expression vector is constructed, and prokaryotic expression, purification and identification are carried out on the prokaryotic expression vector, so that the required nano antibodies Nb-Y1, nb-Y2 and Nb-Y3 are obtained.
Drawings
FIG. 1 is a prediction of the dominant epitope of BVDV NS5A, the curve representing the trend line of the change of the amino acid epitope threshold.
FIG. 2 is a PCR amplification electrophoresis diagram of NS5A target gene fragment using BVDV NADL standard strain genome as template, wherein M is DNA Marker; lanes 1-4 are NS5A genes.
FIG. 3 is a double-restriction enzyme electrophoresis diagram for identifying Nde I and Hind III of pET-30a-NS5A recombinant expression plasmid, wherein: lane M is DL10000 Marker; lane 1 is plasmid control; lanes 2-5 show the double digestion results for Nde I and Hind III.
FIG. 4 is an SDS-PAGE analysis of pET-30a-NS5A expression products. In the figure: lane M is SDS-PAGE Protein marker; lane 0 is 0h control; lane 1 induction at 15 ℃ for 16h; lane 2 was induced at 37 ℃ for 16h.
FIG. 5 shows affinity chromatography purification of the supernatant of NS5A protein. In the figure: lane M is SDS-PAGE Protein marker; lane 1 is the supernatant of the NS5A expressing strain after disruption and centrifugation; lane 2 is the effluent of the supernatant after Ni-IDA; lanes 3-4 are elution fractions of 50mM imidazole; lanes 5-7 are elution fractions of 100mM imidazole; lanes 8-10 are the elution fractions of 500mM imidazole.
FIG. 6 shows the result of SDS-PAGE analysis of the purification of NS5A protein from inclusion bodies. In the figure: lane M is SDS-PAGE Protein marker; lane 1 is the supernatant of NS5A protein inclusion body after lysis and centrifugation; lane 2 is the effluent of NS5A protein inclusion body supernatant after Ni-IDA; lanes 3-8 are elution fractions of 50mM imidazole; lanes 9-11 are 300mM imidazole fractions eluted.
Fig. 7 is an NS5A protein purification assay. In the figure: lane M is SDS-PAGE Marker; lane 1 is BSA (1.5 μ g); lane 2 is NS5Aprotein (1.5. Mu.g).
FIG. 8 is a Western Blot analysis of purified proteins. In the figure: lane M is Western Blot Marker; lane 1 is the NS5A protein at about 57kDa.
FIG. 9 shows the detection of the ELISA titer of BVDV-specific antibodies in alpaca serum
FIG. 10 shows the PCR results for the target gene of VHH. In the figure: lane M2 is DL700 DNA Marker; lanes 6-11 are two rounds of PCR products.
FIG. 11 shows the enzyme cutting identification of pCANTAB5E + VHH. In the figure: lane M is DL5000 DNA Marker; lanes 1-5 are pCANTAB5E + VHH ligation plasmids.
FIG. 12 is a graph of the determination of the capacity identification titer of the Nanobody library.
FIG. 13 is a colony PCR identification of phage antibody display library insertion rates. In the figure: lane M is DL700 DNA Marker; lanes 1-12 are two rounds of PCR products.
FIG. 14 is an SDS-PAGE analysis of the expression of Nb-Y1 protein in BL21 (DE 3). In the figure: lane M is SDS-PAGE Protein Marker; lane 0 is control (no IPTG added); lane 1 was induced at 37 ℃ for 16h; lane 2 is the supernatant of the whole cell after disruption; lane 3 is the pellet after the whole strain is disrupted.
FIG. 15 shows the result of SDS-PAGE analysis of purification of Nb-Y1 protein from inclusion bodies. The drawing is as follows: lane 1 is the supernatant after solubilization and centrifugation of inclusion bodies; lane 2 is the effluent of the supernatant incubated with Ni-IDA; lanes 3-4 are the elution fractions of 50mM Imidazole; lane 5 is the elution fraction of 300mM Imidazole.
FIG. 16 shows Nb-Y1 protein concentration measurement. In the figure: lane 1 is BSA (1.50 μ g); lane 2 is Nb-Y1, protein (2.00. Mu.g); lane M1 is SDS-PAGE Marker.
FIG. 17 shows the Nb-Y1 protein WB assay. In the figure: lane M2 is Western Blot Marker; lane 2 is Nb-Y1 protein (2.00. Mu.g).
FIG. 18 is an SDS-PAGE analysis of the expression of Nb-Y2protein in BL21 (DE 3). In the figure: lane M is SDS-PAGE Protein Marker; lane 0 is control (no IPTG added); lane 1 was induced at 37 ℃ for 16h; lane 2 is the supernatant after the whole strain is disrupted; lane 3 is the pellet after the disruption of the whole strain.
FIG. 19 shows the result of SDS-PAGE analysis of purification of Nb-Y2protein from inclusion bodies. The figure is as follows: lane 1 is the supernatant after lysis and centrifugation of inclusion bodies; lane 2 is the effluent of the supernatant incubated with Ni-IDA; lanes 3-4 are the eluted fractions of 50mM Imidazole; lane 5 is the elution fraction of 300mM Imidazole.
FIG. 20 is Nb-Y2protein concentration determination. In the figure: lane 1 is BSA (1.50 μ g); lane 2 is Nb-Y2protein (2.00. Mu.g); lane M1 is SDS-PAGE Marker.
FIG. 21 shows the Nb-Y2protein WB assay. In the figure: lane M2 is Western Blot Marker; lane 2 is Nb-Y2protein (2.00. Mu.g).
FIG. 22 is a SDS-PAGE analysis of the expression of Nb-Y3protein in BL21 (DE 3). In the figure: lane M is SDS-PAGE Protein Marker; lane 0 is control (no IPTG added); lane 1 was induced at 37 ℃ for 16h; lane 2 is the supernatant after the whole strain is disrupted; lane 3 is the pellet after the disruption of the whole strain.
FIG. 23 shows the result of SDS-PAGE analysis of purification of Nb-Y3protein from inclusion bodies. The figure is as follows: lane 1 is the supernatant after solubilization and centrifugation of inclusion bodies; lane 2 is the effluent of the supernatant incubated with Ni-IDA; lanes 3-4 are the elution fractions of 50mM Imidazole; lane 5 is the eluted fraction of 300mM Imidazole.
FIG. 24 is Nb-Y3protein concentration determination. In the figure: lane 1 is BSA (1.50 μ g); lane 2 is Nb-Y3protein (2.00. Mu.g); lane M1 is SDS-PAGE Marker.
FIG. 25 shows the Nb-Y3protein WB assay. In the figure: lane M2 is Western Blot Marker; lane 2 is Nb-Y3protein (2.00. Mu.g).
FIG. 26 is a double-restriction electrophoresis chart of pET-30a-Nb-Y1 recombinant expression plasmid identification Nde I and Hind III, in which: lane M is DL4500 Marker; lane 1 is plasmid control; lane 2 shows the double digestion results with Nde I and Hind III.
FIG. 27 is a double-restriction electrophoresis chart of pET-30a-Nb-Y2 recombinant expression plasmid identification Nde I and Hind III, in which: lane M is DL4500 Marker; lane 1 is plasmid control; lane 2 shows the double digestion results with Nde I and Hind III.
FIG. 28 is a double-restriction electrophoresis chart of pET-30a-Nb-Y3 recombinant expression plasmid identification Nde I and Hind III, in which: lane M is DL4500 Marker; lane 1 is plasmid control; lane 2 shows the double digestion results with Nde I and Hind III.
Fig. 29 is WB verification of the specificity of nanobody Nb-Y1. In the figure: lane M is 100kDa Western Blot Marker.
Fig. 30 is WB verification of the specificity of nanobody Nb-Y2. In the figure: lane M is 100kDa Western Blot Marker.
Fig. 31 is WB verification of the specificity of nanobody Nb-Y3. In the figure: lane M is 100kDa Western Blot Marker.
Detailed Description
1. Dominant epitope prediction
According to the BVDV NADL standard strain (NC-001461), an online software Predicting Anti-genetic Peptides server is used for Predicting the dominant epitope of the target protein NS5A of the NADL strain. (FIG. 1)
Gene amplification of NS5A protein and construction of prokaryotic expression vector
And amplifying the NS5A target gene fragment by taking the BVDV NADL standard strain genome as a template. (FIG. 2) the NS5A protein amino acid sequence was optimized using codon Optimization software MaxCodon (TM) Optimization Program (V13), NS5A gene was inserted into expression vector pET-30a via restriction enzyme sites Nde I/Hind III, and the accuracy of the final expression vector was confirmed by digestion and sequencing to obtain prokaryotic expression plasmid pET-30a-NS5A (FIG. 3).
TABLE 1 double digestion reaction System
Table1-5 Reaction system of double enzyme digestion
2. Expression vector transformation and induced expression
The constructed plasmid containing the BVDV NS5A gene was transformed into BL21 (DE 3) competent cells, which were then spread evenly on LB plates (containing 50. Mu.g/mL kanamycin sulfate), followed by inverting in an incubator at 37 ℃ overnight. A single clone was selected from the transformed plate, inoculated into 4mL of LB medium (containing 50. Mu.g/mL of kanamycin sulfate), cultured to OD600nm of 0.5-0.8, added to the test tube culture medium to a final concentration of 0.1mM IPTG, and then placed in induced expression at 15 ℃ and 37 ℃ for 0h, 16h. (FIG. 4)
Affinity chromatography purification of supernatant of NS5A protein
After induction of the expression bacteria, the supernatant and the precipitate are separated by ultrasonic crushing and centrifugation. And (3) sucking the supernatant, adding the supernatant into a Ni-IDA column balanced by Buffer A, eluting proteins by Buffer B with different imidazole concentrations, collecting eluted components at various concentrations, and analyzing the protein expression form by SDS-PAGE. The supernatant after the crushing and centrifugation of the expression bacteria has no target protein expression. (FIG. 5)
Affinity chromatography purification of NS5A protein inclusion bodies
After the inclusion bodies were washed with 50mM Tris (pH 8.5), 150mM NaCl containing 1% Triton X-100, 5mM EDTA, 2mM DTT, the inclusion bodies were solubilized with 50mM Tris (pH 8.5), 150mM NaCl,8M Urea buffer while equilibrating the Ni-IDA column, and finally the target protein was eluted with equilibration buffer of different concentrations of imidazole, and each eluted fraction was collected for SDS-PAGE assay (FIG. 6), and the protein was diluted to 0.1mg/mL, dialyzed to buffer [50mM Tris (pH 8.5), 150mM NaCl,2mM EDTA,4mM GSH,0.4mM GSSG,0.4M Arginine ] at 4 ℃ with a small amount of protein precipitated during renaturation, and after renaturation the Nb2 synthetic protein was finally dialyzed to a stock solution of 50mM Tris (pH 8.5), 150mM NaCl,10 mM Glycerol for about 6-8h. After dialysis and renaturation are finished, concentration is improved, the filtrate is filtered by a 0.22um filter and then subpackaged, and the filtrate is frozen and stored to-80 ℃.
5 purification and concentration determination of NS5A protein
After the protein was purified, the concentration of the protein was measured by the Bradford method, and the concentration of the protein was 0.331mg/mL. SDS-PAGE analysis was performed using BSA as a control and SDS-PAGE analysis. As can be seen in FIGS. 1-7, the protein of interest was of the expected size, indicating that both NS5A proteins were successfully purified. (FIG. 7)
Western Blot analysis of NS5A protein
Western-blot analysis is carried out after NS5A renaturation, antigenicity of the NS5A protein is analyzed, obvious bands (57 KDa) can be seen at expected sizes of the NS5A protein, and the result shows that the purified recombinant protein NS5A has good antigenicity (figure 8)
7. Immunization of alpaca
The alpaca was immunized with BVDV inactivated vaccine, whole blood was collected using anticoagulation tubes (EDTA) at 0d, 21d, 49d, and 70d, and peripheral blood lymphocytes and serum were isolated. The antibody titer is measured, and the result shows that the alpaca serum antibody titer can reach 1. (FIG. 9)
Obtaining the VHH Gene
Extracting RNA of peripheral blood lymphocytes, performing reverse transcription to form cDNA, synthesizing nested primers through a reference document to perform nested PCR amplification on a target gene of a nano antibody, and identifying through agarose gel electrophoresis, wherein the target fragment is about 400 bp. (FIG. 10)
TABLE 2 primers for amplification of genes of interest
Table1 The primers for target gene PCR amplification
9. Construction of recombinant vector pCANTAB5E + VHH
The purified target fragment and the cryopreserved plasmid pCANTAB5E were recovered after agarose gel electrophoresis, and digested with restriction enzymes Sfi I and Not I. The cleaved VHH target fragment was ligated with pCANTAB5E in a 200. Mu.L sterile EP tube. The prepared connection system is placed in a low-temperature connector and connected for 16 hours at the low temperature of 16 ℃. And carrying out enzyme digestion identification on the recombinant vector pCANTAB5E + VHH. (FIG. 11)
10. Transformation of ligation products and library identification
The connected recombinant vector pCANTAB5E + VHH is transferred into TG1 competent cells, and the transformed bacteria are spread on LB-AMP solid culture medium and placed in an incubator at 37 ℃ for overnight culture. The next day, 1mL LB-AMP liquid medium was added to the plates, colonies were collected with a sterile cell scraper, 20. Mu.L of the collected colonies were inoculated into 20mL of 2 XYT/AMP medium, the plates were placed in a shaker at 37 ℃ and 200rpm/min, and cultured to logarithmic phase with an OD600nm value of 0.8-1.0. Add 100 u L M K07 helper phage, mix gently, and let stand at 37 ℃ for 30min.2800g at room temperature for 10min, abandoning the supernatant, resuspending the thallus in 200mL 2 XYT/AMP medium, placing in a shaker at 37 deg.C, culturing at 200rpm/min for 12h. Placing in a centrifuge, centrifuging at 12000g for 15min at 4 deg.C, collecting supernatant, adding 0.1mL precooled PEG/NaCl, mixing by turning upside down, and standing on ice for 2h. Placing the mixture into a centrifuge, centrifuging the mixture for 10min at 4 ℃ at 10000g, discarding the supernatant, resuspending phage precipitate by using 1mL PBS, and incubating the precipitate overnight in a shaking table at 4 ℃ to fully dissolve the phage.
The preserved rescue phage is taken and diluted by 2 XYT according to the gradient of 10-1, 10-2, 10-3 and 10-4 … … -16, TG1 in the logarithmic growth phase is added according to the proportion of 1:1, and the incubation is carried out for 5-10min at room temperature. The incubated mixture was aspirated by 100. Mu.L, and the resulting solution was spread on LB-AMP solid medium by plate-spreading. The culture was carried out overnight at 37 ℃. The next day, the single clones on the plate were counted and the rescue phage titer was calculated. And randomly picking 96 monoclonal colonies from the transformed culture plate to perform PCR of bacterial liquid, identifying the positive rate of target fragment insertion of a PCR product, and calculating the library capacity of the library. The final product has a storage capacity of 1.02 × 10 7 VHH library in CFU/mL (FIG. 12). 90.8% of the clones contained the insertion of the gene of interest. (FIG. 13)
11. Specific nano antibody panning
And E0, E2 and NS5A, NS3 four proteins are used as coating antigens for specific nano antibody panning. The protein E0, E2, NS5A, NS were usedThe coating solution was diluted to 100. Mu.g/mL and 16 wells were coated with each protein (PBS was used as a negative control instead of antigen protein); discarding the coating solution, adding 200 μ L of 5% skimmed milk powder, placing into incubator, and sealing at 37 deg.C for 2 hr. Washing with PBS' T for 4 times, collecting rescued phage solution, diluting with 2% skimmed milk powder 10 times 5 Doubling, adding 100 mu L of the extract into each hole, and incubating for 2h at 37 ℃; phage samples were discarded, washed 5 times with PBS' T and PBS, and 100. Mu.L of freshly prepared 0.1M triethylamine was added to each well, incubated at room temperature for 10min, and rapidly neutralized with an equal volume of 1M Tris-HCl, pH 7.4. Measuring the concentration of the eluted phage, collecting 400 μ L eluate, infecting 4mL TG1 in logarithmic growth phase, mixing gently, incubating at 37 deg.C for 30min, adding 1698 2 XYT-AMP liquid culture medium, culturing in shaker at 37 deg.C and 200rpm/min to logarithmic growth phase, and D 600nm The value is between 0.6 and 0.8; 20 mu L M K07 helper phage were added to the medium reaching the logarithmic phase, mixed gently, incubated at 37 ℃ for 10h, centrifuged at 2800g for 10min, and the supernatant was discarded. The mycelia were suspended in 2 XYT-AMP liquid medium, and cultured on a shaker at 37 ℃ and 220rpm/min for 14 hours. Then, the concentration and purification of the phage particles are carried out. Three rounds of panning were performed in triplicate.
12. Induced expression of recombinant nano antibody and crude extract acquisition
Respectively taking phages obtained by E0, E2 and NS5A, NS after the third round of screening and eluting, respectively taking 100 mu L of the phages with a 2 XYT dilution degree of 108, respectively adding TG1 in an isometric logarithmic phase, uniformly mixing, and standing for 15min at 37 ℃; coating the infected TG1 on an LB-AMP solid culture medium, putting the culture medium into an incubator, and culturing for 8 hours at 37 ℃; randomly picking 96 monoclonal colonies of each protein, inoculating the colonies into 200 mu L LB-AMP liquid culture medium, and culturing for 10h; uniformly mixing the bacterial liquid and a TB culture medium according to the proportion of 1; IPTG was added to a final concentration of 0.1mM and induction was carried out overnight; centrifuging at 4 deg.C and 3200g for 10min, discarding supernatant, and freezing thallus precipitate in refrigerator at-20 deg.C for 30min. The mixture was allowed to stand at room temperature until it was melted, 500. Mu.L of sterile PBS was added to each tube, and the mixture was incubated on a shaker at 37 ℃ and 225rpm/min for 30min. Centrifuging at 4 deg.C for 15min at 3500g, and collecting supernatant as crude extract of soluble recombinant nanometer antibody.
13. ELISA detection of soluble recombinant nanobody
E0, E2 and NS5A, NS3 proteins are respectively diluted to 10 mug/mL by coating solution, a 96-well enzyme label plate is taken, 100 mug L of each protein is added into each well (each protein coats 2 plates), and the mixture is coated overnight at 4 ℃. Blank wells were coated with no protein using PBS as a no antigen control. Discarding the coating solution, patting to dry, adding 200 μ L5% skimmed milk powder into each well, placing into 37 deg.C incubator, and sealing for 2 hr. Washing with PBS' T for 3 times, collecting crude extract of soluble recombinant nanometer antibody, diluting with 5% skimmed milk powder 1:1, adding 100 μ L per well, placing into 37 deg.C incubator, and incubating for 45min. Wash 3 times with PBS' T, same protein, different plates, add respectively 1. Washing with PBS' T for 3 times, adding ELISA developing solution, placing in 37 deg.C incubator, and developing for 15min. Add 50. Mu.L of ELISA stop solution to each well and measure D using an ELISA reader 450nm The value of the OD value of the assay was more than 3 times greater than that of the PBS control, and the assay was positive.
14. Specific nanobody sequencing analysis
Two groups of ELISA are selected to be positive, and positive clone preserving fluid with higher OD value is transferred to a fresh 20mL 2 xYT-Amp liquid culture medium for overnight culture. The next day, bacterial liquid PCR was performed using the primer VHH-F, VHH-R, the PCR product was sent to Huada Gene (Beijing) GmbH for sequencing, and after Blast comparison, DNAMAN software was used to analyze and compare amino acid sequence homology. The result obtained 7 nanobodies of different amino acid sequences.
15. Synthesis of nano antibody Nb-Y1, nb-Y2 and Nb-Y3 genes and construction of prokaryotic expression vector
The provided Nb-Y1, nb-Y2 and Nb-Y3protein amino acid sequences are optimized by adopting codon Optimization software MaxCodon TM Optimization Program (V13), the Nb-Y1, nb-Y2 and Nb-Y3 genes are inserted into an expression vector pET30a by adopting whole-gene synthesis and restriction enzyme sites NdeI and HindIII to obtain prokaryotic expression plasmids pET30a-Nb-Y1, pET30a-Nb-Y2 and pET30a-Nb-Y3, the accuracy of the final expression vector is confirmed by an enzyme cutting method and sequencing, and finally the prokaryotic expression plasmids are respectively transferred into a Top10 clone strain and a BL21 (DE 3) expression strain. (pET 30a-Nb-Y1 FIG. 26) (pET 30a-Nb-Y2 FIG. 27) (pET 30a-Nb-Y3 FIG. 28)
16. Expression vector transformation and inducible expression
The constructed plasmids containing Nb-Y1, nb-Y2, and Nb-Y3 genes were transformed into BL21 (DE 3) competent cells, and then spread evenly onto LB plates (containing 50. Mu.g/mL kanamycin sulfate), followed by inverting in a 37 ℃ incubator overnight. Single colonies were picked from the transformed plates, inoculated into 4mL of LB medium (containing 50. Mu.g/mL kanamycin sulfate), and allowed to grow to D 600nm 0.5 to 0.8, IPTG was added to the test tube culture solution at a final concentration of 0.5mM, followed by induction of expression at 37 ℃. Expanding and culturing to D 600nm If =0.8, the final concentration of 0.5mM IPTG was added, and the cells were induced at 37 ℃ for 16 hours and collected.
17. SDS-PAGE analysis identification expression result of nano antibodies Nb-Y1, nb-Y2 and Nb-Y3
Centrifuging induced culture solution at 12000rpm for 5min, removing supernatant, adding PBS solution to resuspend and precipitate, adding SDS-PAGE sample buffer, heating the sample at 100 deg.C for 10min, centrifuging, and collecting supernatant for electrophoresis. The whole strain was sonicated in 20mM Tris (pH 8.0), 300mM NaCl,2mM Imidazole 1% Triton X-100,1mM DTT,1mM PMSF, and the supernatant and pellet were subjected to SDS-PAGE analysis. (E2-1 FIG. 14) (E2-3 FIG. 18) (NS 2-3 FIG. 22)
18. The inclusion body purifies the proteins of the nano antibodies Nb-Y1, nb-Y2 and Nb-Y3 through affinity chromatography
After inclusion bodies were washed with 20mM Tris (pH 8.0), 300mM NaCl containing 1% Triton X-100,2mM EDTA, and 5mM DTT, the inclusion bodies were dissolved in 20mM Tris (pH 8.0), 300mM NaCl,8M Urea, and 2mM Imidazole buffer while equilibrating the Ni-IDA column, and finally the target protein was eluted with equilibration buffers of different Imidazole concentrations, and each eluted fraction was collected for SDS-PAGE analysis. (Nb-Y1 FIG. 15) (Nb-Y2 FIG. 19) (Nb-Y3 FIG. 23)
Relatively high purity Lane 3-5 was collected by Ni-IDA affinity chromatography, added to the treated dialysis bag, and dialyzed into buffer solution [1 XPBS (pH 7.4), 4mM GSH,0.4mM GSSG,0.4M L-Arginine,1M Urea,5% Glycerol ] at 4 ℃ for renaturation, after which the Nb-Y1, nb-Y2, nb-Y3 proteins were finally dialyzed into stock solution 1 XPBS (pH 7.4), 5 Glycerol solution for about 6-8h. After the dialysis renaturation was completed, the supernatant was filtered with a 0.22 μm filter and dispensed, and it was frozen to-80 ℃.
19. Determination of protein concentration of nano antibodies Nb-Y1, nb-Y2 and Nb-Y3
Protein concentration was determined using the Bradford protein concentration assay kit. (Nb-Y1 FIG. 16) (Nb-Y2 FIG. 20 (Nb-Y3 FIG. 24)
20. Detection of nano-antibody Nb-Y1, nb-Y2 and Nb-Y3protein WB
The WB experimental operation is described in Guo Yaojun, a protein electrophoresis experimental technique. (Nb-Y1 FIG. 17) (Nb-Y2 FIG. 21) (Nb-Y3 FIG. 25)
21. Nano antibodies Nb-Y1, nb-Y2 and Nb-Y3protein combined Horse Radish Peroxidase (HRP)
WB verification of the specificity of the Nanobodies Nb-Y1, nb-Y2, nb-Y3
80. Mu.L of BVVD-E0/E2/NS5A/NS 3protein was mixed with 20. Mu.L of the protein sample, heated to boil for 10min, and subjected to SDS-PAGE. Cutting off the position of the target protein, putting the cut target protein into a membrane transfer solution for later use, respectively putting the filter paper, the glue and the PVDF membrane on a semi-wet transfer membrane instrument (3 layers of filter paper, glue, PVDF membrane and 3 layers of filter paper in sequence), and transferring for about 50 min. Then transferring the mixture to a plate, sealing the mixture for 2 hours at room temperature by using 5% skimmed milk powder, and then incubating the mixture by using an incubation box to combine with horseradish peroxidase (HRP) nano antibodies Nb-Y1, nb-Y2 and Nb-Y3 proteins, wherein the dilution is 1:5000, and incubating for 1h at room temperature by using a shaking table. After TBST cleaning for 3 times, the chemiluminescent solution was uniformly dropped on the PVDF membrane surface and placed in a chemical exposure instrument for exposure. The results showed that Nb-Y1 and Nb-Y2 were capable of specifically binding to E0, and Nb-Y3 was capable of specifically binding to E2. (FIG. 29), (FIG. 30), (FIG. 31).
<110> Stone river university
<120> -BVDV nano antibody and preparation method and application thereof
<141>
<160> 3
<210> 1
<211> 114
<212> PRT
<213> Nanobody gene
<220>
<221> misc_feature
<223> Nb-Y1 nano antibody gene amino acid sequence
<400> 1
HVQLQESGGGLVQPG
GSLRLSCIVSGRETV
AIGWFRQAPGKEREE
ISCIRRSGSTTNYLD
SVKGRFTISRDNAKN
TVYLQMNDLKAEDTA
RYYCAADKTCLSSWT
QAFWGQGTQVTVSS
<210> 2
<211> 122
<212> PRT
<213> Nanobody Gene
<220>
<221> misc_feature
<223> -Nb-Y2 Nanobody Gene amino acid sequence
<400> 2
HVQLQESGGGLVQPG
GSLRLSCTASEFTLD
YYAIGWFRQAPGKER
EGVSCISSSGDTIKY
ADSVKGRFTISRDNA
KNTVYLQMNSLKPED
TAVYYCAADRADPWN
VQHMCIPRGDYWGQG
TQVTVSS
<210> 3
<211> 120
<212> PRT
<213> Nanobody gene
<220>
<221> misc_feature
<223> -Nb-Y3 Nanobody Gene amino acid sequence
<400> 3
HVQLQESGGGLVQPG
GSLRLSCAPSGLDYT
VIGWFRQAPGKEREG
VACIFRSGGDTAYAD
SVQGRFTASRDDTMN
TAYLQMNSLTPEDTA
VYYCAAKKYGSCLPT
TIWSSHYPYWGQGTQ
VTVSS
Claims (1)
1. A nanobody against BVDV E0, characterized by: the amino acid sequence is SEQ ID NO.1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210903051.XA CN116023479B (en) | 2021-04-13 | 2021-04-13 | Bovine viral diarrhea virus nano antibody and preparation method and application thereof |
CN202110392556.XA CN113512110B (en) | 2021-04-13 | 2021-04-13 | BVDV nano antibody and preparation method and application thereof |
CN202210903994.2A CN115925895B (en) | 2021-04-13 | 2021-04-13 | BVDV-resistant nano antibody and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110392556.XA CN113512110B (en) | 2021-04-13 | 2021-04-13 | BVDV nano antibody and preparation method and application thereof |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210903051.XA Division CN116023479B (en) | 2021-04-13 | 2021-04-13 | Bovine viral diarrhea virus nano antibody and preparation method and application thereof |
CN202210903994.2A Division CN115925895B (en) | 2021-04-13 | 2021-04-13 | BVDV-resistant nano antibody and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113512110A CN113512110A (en) | 2021-10-19 |
CN113512110B true CN113512110B (en) | 2022-10-14 |
Family
ID=78062803
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110392556.XA Active CN113512110B (en) | 2021-04-13 | 2021-04-13 | BVDV nano antibody and preparation method and application thereof |
CN202210903994.2A Active CN115925895B (en) | 2021-04-13 | 2021-04-13 | BVDV-resistant nano antibody and preparation method and application thereof |
CN202210903051.XA Active CN116023479B (en) | 2021-04-13 | 2021-04-13 | Bovine viral diarrhea virus nano antibody and preparation method and application thereof |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210903994.2A Active CN115925895B (en) | 2021-04-13 | 2021-04-13 | BVDV-resistant nano antibody and preparation method and application thereof |
CN202210903051.XA Active CN116023479B (en) | 2021-04-13 | 2021-04-13 | Bovine viral diarrhea virus nano antibody and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN113512110B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115521942B (en) * | 2022-06-14 | 2024-05-03 | 天津市农业科学院 | Construction method and application of BVDV epitope gene vaccine |
CN115724957A (en) * | 2022-10-21 | 2023-03-03 | 北京纳百生物科技有限公司 | Heavy chain and light chain variable region of anti-bovine viral diarrhea virus NS3 protein monoclonal antibody |
CN116462752B (en) * | 2023-03-30 | 2024-09-10 | 中国农业科学院兰州兽医研究所 | Recombinant nano antibody targeting BVDV nonstructural proteins and application thereof |
CN117886952B (en) * | 2024-01-10 | 2024-06-25 | 四川省畜牧总站 | Antibody and matched pig sperm freezing kit thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101652962B1 (en) * | 2016-04-15 | 2016-09-02 | 대한민국 | A Kit Using Antibodies for Differentiating Recombinant CSFV Vaccinated Swine and Wild Type CSFV Infected Swine, and Differentiating Method Using Thereof |
CN106380516A (en) * | 2016-10-13 | 2017-02-08 | 西北农林科技大学 | Nano antibody specifically combined with BVD (bovine virus diarrhea) virus non-structural protein NS5B and application thereof |
CN110746495A (en) * | 2019-10-31 | 2020-02-04 | 石河子大学 | Recombinant protein E2 and application thereof |
CN112574309A (en) * | 2019-12-05 | 2021-03-30 | 屈向东 | anti-PD-L1 nano antibody and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100075326A1 (en) * | 2008-09-12 | 2010-03-25 | Cornell University | Yeast surface two-hybrid system for quantitative detection of protein-protein interactions |
KR101876535B1 (en) * | 2012-06-14 | 2018-07-09 | 베트올 (주) | Antibody for detecting of bovine viral diarrhea virus(bvdv), bvdv antigen detecting method and test kit using thereof |
CN104530229A (en) * | 2014-12-01 | 2015-04-22 | 西北农林科技大学 | Method for preparing anti-bovine viral diarrhea virus protein E2 specific IgY |
-
2021
- 2021-04-13 CN CN202110392556.XA patent/CN113512110B/en active Active
- 2021-04-13 CN CN202210903994.2A patent/CN115925895B/en active Active
- 2021-04-13 CN CN202210903051.XA patent/CN116023479B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101652962B1 (en) * | 2016-04-15 | 2016-09-02 | 대한민국 | A Kit Using Antibodies for Differentiating Recombinant CSFV Vaccinated Swine and Wild Type CSFV Infected Swine, and Differentiating Method Using Thereof |
CN106380516A (en) * | 2016-10-13 | 2017-02-08 | 西北农林科技大学 | Nano antibody specifically combined with BVD (bovine virus diarrhea) virus non-structural protein NS5B and application thereof |
CN110746495A (en) * | 2019-10-31 | 2020-02-04 | 石河子大学 | Recombinant protein E2 and application thereof |
CN112574309A (en) * | 2019-12-05 | 2021-03-30 | 屈向东 | anti-PD-L1 nano antibody and application thereof |
Non-Patent Citations (4)
Title |
---|
"BVDV重要功能蛋白纳米抗体的筛选及其对病毒复制的影响";杨艳;《中国优秀硕士学位论文全文数据库 (基础科学辑)》;20220215(第2期);A006-524 * |
"Chain B, Nanobody 2";Hadzi,S.等;《genbank》;20201201;ACCESSION NO.5JA8_B * |
"牛病毒性腹泻病毒E2蛋白纳米抗体筛选及反应原性检测";李岩 等;《畜牧与兽医》;20210331;第53卷(第3期);第71-76页 * |
"牛病毒性腹泻病毒NS3蛋白纳米抗体的筛选及反应原性检测";杨艳 等;《中国畜牧兽医》;20210114;第48卷(第1期);第303-311页 * |
Also Published As
Publication number | Publication date |
---|---|
CN116023479A (en) | 2023-04-28 |
CN115925895A (en) | 2023-04-07 |
CN115925895B (en) | 2024-09-03 |
CN113512110A (en) | 2021-10-19 |
CN116023479B (en) | 2024-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113512110B (en) | BVDV nano antibody and preparation method and application thereof | |
CN108586618B (en) | Preparation and application of porcine epidemic diarrhea subunit vaccine | |
CN107118262A (en) | A kind of Mycoplasma bovis MbovP579 albumen and its application | |
CN108912213B (en) | Immunogenic polypeptide of enterovirus 71 type VP1 antigen and preparation method and application thereof | |
CN114957454B (en) | anti-CSFV E2 protein nano antibody, fusion protein, preparation method and application thereof | |
CN110746495A (en) | Recombinant protein E2 and application thereof | |
CN110818778B (en) | Antigen, monoclonal antibody, polyclonal antibody and method for preparing Listeria monocytogenes monoclonal antibody | |
CN110642927B (en) | Application of protein in preparation of medicine for preventing cryptococcus pyogenes infection | |
CN114249819B (en) | Feline panleukopenia virus antibody, kit containing same and application | |
JP2013518563A (en) | Recombinant protein for use in a vaccine, antibodies to said protein, and diagnostic methods and therapies containing said protein | |
CN110257405B (en) | Mycoplasma bovis alcohol dehydrogenase gene and encoding protein and application thereof | |
CN106771237B (en) | A kind of ELISA kit for detecting porcine sapelo virus antibody | |
CN108486069B (en) | Virus separation method for low-content sample of porcine epidemic diarrhea virus | |
CN109400702B (en) | Porcine epidemic diarrhea virus M protein specific heavy chain antibody | |
CN107011417A (en) | Recombinant protein, encoding gene and application thereof, and detection kit and detection method for porcine epidemic diarrhea virus antibody | |
CN108982847B (en) | Indirect ELISA (enzyme-linked immunosorbent assay) detection method for duck reovirus causing duck spleen necrosis | |
CN110746496A (en) | PAL recombinant protein of acinetobacter baumannii, coding gene thereof and application thereof | |
CN103243105B (en) | A kind of Trichina recombinant protein and application | |
CN112457409B (en) | TLN-58 and hLYZ gene fusion protein, and antibacterial activity and application thereof | |
CN107253983A (en) | A kind of recombinant protein composition for detecting toxoplasma antibody and preparation method thereof | |
CN106978425B (en) | The albumen of Babesia orientalis 1-deoxy-D-xylulose -5- phosphoric acid reduction isomerase gene and its coding | |
CN111378025A (en) | Tetrodotoxin binding protein tfPSTBP2, nucleotide sequence, polyclonal antibody thereof and preparation method thereof | |
CN110196337A (en) | A kind of ELISA kit diagnosing coenosis | |
CN113087790B (en) | anti-African swine fever P72 protein single domain antibody and application thereof | |
CN113444157B (en) | Application of mycoplasma hyorhinis outer membrane protein Mhr _0461 in preparation of mycoplasma hyorhinis or antibody detection kit thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220613 Address after: No.221 Beisi Road, Shihezi City, Xinjiang Uygur Autonomous Region, 832000 Applicant after: SHIHEZI University Applicant after: Xinjiang Fangmu Biotechnology Co.,Ltd. Address before: 832000 Shihezi University, No. 221, Beisi Road, Shihezi City, county administrative division directly under the central government of Xinjiang Uygur Autonomous Region Applicant before: SHIHEZI University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |