CN113507115A - 含风电与抽水蓄能电站电力系统暂态稳定分析方法 - Google Patents

含风电与抽水蓄能电站电力系统暂态稳定分析方法 Download PDF

Info

Publication number
CN113507115A
CN113507115A CN202110770624.1A CN202110770624A CN113507115A CN 113507115 A CN113507115 A CN 113507115A CN 202110770624 A CN202110770624 A CN 202110770624A CN 113507115 A CN113507115 A CN 113507115A
Authority
CN
China
Prior art keywords
power
pumped storage
transient
generator
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110770624.1A
Other languages
English (en)
Inventor
罗远翔
李鑫明
陈秀华
王宇航
范立东
关明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202110770624.1A priority Critical patent/CN113507115A/zh
Publication of CN113507115A publication Critical patent/CN113507115A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明是一种含风电与抽水蓄能电站电力系统暂态稳定分析方法,其特点是,包括建立含风电与抽水蓄能电站的能量函数和建立水泵水轮机系统数学模型的内容,能够利用支路势能进行脆弱割集选取,分析出抽水蓄能机组工作在发电和电动两种不同状态对系统暂态稳定性的影响,并通过仿真验证分析结果,所提出的含风电与抽水蓄能电站的能量函数,可用于分析系统的暂态稳定性。具有方法科学合理,适用性强,分析准确,效果佳的优点。

Description

含风电与抽水蓄能电站电力系统暂态稳定分析方法
技术领域
本发明涉及风电与抽水蓄能电站暂态稳定分析技术领域,是一种含风电与抽水蓄能电站电力系统暂态稳定分析方法。
背景技术
电力系统中风电的装机容量不断增加,风电的波动性和随机性将会加剧系统有功功率的不平衡,风电多使用双馈感应电机接入电网,相比传统发电机将降低系统整体的惯性,对电力系统稳定带来诸多问题。抽水蓄能机组具有反应迅速,运行灵活等优势,能够有效平衡风电等新能源发电波动。
现有对于电力系统暂态稳定问题分析方法包括:数值仿真法、直接法和能量函数法。数值仿真法不能对系统稳定性做出定量评价且计算速度较慢;直接法对系统模型的适应性很差;现有的能量函数法做出的定量分析偏差大,分析准确率低。迄今尚未见有关含风电与抽水蓄能电站电力系统暂态稳定分析方法的文献报道和实际应用。
发明内容
本发明的目的是,克服现有技术的不足,提供一种科学合理,适用性强,分析准确,效果佳的含风电与抽水蓄能电站电力系统暂态稳定分析方法。
实现本发明目的采用的技术方案是,一种含风电与抽水蓄能电站电力系统暂态稳定分析方法,其特征是,它包括以下内容:
1)建立含风电与抽水蓄能电站系统的能量函数
单机无穷大系统的暂态能量函数,表达式为式(1):
Figure BDA0003153134190000011
其中,V为事故后任意时刻t系统的暂态能量,VKE为暂态动能,VPE为暂态势能,Mi为第i台发电机的转动惯量,ωi表示第i台发电机的角速度,ωN表示为系统参考机的额定转速,ωk(u)表示为第k条支路两端角速度差,tc为故障切除时间,Pk(u)为第k条支路有功潮流,
Figure BDA0003153134190000012
为第k条支路故障后平衡状态下的有功潮流;
当风电机组和抽蓄机组接入系统后,则抽蓄机组和风机也有网络暂态能量分布,相对于故障后稳定平衡点的含风电与抽水蓄能电站的单机无穷大系统的电力系统暂态能量函数表达式为式(2):
Figure BDA0003153134190000021
其中,Pw(u)是第j台风机的有功潮流,
Figure BDA0003153134190000022
是第j台风机相对于故障后稳定平衡点的有功功率,ωj(u)为第j台风机所接节点的角频率,Ph(u)为第c台抽蓄机组的有功功率,
Figure BDA0003153134190000023
是第c台抽蓄机组相对于故障后稳定平衡点的有功功率,ωc(u)为第c台抽蓄机组所接节点的角频率;
2)建立水泵水轮机系统数学模型
水泵水轮机是抽水蓄能电站的主要设备之一,其正向旋转时运行在水轮机工况,反向旋转时运行在水泵工况,水泵水轮机调节系统主要包括调速器、电液随动系统、水泵水轮机引水系统以及电机,简化的非线性水泵水轮机模型表示为式(3):
Figure BDA0003153134190000024
其中,q为流量,y为导叶开度,h为水头,p为机械功率,qnl为空载流量,A为导叶系数,其值为式(4):
Figure BDA0003153134190000025
其中,yFL为导叶开度参考值,yNL为空载导叶开度。
本发明的一种含风电与抽水蓄能电站电力系统暂态稳定分析方法,由于采用建立含风电与抽水蓄能电站系统的能量函数、建立水泵水轮机系统数学模型的内容,所具有的效果体现在:
1.抽水蓄能机组在发电工况时,系统发生故障后由于其水电机组机械控制,故障期间输入机械功率比火电机组低,等效减小了系统发电机的加速面积,且支路功率值降低,能够降低支路的暂态势能变化量,提高系统的暂态稳定性;
2.抽水蓄能机组在电动状态时,故障后同步发电机和同步电动机的摇摆曲线轨迹不同,发电工况时故障后发电机的功角δ由于发电机的功率输入和输出不平衡导致正向增大,而电动工况时同步电动机的功角反向增加。所以当系统发生故障后,系统中同步发电机与工作在电动工况的抽蓄机组,两者的功角增加方向相反,两者之间的功角差也越来越大,故当抽蓄机组工作在电动工况时不利于系统的功角稳定,会降低系统的暂态稳定性。
3.其方法科学合理,适用性强,分析准确,效果佳。
附图说明
图1为水泵水轮机调节系统示意图;
图2为含风电与抽水蓄能电站的单机无穷大系统图;
图3为接入火电机组的单机无穷大系统暂态稳定时能量函数图;
图4为发电工况单机无穷大系统暂态稳定时能量函数图;
图5为电动工况单机无穷大系统暂态稳定时能量函数图;
图6为含风电与抽水蓄能电站的IEEE39节点系统图;
图7为发电工况多机系统暂态稳定时能量函数图;
图8为发电工况多机系统失稳时能量函数图;
图9为电动工况多机系统暂态稳定时能量函数图。
具体实施方式
下面利用附图和实施例对本发明作进一步说明。
本发明的一种含风电与抽水蓄能电站电力系统暂态稳定分析方法,包括以下内容:
1)建立含风电与抽水蓄能电站系统的能量函数
单机无穷大系统的暂态能量函数,表达式为式(1):
Figure BDA0003153134190000031
其中,V为事故后任意时刻t系统的暂态能量,VKE为暂态动能,VPE为暂态势能,Mi为第i台发电机的转动惯量,ωi表示第i台发电机的角速度,ωN表示为系统参考机的额定转速,ωk(u)表示为第k条支路两端角速度差,tc为故障切除时间,Pk(u)为第k条支路有功潮流,
Figure BDA0003153134190000032
为第k条支路故障后平衡状态下的有功潮流;
当风电机组和抽蓄机组接入系统后,则抽蓄机组和风机也有网络暂态能量分布,相对于故障后稳定平衡点的含风电与抽水蓄能电站的单机无穷大系统的电力系统暂态能量函数表达式为式(2):
Figure BDA0003153134190000033
其中,Pw(u)是第j台风机的有功潮流,
Figure BDA0003153134190000041
是第j台风机相对于故障后稳定平衡点的有功功率,ωj(u)为第j台风机所接节点的角频率,Ph(u)为第c台抽蓄机组的有功功率,
Figure BDA0003153134190000042
是第c台抽蓄机组相对于故障后稳定平衡点的有功功率,ωc(u)为第c台抽蓄机组所接节点的角频率;
2)建立水泵水轮机系统数学模型
水泵水轮机是抽水蓄能电站的主要设备之一,其正向旋转时运行在水轮机工况,反向旋转时运行在水泵工况,水泵水轮机调节系统主要包括调速器、电液随动系统、水泵水轮机引水系统以及电机,简化的非线性水泵水轮机模型表示为式(3):
Figure BDA0003153134190000043
其中,q为流量,y为导叶开度,h为水头,p为机械功率,qnl为空载流量,A为导叶系数,其值为式(4):
Figure BDA0003153134190000044
其中,yFL为导叶开度参考值,yNL为空载导叶开度。
图1为抽水蓄能机组调节系统示意图,其中水泵水轮机调节系统主要由调速器、电液随动系统、水泵水轮机及引水系统、以及电机部分组成,其中n为转速,nref为转速参考值,Tm为机械转矩。
图2为含风电与抽水蓄能电站的单机无穷大系统图,图中G为同步发电机组,S为无穷大系统母线,T1、T2为变压器,WG、HG为风电机组和抽水蓄能机组,通过变压器接入节点2。在输电线路2-3中设置三相短路故障,对比HG机组为抽蓄机组和火电机组对系统暂态稳定性的影响。
由图3和图4可得到,系统在发生故障后,对比火电机组与抽蓄机组运行在发电工况,由于抽蓄机组的机械控制特性,在故障期间减小了抽蓄机组的机械功率输入,进而减小了抽蓄机组的有功输出,降低了故障期间发电机的动能增加幅度。故障切除后,由于抽蓄机组输出功率降低,所以线路功率与稳态时的线路功率差值减小,抑制了支路的势能变化,减小了系统的振荡幅度,提高了系统的暂态稳定性。由图5可得,当抽蓄机组工作在电动机状态时,发生故障后系统的动能和势能相互转换,系统的总能量仍守恒,所提出的抽蓄机组能量计算公式仍适用于分析系统的暂态稳定性。
图6将10机系统中的38#节点接入抽蓄机组,34#节点、33#节点接入风电机组,28#节点发生三相短路故障。当抽蓄机组工作在发电工况时,由图7可以看出系统暂态稳定时系统的暂态势能主要分布在支路26-28和26-29上,可以得到抽蓄机组替代火电机组同样可提高系统故障的极限切除时间,提高系统的暂态稳定性;如图8所示,在极限切除时间之后切除故障的情况下,支路26-28和26-29上的暂态势能不再有界,说明系统失稳;如图9所示,多机系统中,当抽蓄机组工作在电动机状态时,支路26-28和26-29承担暂态势能较大,所提出的抽蓄机组能量计算公式仍适用于分析系统的暂态稳定性。
表1中为不同运行状态下单机、多机系统极限切除时间,表中可以看出相比火电机组抽蓄机组运行在发电工况提高了系统极限切除时间,提高了系统稳定性。电动工况将降低系统稳定性。
表1 系统极限切除时间
运行状态 同步发电机 发电工况 电动工况
单机系统极限切除时间(s) 1.05 1.2 0.95
多机系统极限切除时间(s) 0.48 0.55 0.32
本发明的实施例仅用于对本发明作进一步的说明,并非穷举,并不构成对权利要求保护范围的限定,本领域技术人员根据本发明实施例获得的启示,不经过创造性劳动就能够想到其它实质上等同的替代,均在本发明保护范围内。

Claims (1)

1.一种含风电与抽水蓄能电站电力系统暂态稳定分析方法,其特征是,它包括以下内容:
1)建立含风电与抽水蓄能电站系统的能量函数
单机无穷大系统的暂态能量函数,表达式为式(1):
Figure FDA0003153134180000011
其中,V为事故后任意时刻t系统的暂态能量,VKE为暂态动能,VPE为暂态势能,Mi为第i台发电机的转动惯量,ωi表示第i台发电机的角速度,ωN表示为系统参考机的额定转速,ωk(u)表示为第k条支路两端角速度差,tc为故障切除时间,Pk(u)为第k条支路有功潮流,
Figure FDA0003153134180000012
为第k条支路故障后平衡状态下的有功潮流;
当风电机组和抽蓄机组接入系统后,则抽蓄机组和风机也有网络暂态能量分布,相对于故障后稳定平衡点的含风电与抽水蓄能电站的单机无穷大系统的电力系统暂态能量函数表达式为式(2):
Figure FDA0003153134180000013
其中,Pw(u)是第j台风机的有功潮流,
Figure FDA0003153134180000014
是第j台风机相对于故障后稳定平衡点的有功功率,ωj(u)为第j台风机所接节点的角频率,Ph(u)为第c台抽蓄机组的有功功率,
Figure FDA0003153134180000015
是第c台抽蓄机组相对于故障后稳定平衡点的有功功率,ωc(u)为第c台抽蓄机组所接节点的角频率;
2)建立水泵水轮机系统数学模型
水泵水轮机是抽水蓄能电站的主要设备之一,其正向旋转时运行在水轮机工况,反向旋转时运行在水泵工况,水泵水轮机调节系统主要包括调速器、电液随动系统、水泵水轮机引水系统以及电机,简化的非线性水泵水轮机模型表示为式(3):
Figure FDA0003153134180000016
其中,q为流量,y为导叶开度,h为水头,p为机械功率,qnl为空载流量,A为导叶系数,其值为式(4):
Figure FDA0003153134180000017
其中,yFL为导叶开度参考值,yNL为空载导叶开度。
CN202110770624.1A 2021-07-08 2021-07-08 含风电与抽水蓄能电站电力系统暂态稳定分析方法 Pending CN113507115A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110770624.1A CN113507115A (zh) 2021-07-08 2021-07-08 含风电与抽水蓄能电站电力系统暂态稳定分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110770624.1A CN113507115A (zh) 2021-07-08 2021-07-08 含风电与抽水蓄能电站电力系统暂态稳定分析方法

Publications (1)

Publication Number Publication Date
CN113507115A true CN113507115A (zh) 2021-10-15

Family

ID=78012128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110770624.1A Pending CN113507115A (zh) 2021-07-08 2021-07-08 含风电与抽水蓄能电站电力系统暂态稳定分析方法

Country Status (1)

Country Link
CN (1) CN113507115A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116054279A (zh) * 2023-02-16 2023-05-02 华北电力大学 含可变速抽蓄机机组的多节点电力网络暂态稳定方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470981A (zh) * 2016-01-11 2016-04-06 东北电力大学 一种基于暂态能量函数综合指标的电力系统暂态稳定智能调控方法
CN110397548A (zh) * 2019-06-25 2019-11-01 武汉大学 一种双馈式变速抽水蓄能机组的多模型预测控制方法
CN111934345A (zh) * 2020-07-24 2020-11-13 华中科技大学 一种可再生能源电力系统的暂态能量函数计算方法
CN112994051A (zh) * 2021-02-26 2021-06-18 南方电网调峰调频发电有限公司 一种含可变速机组的海水抽水蓄能电站容量优化配置方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470981A (zh) * 2016-01-11 2016-04-06 东北电力大学 一种基于暂态能量函数综合指标的电力系统暂态稳定智能调控方法
CN110397548A (zh) * 2019-06-25 2019-11-01 武汉大学 一种双馈式变速抽水蓄能机组的多模型预测控制方法
CN111934345A (zh) * 2020-07-24 2020-11-13 华中科技大学 一种可再生能源电力系统的暂态能量函数计算方法
CN112994051A (zh) * 2021-02-26 2021-06-18 南方电网调峰调频发电有限公司 一种含可变速机组的海水抽水蓄能电站容量优化配置方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
汪小明等: "基于能量函数法的电网暂态稳定性分析", 《电网技术》 *
罗远翔: "基于能量函数的含风电电力系统暂态稳定分析与控制", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》 *
罗远翔等: "单机系统中计及详细模型的暂态能量在网络中的分布特性研究", 《东北电力大学学报》 *
赵强: "双馈式可变速抽水蓄能机组建模与电网频率控制", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116054279A (zh) * 2023-02-16 2023-05-02 华北电力大学 含可变速抽蓄机机组的多节点电力网络暂态稳定方法及系统
CN116054279B (zh) * 2023-02-16 2023-07-11 华北电力大学 含可变速抽蓄机机组的多节点电力网络暂态稳定方法及系统

Similar Documents

Publication Publication Date Title
Joos Wind turbine generator low voltage ride through requirements and solutions
CN105068424B (zh) 一种适用于电力系统分析的转桨式水轮机调节系统动态模型
Qiao et al. Effect of grid-connected DFIG wind turbines on power system transient stability
CN109361233B (zh) 双馈式可变速抽水蓄能电站输出功率动态过程建模方法
CN103558768A (zh) 一种基于风电场内风速分布特性的等值建模方法
CN106532758A (zh) 海上风电接入多端柔性直流输电系统中换流站退出运行时的直流功率再分配方法
CN113507115A (zh) 含风电与抽水蓄能电站电力系统暂态稳定分析方法
Motamed et al. Comparison of primary frequency support methods for wind turbines
CN111049178A (zh) 一种直驱永磁风电机组经vsc-hvdc并网稳定控制分析方法
Bouhadouza et al. Application of STATCOM to increase transient stability of wind farm
Prasanthi et al. Stability analysis of a grid connected DFIG based WECS with two-mass shaft modeling
Chandra et al. Small signal stability of power system with SCIG, DFIG wind turbines
Chen et al. Stability improvement of wind turbine systems by STATCOM
Årdal et al. Parametric sensitivity of transients in an islanded system with an offshore wind farm connected to an oil platform
Gomez et al. Analysis of the doubly fed induction generator performance on frequency support of microgrids
Ganthia et al. 2 Power control of modified type III DFIG-based wind turbine system using four-mode type I fuzzy logic controller
CN113904346A (zh) 一种考虑水电调频资源的风电机组转速恢复方法
Wang et al. Modeling of DFIG based wind farm considering temporal and spatial non-uniformity of wind speed in mountainous region and its applicability analysis
Ntshangase et al. Voltage stability analysis of electricity networks with DFIG-based wind power plants
Messalti et al. Improvement of Power System Transient Stability using Wind Farms based on a Doubly–fed Induction Generation (DFIG)
Ferdous et al. Controlling of frequency fluctuation of wind turbine generator using wind speed controlled pitch controller
Junyent-Ferré et al. Digital simulation of voltage dip characteristics of wind turbine systems
Debre et al. Analysis of DFIG based Wind Energy System with Grid Integration under normal and abnormal conditions
Ziaei et al. Linear Modal Analysis of Doubly-Fed Induction Generator (DFIG) Torsional Interaction: Effect of DFIG Controllers and System Parameters
Prasanthi et al. Performance analysis of a grid connected DFIG for non-optimum power tracking

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211015