CN113503659B - 一种新型空气源热声热泵系统 - Google Patents

一种新型空气源热声热泵系统 Download PDF

Info

Publication number
CN113503659B
CN113503659B CN202110733320.8A CN202110733320A CN113503659B CN 113503659 B CN113503659 B CN 113503659B CN 202110733320 A CN202110733320 A CN 202110733320A CN 113503659 B CN113503659 B CN 113503659B
Authority
CN
China
Prior art keywords
heat
outlet
heat pump
inlet
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110733320.8A
Other languages
English (en)
Other versions
CN113503659A (zh
Inventor
庞晓敏
马素霞
张建春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan Boiler Group Co Ltd
Taiyuan University of Technology
Original Assignee
Taiyuan Boiler Group Co ltd
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan Boiler Group Co ltd, Taiyuan University of Technology filed Critical Taiyuan Boiler Group Co ltd
Priority to CN202110733320.8A priority Critical patent/CN113503659B/zh
Publication of CN113503659A publication Critical patent/CN113503659A/zh
Application granted granted Critical
Publication of CN113503659B publication Critical patent/CN113503659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/004Gas cycle refrigeration machines using a compressor of the rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1403Pulse-tube cycles with heat input into acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat

Abstract

本发明提供一种新型空气源热声热泵系统,属于空气源热泵的技术领域,包括热声热泵机组和空气源热泵机组。热声热泵机组作为初级热泵,利用热声效应,将低温空气的热量转移到高温换热器中,载热介质通过中间环路将热量从热声热泵的高温换热器转移到蓄热器中,蓄热器作为空气源热泵机组的一个并联蒸发器或者经济器;热声热泵机组膨胀侧直线发电机的输出电功驱动涡旋式压缩机。热声热泵机组作为初级热泵,削弱了受工质热物理性质的制约;次级热泵可进一步利用低温空气中的热量,同时蓄热器可为中间补气支路提供更多的热量,增加系统的性能系数与制热量,形成稳定、高效的新型空气源热声热泵供热系统,进一步提高能源利用率。

Description

一种新型空气源热声热泵系统
技术领域
本发明属于空气源热泵的技术领域,具体公开了一种新型空气源热声热泵系统。
背景技术
热泵是一种消耗一部分高位能将大量热量从低品位热源提取到高品位热源的装置,可以利用空气能、太阳能、地热能等可再生能源。热泵技术的应用已经成为解决能源和环境问题的有效举措之一,同时对碳达峰、碳中和贡献极大的力量。
传统空气源热泵的性能受室外环境温度影响比较大,用于严寒地区城镇建筑冬季采暖供热存在着以下难题。
1) 供需矛盾问题。室外环境温度降低时,室内的需热量增大,但传统空气源热泵受热泵工质蒸发温度的限制,能够从室外空气吸取的热量反而减少。
2)低环温下运行,压缩机压比增大、排气温度过高。运行最佳工况的压缩比一般是3~4之间,随着室外环境温度的降低,压缩机吸气压力降低,其压比不断增大。压缩机偏离理想等熵压缩,排气温度急剧升高,长期运行必然会严重损坏压缩机,机组安全性问题突出。
3)低环温下运行,空气源热泵性能下降。压缩机运行偏离最佳运行工况,单位制热量消耗的电功增加;此外吸气压力降低导致制冷剂流量变小,制热量下降;整机性能系数降低。
为改善空气源热泵的低温适应性,目前的技术措施主要有:1)双级压缩循环;2)准双级压缩循环;3)双级耦合压缩循环;4)复叠式压缩循环。
双级压缩循环、双级耦合压缩循环、复叠式压缩循环都是通过提供压缩机输入电功来提高制热量,热损失大;准双级压缩通过中间补气提高热泵的制热性能,结构简单,但是经济器的换热量有限,随着环境温度的降低,系统的制热量和COP衰减仍然非常大。
发明内容
本发明的目的在于提供一种新型空气源热声热泵系统,解决现有空气源热泵在极寒天气下供需矛盾突出、压缩机排气温度高、系统制热量不足、能效比低的问题。
为实现上述目的,本发明提供一种新型空气源热声热泵系统,包括热声热泵机组和空气源热泵机组;热声热泵机组包括依次连接的直线压缩机、次室温换热器、热缓冲管、高温换热器、回热器、主室温换热器和直线发电机;直线压缩机产生的声波在所述回热器中消耗,转化为热能,在回热器两侧形成温度梯度,在所述高温换热器中将热量释放;直线发电机作为膨胀侧电机,调节热声热泵机组内部的阻抗分布,同时回收热声热泵机组余下的声功,并将其转化为电功输出;空气源热泵机组包括涡旋式压缩机、冷凝器、蓄热器、蒸发器、气液分离器Ⅰ、气液分离器Ⅱ、热力膨胀阀Ⅰ、热力膨胀阀Ⅱ、电磁阀Ⅰ和电磁阀Ⅱ;涡旋式压缩机包括吸气口、排气口、补气口;涡旋式压缩机由热声热泵机组中直线发电机的输出电功驱动;涡旋式压缩机的排气口与冷凝器的气体进口连接;所述冷凝器出口分为两个支路,其中一个支路与电磁阀Ⅰ的进口连接,电磁阀Ⅰ的出口与双盘管式蓄热器的第一进口连接,蓄热器的第一出口与热力膨胀阀Ⅰ的进口连接,热力膨胀阀Ⅰ的出口与蒸发器的进口连接,蒸发器的出口与气液分离器Ⅰ的进口连接,气液分离器Ⅰ的气体出口与涡旋式压缩机的吸气口连接;冷凝器出口的另一个支路与电磁阀Ⅱ的进口连接,电磁阀Ⅱ的出口与热力膨胀阀Ⅱ的进口连接,热力膨胀阀Ⅱ的出口与蓄热器的第二进口连接,蓄热器的第二出口与气液分离器Ⅱ的进口连接,气液分离器Ⅱ的气体出口与涡旋式压缩机的补气口与连接;蓄热器的液体进口和液体出口通过中间环路与高温换热器的出口和进口连接。
本发明还提供一种新型空气源热声热泵系统,包括热声热泵机组和空气源热泵机组;热声热泵机组包括依次连接的直线压缩机、次室温换热器、热缓冲管、高温换热器、回热器、主室温换热器和直线发电机;直线压缩机产生的声波在所述回热器中消耗,转化为热能,在回热器两侧形成温度梯度,在所述高温换热器中将热量释放;直线发电机作为膨胀侧电机,调节热声热泵机组内部的阻抗分布,同时回收热声热泵机组余下的声功,并将其转化为电功输出;空气源热泵机组包括涡旋式压缩机、冷凝器、蓄热器、蒸发器、气液分离器Ⅰ、气液分离器Ⅱ、热力膨胀阀Ⅰ、热力膨胀阀Ⅱ、电磁阀Ⅱ、电磁阀Ⅲ、电磁阀Ⅳ和电磁阀Ⅴ;涡旋式压缩机包括吸气口、排气口、补气口;涡旋式压缩机由热声热泵机组中直线发电机的输出电功驱动;涡旋式压缩机的排气口与冷凝器的进口连接;所述冷凝器的出口分为两个支路,其中一个支路与电磁阀Ⅲ的进口连接,电磁阀Ⅲ的出口与热力膨胀阀Ⅰ的进口连接,热力膨胀阀Ⅰ的出口与蒸发器的进口连接,蒸发器的出口与气液分离器Ⅰ的进口连接,气液分离器Ⅰ的气体出口与涡旋式压缩机的吸气口连接;冷凝器出口的另一个支路与电磁阀Ⅱ的进口连接,电磁阀Ⅱ的出口与热力膨胀阀Ⅱ的进口连接,热力膨胀阀Ⅱ的出口与单盘管式蓄热器的进口连接,蓄热器的出口分别与电磁阀Ⅳ和电磁阀Ⅴ的进口连接;电磁阀Ⅳ的出口与气液分离器Ⅱ的进口连接,气液分离器Ⅱ的气体出口与涡旋式压缩机的补气口连接;电磁阀Ⅴ的出口与气液分离器Ⅰ的进口连接,气液分离器Ⅰ的气体出口与涡旋式压缩机的吸气口连接;蓄热器的液体进口和液体出口通过中间环路与高温换热器的出口和进口连接。
与现有技术相比,本发明具有以下有益效果:
本发明利用热声热泵机组作为初级热泵,利用热声效应,将低温空气的热量转移到高温换热器中,载热介质通过中间环路将热量从热声热泵的高温换热器转移到蓄热器中,蓄热器作为空气源热泵机组的一个并联蒸发器或者经济器;热声热泵机组膨胀侧直线发电机的输出电功驱动涡旋压缩机。热声热泵机组作为初级热泵,其泵热温差主要取决于机组内部声场分布,削弱了受工质热物理性质的制约;次级热泵可进一步利用低温空气中的热量,提高系统制热量;同时蓄热器可为中间补气支路提供更多的热量,增大制冷剂流量,增加系统的性能系数与制热量。形成稳定、高效的新型空气源热声热泵供热系统,进一步提高能源利用率。
附图说明
图1为实施例1所述新型空气源热声热泵系统的结构示意图;
图2为实施例2所述新型空气源热声热泵系统的结构示意图。
图中:1-直线压缩机;2-次室温换热器;3-热缓冲管;4-高温换热器;5-回热器;6-主室温换热器;7-直线发电机;8-涡旋式压缩机;9-冷凝器;10-蓄热器;11-蒸发器;12-气液分离器Ⅰ;13-气液分离器Ⅱ;14-热力膨胀阀Ⅰ;15-热力膨胀阀Ⅱ;16-电磁阀Ⅰ;17-电磁阀Ⅱ;18-中间环路;19-电磁阀Ⅲ;20-电磁阀Ⅳ;21-电磁阀Ⅴ。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种新型空气源热声热泵系统,包括热声热泵机组和空气源热泵机组;热声热泵机组包括依次连接的直线压缩机1、次室温换热器2、热缓冲管3、高温换热器4、回热器5、主室温换热器6和直线发电机7;直线压缩机1产生的声波在所述回热器5中消耗,转化为热能,在回热器5两侧形成温度梯度,在所述高温换热器4中将热量释放;直线发电机7作为膨胀侧电机,调节热声热泵机组内部的阻抗分布,同时回收热声热泵机组余下的声功,并将其转化为电功输出;空气源热泵机组包括涡旋式压缩机8、冷凝器9、蓄热器10、蒸发器11、气液分离器Ⅰ12、气液分离器Ⅱ13、热力膨胀阀Ⅰ14、热力膨胀阀Ⅱ15、电磁阀Ⅰ16和电磁阀Ⅱ17;涡旋式压缩机8包括吸气口、排气口、补气口;涡旋式压缩机8由热声热泵机组中直线发电机7的输出电功驱动;涡旋式压缩机8的排气口与冷凝器9的气体进口连接;所述冷凝器9出口分为两个支路,其中一个支路与电磁阀Ⅰ16的进口连接,电磁阀Ⅰ16的出口与双盘管式蓄热器10的第一进口连接,蓄热器10的第一出口与热力膨胀阀Ⅰ14的进口连接,热力膨胀阀Ⅰ14的出口与蒸发器11的进口连接,蒸发器11的出口与气液分离器Ⅰ12的进口连接,气液分离器Ⅰ12的气体出口与涡旋式压缩机8的吸气口连接;冷凝器9出口的另一个支路与电磁阀Ⅱ17的进口连接,电磁阀Ⅱ17的出口与热力膨胀阀Ⅱ15的进口连接,热力膨胀阀Ⅱ15的出口与蓄热器10的第二进口连接,蓄热器10的第二出口与气液分离器Ⅱ13的进口连接,气液分离器Ⅱ13的气体出口与涡旋式压缩机8的补气口与连接;蓄热器10的液体进口和液体出口通过中间环路18与高温换热器4的出口和进口连接。
其中,直线压缩机1作为压力波发生器,通过电机两端的活塞往复运动产生声波,产生的声波在回热器5中消耗,转化为热能,在回热器5两侧形成温度梯度,在高温换热器4中将热量释放。直线发电机7作为膨胀侧电机,调节热声热泵机组内部的阻抗分布,同时回收热声热泵机组余下的声功,并将其转化为电功输出,输出电功用于驱动涡旋式压缩机8。
当供热量较小时,热声热泵机组不运行,仅空气源热泵机组运行,制冷剂仅从蒸发器11中吸收热量,电磁阀Ⅱ17关闭,电磁阀Ⅰ16开启,系统中制冷剂的循环路径为:
涡旋式压缩机8→冷凝器9→电磁阀Ⅰ16→蓄热器10→热力膨胀阀Ⅰ14→蒸发器11→气液分离器Ⅰ12→涡旋式压缩机8。
经涡旋式压缩机8压缩的高温制冷剂蒸汽在冷凝器9中与水箱中的水进行热交换,实现供热,温度降低后经过电磁阀Ⅰ16、蓄热器10、热力膨胀阀Ⅰ14,在蒸发器11中从空气吸收热量,制冷剂气化,经过气液分离器Ⅰ12再次进入涡旋式压缩机8,循环供热。
当供热量较大时,热声热泵机组和空气源热泵机组同时运行。热声热泵机组作为初级热泵,利用热声效应,将室外低温空气的热量转移到高温换热器4中,载热介质通过中间环路18将热量从高温换热器4转移到蓄热器10中,热量储存于蓄热器10中,热声热泵机组中的直线发电机7输出的电功驱动涡旋式压缩机8。空气源热泵机组作为次级热泵,采用喷气增焓技术,蓄热器10同时作为空气源热泵机组的经济器,制冷剂从蓄热器10和蒸发器11中同时吸收热量,电磁阀Ⅰ16、电磁阀Ⅱ17均开启,系统的循环路径为:
第一支路:涡旋式压缩机8→冷凝器9→电磁阀Ⅰ16→蓄热器10→热力膨胀阀Ⅰ14→蒸发器11→气液分离器Ⅰ12→涡旋式压缩机8;
第二支路:涡旋式压缩机8→冷凝器9→电磁阀Ⅱ17→热力膨胀阀Ⅱ15→蓄热器10→气液分离器Ⅱ13→涡旋式压缩机8。
经涡旋式压缩机8压缩的高温制冷剂蒸汽在冷凝器9中与水箱中的水进行热交换,实现供热,温度降低后,第一支路经过电磁阀Ⅰ16在蓄热器10中进一步实现过冷,然后经过热力膨胀阀Ⅰ14在蒸发器11中从空气吸收热量,制冷剂气化,经过气液分离器Ⅰ12再次进入涡旋式压缩机8。第二支路经过电磁阀Ⅱ17和热力膨胀阀Ⅱ15在蓄热器10中吸收热量,经过气液分离器Ⅱ13再次进入涡旋式压缩机8。
中间环路18中的载热介质可为水、油等。
实施例2
本实施例提供一种新型空气源热声热泵系统,包括热声热泵机组和空气源热泵机组;热声热泵机组包括依次连接的直线压缩机1、次室温换热器2、热缓冲管3、高温换热器4、回热器5、主室温换热器6和直线发电机7;直线压缩机1产生的声波在所述回热器5中消耗,转化为热能,在回热器5两侧形成温度梯度,在所述高温换热器4中将热量释放;直线发电机7作为膨胀侧电机,调节热声热泵机组内部的阻抗分布,同时回收热声热泵机组余下的声功,并将其转化为电功输出;空气源热泵机组包括涡旋式压缩机8、冷凝器9、蓄热器10、蒸发器11、气液分离器Ⅰ12、气液分离器Ⅱ13、热力膨胀阀Ⅰ14、热力膨胀阀Ⅱ15、电磁阀Ⅱ17、电磁阀Ⅲ19、电磁阀Ⅳ20和电磁阀Ⅴ21;涡旋式压缩机8包括吸气口、排气口、补气口;涡旋式压缩机8由热声热泵机组中直线发电机7的输出电功驱动;涡旋式压缩机8的排气口与冷凝器9的进口连接;所述冷凝器9的出口分为两个支路,其中一个支路与电磁阀Ⅲ19的进口连接,电磁阀Ⅲ19的出口与热力膨胀阀Ⅰ14的进口连接,热力膨胀阀Ⅰ14的出口与蒸发器11的进口连接,蒸发器11的出口与气液分离器Ⅰ12的进口连接,气液分离器Ⅰ12的气体出口与涡旋式压缩机8的吸气口连接;冷凝器9出口的另一个支路与电磁阀Ⅱ17的进口连接,电磁阀Ⅱ17的出口与热力膨胀阀Ⅱ15的进口连接,热力膨胀阀Ⅱ15的出口与单盘管式蓄热器10的进口连接,蓄热器10的出口分别与电磁阀Ⅳ20和电磁阀Ⅴ21的进口连接;电磁阀Ⅳ20的出口与气液分离器Ⅱ13的进口连接,气液分离器Ⅱ13的气体出口与涡旋式压缩机8的补气口连接;电磁阀Ⅴ21的出口与气液分离器Ⅰ12的进口连接,气液分离器Ⅰ12的气体出口与涡旋式压缩机8的吸气口连接;蓄热器10的液体进口和液体出口通过中间环路18与高温换热器4的出口和进口连接。
当供热量较小时,热声热泵机组不运行,仅空气源热泵机组运行,制冷剂仅从蒸发器11中吸收热量,电磁阀Ⅱ17、电磁阀Ⅳ20、电磁阀Ⅴ21关闭,电磁阀Ⅲ19开启,系统的循环路径为:
涡旋式压缩机8→冷凝器9→电磁阀Ⅲ19→热力膨胀阀Ⅰ14→蒸发器11→气液分离器Ⅰ12→涡旋式压缩机8。
当供热量中等时,热声热泵机组和空气源热泵机组同时运行。热声热泵机组作为初级热泵,利用热声效应,将室外低温空气的热量转移到高温换热器4中,载热介质通过中间环路18将热量从高温换热器4转移到蓄热器10中,热量储存于蓄热器10中,热声热泵机组中的直线发电机7输出的电功驱动涡旋式压缩机8。空气源热泵机组作为次级热泵,蓄热器10作为蒸发器,制冷剂从蓄热器10中吸收热量,电磁阀Ⅱ17、电磁阀Ⅳ20开启,电磁阀Ⅲ19、电磁阀Ⅴ21关闭,系统的循环路径为:
涡旋式压缩机8→冷凝器9→电磁阀Ⅱ17→热力膨胀阀Ⅱ15→蓄热器10→电磁阀Ⅳ20→气液分离器Ⅱ13→涡旋式压缩机8。
当供热量较大时,热声热泵机组和空气源热泵机组同时运行。热声热泵机组作为初级热泵,利用热声效应,将室外低温空气的热量转移到高温换热器4中,载热介质通过中间环路18将热量从高温换热器4转移到蓄热器10中,热量储存于蓄热器10中,热声热泵机组中的直线发电机7输出的电功驱动涡旋式压缩机8。空气源热泵机组作为次级热泵,蓄热器10作为并联蒸发器,制冷剂从蒸发器11和蓄热器10中同时吸收热量,电磁阀Ⅱ17、电磁阀Ⅲ19、电磁阀Ⅴ21开启,电磁阀Ⅳ20关闭,系统的循环路径为:
第一支路:涡旋式压缩机8→冷凝器9→电磁阀Ⅲ19→热力膨胀阀Ⅰ14→蒸发器11→气液分离器Ⅰ12→涡旋式压缩机8;
第二支路:涡旋式压缩机8→冷凝器9→电磁阀Ⅱ17→热力膨胀阀Ⅱ15→蓄热器10→电磁阀Ⅴ21→气液分离器Ⅰ12→涡旋式压缩机8。
中间环路18中的载热介质可为水、油等。
以上仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (2)

1.一种新型空气源热声热泵系统,其特征在于,包括热声热泵机组和空气源热泵机组;
所述热声热泵机组包括依次连接的直线压缩机(1)、次室温换热器(2)、热缓冲管(3)、高温换热器(4)、回热器(5)、主室温换热器(6)和直线发电机(7);
所述的直线压缩机(1)产生的声波在所述回热器(5)中消耗,转化为热能,在回热器(5)两侧形成温度梯度,在所述高温换热器(4)中将热量释放;
所述的直线发电机(7)作为膨胀侧电机,调节热声热泵机组内部的阻抗分布,同时回收热声热泵机组余下的声功,并将其转化为电功输出;
所述空气源热泵机组包括涡旋式压缩机(8)、冷凝器(9)、蓄热器(10)、蒸发器(11)、气液分离器Ⅰ(12)、气液分离器Ⅱ(13)、热力膨胀阀Ⅰ(14)、热力膨胀阀Ⅱ(15)、电磁阀Ⅰ(16)和电磁阀Ⅱ(17);
所述的涡旋式压缩机(8)包括吸气口、排气口、补气口;
所述涡旋式压缩机(8)由热声热泵机组中直线发电机(7)的输出电功驱动;
所述涡旋式压缩机(8)的排气口与冷凝器(9)的气体进口连接;所述冷凝器(9)出口分为两个支路,其中一个支路与电磁阀Ⅰ(16)的进口连接,电磁阀Ⅰ(16)的出口与双盘管式蓄热器(10)的第一进口连接,蓄热器(10)的第一出口与热力膨胀阀Ⅰ(14)的进口连接,热力膨胀阀Ⅰ(14)的出口与蒸发器(11)的进口连接,蒸发器(11)的出口与气液分离器Ⅰ(12)的进口连接,气液分离器Ⅰ(12)的气体出口与涡旋式压缩机(8)的吸气口连接;
所述冷凝器(9)出口的另一个支路与电磁阀Ⅱ(17)的进口连接,电磁阀Ⅱ(17)的出口与热力膨胀阀Ⅱ(15)的进口连接,热力膨胀阀Ⅱ(15)的出口与蓄热器(10)的第二进口连接,蓄热器(10)的第二出口与气液分离器Ⅱ(13)的进口连接,气液分离器Ⅱ(13)的气体出口与涡旋式压缩机(8)的补气口与连接;
所述蓄热器(10)的液体进口和液体出口通过中间环路(18)与高温换热器(4)的出口和进口连接。
2.一种新型空气源热声热泵系统,其特征在于,包括热声热泵机组和空气源热泵机组;
所述热声热泵机组包括依次连接的直线压缩机(1)、次室温换热器(2)、热缓冲管(3)、高温换热器(4)、回热器(5)、主室温换热器(6)和直线发电机(7);
所述的直线压缩机(1)产生的声波在所述回热器(5)中消耗,转化为热能,在回热器(5)两侧形成温度梯度,在所述高温换热器(4)中将热量释放;
所述的直线发电机(7)作为膨胀侧电机,调节热声热泵机组内部的阻抗分布,同时回收热声热泵机组余下的声功,并将其转化为电功输出;
所述空气源热泵机组包括涡旋式压缩机(8)、冷凝器(9)、蓄热器(10)、蒸发器(11)、气液分离器Ⅰ(12)、气液分离器Ⅱ(13)、热力膨胀阀Ⅰ(14)、热力膨胀阀Ⅱ(15)、电磁阀Ⅱ(17)、电磁阀Ⅲ(19)、电磁阀Ⅳ(20)和电磁阀Ⅴ(21);
所述的涡旋式压缩机(8)包括吸气口、排气口、补气口;
所述涡旋式压缩机(8)由热声热泵机组中直线发电机(7)的输出电功驱动;
所述涡旋式压缩机(8)的排气口与冷凝器(9)的进口连接;所述冷凝器(9)的出口分为两个支路,其中一个支路与电磁阀Ⅲ(19)的进口连接,电磁阀Ⅲ(19)的出口与热力膨胀阀Ⅰ(14)的进口连接,热力膨胀阀Ⅰ(14)的出口与蒸发器(11)的进口连接,蒸发器(11)的出口与气液分离器Ⅰ(12)的进口连接,气液分离器Ⅰ(12)的气体出口与涡旋式压缩机(8)的吸气口连接;
所述冷凝器(9)出口的另一个支路与电磁阀Ⅱ(17)的进口连接,电磁阀Ⅱ(17)的出口与热力膨胀阀Ⅱ(15)的进口连接,热力膨胀阀Ⅱ(15)的出口与单盘管式蓄热器(10)的进口连接,蓄热器(10)的出口分别与电磁阀Ⅳ(20)和电磁阀Ⅴ(21)的进口连接;电磁阀Ⅳ(20)的出口与气液分离器Ⅱ(13)的进口连接,气液分离器Ⅱ(13)的气体出口与涡旋式压缩机(8)的补气口连接;电磁阀Ⅴ(21)的出口与气液分离器Ⅰ(12)的进口连接,气液分离器Ⅰ(12)的气体出口与涡旋式压缩机(8)的吸气口连接;
所述蓄热器(10)的液体进口和液体出口通过中间环路(18)与高温换热器(4)的出口和进口连接。
CN202110733320.8A 2021-06-30 2021-06-30 一种新型空气源热声热泵系统 Active CN113503659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110733320.8A CN113503659B (zh) 2021-06-30 2021-06-30 一种新型空气源热声热泵系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110733320.8A CN113503659B (zh) 2021-06-30 2021-06-30 一种新型空气源热声热泵系统

Publications (2)

Publication Number Publication Date
CN113503659A CN113503659A (zh) 2021-10-15
CN113503659B true CN113503659B (zh) 2022-05-10

Family

ID=78009654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110733320.8A Active CN113503659B (zh) 2021-06-30 2021-06-30 一种新型空气源热声热泵系统

Country Status (1)

Country Link
CN (1) CN113503659B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113324343B (zh) * 2021-05-07 2022-06-07 太原理工大学 一种能够回收余热的冷热电联产系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048424A (ja) * 2000-07-28 2002-02-15 Lg Electronics Inc 脈動管冷凍機の冷却装置
JP2007285630A (ja) * 2006-04-18 2007-11-01 Aisin Seiki Co Ltd 熱機関
FR2956200A1 (fr) * 2010-02-10 2011-08-12 Maurice Xavier Francois Machine thermoacoustique a boucle de retroaction electrique
CN103983014A (zh) * 2014-05-30 2014-08-13 广东志高空调有限公司 一种带热声加热的空气源热泵热水器及其加热方法
CN207831668U (zh) * 2018-01-14 2018-09-07 河北正旭新能源科技有限责任公司 一种多级加热的空气源热泵热水器
CN113324343A (zh) * 2021-05-07 2021-08-31 太原理工大学 一种能够回收余热的冷热电联产系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257955B2 (en) * 2004-09-08 2007-08-21 Carrier Corporation Discharge valve to increase heating capacity of heat pumps
US20090084114A1 (en) * 2007-09-28 2009-04-02 Yuan Sidney W K Gas phase shifting inertance gap pulse tube cryocooler
US20110146302A1 (en) * 2009-12-21 2011-06-23 Newman Michael D Cryogenic heat exchanger for thermoacoustic refrigeration system
US20180087786A1 (en) * 2013-08-19 2018-03-29 Donald Williams Energy management apparatus, system and method
WO2021133508A2 (en) * 2019-11-27 2021-07-01 Colorado State University Research Foundation Ultra efficient turbo-compression cooling systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048424A (ja) * 2000-07-28 2002-02-15 Lg Electronics Inc 脈動管冷凍機の冷却装置
JP2007285630A (ja) * 2006-04-18 2007-11-01 Aisin Seiki Co Ltd 熱機関
FR2956200A1 (fr) * 2010-02-10 2011-08-12 Maurice Xavier Francois Machine thermoacoustique a boucle de retroaction electrique
CN103983014A (zh) * 2014-05-30 2014-08-13 广东志高空调有限公司 一种带热声加热的空气源热泵热水器及其加热方法
CN207831668U (zh) * 2018-01-14 2018-09-07 河北正旭新能源科技有限责任公司 一种多级加热的空气源热泵热水器
CN113324343A (zh) * 2021-05-07 2021-08-31 太原理工大学 一种能够回收余热的冷热电联产系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《行波热声发电系统热—声—电耦合及转换机理研究》;王凯;《中国优秀硕士学位论文全文数据库》;20141231;全文 *

Also Published As

Publication number Publication date
CN113503659A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN114320504B (zh) 一种液态跨临界二氧化碳储能系统及方法
CN110887278B (zh) 用于低品位热源的能量自给型二氧化碳冷热电联产系统
CN109826682A (zh) 一种可实现冷热电联供的集成型供能系统
WO2023193486A1 (zh) 一种常温液态压缩二氧化碳混合工质储能系统及方法
CN112611126B (zh) 太阳能喷射与压缩耦合的双蒸发制冷系统
CN105626175B (zh) 有机朗肯循环发电系统
CN114033517A (zh) 一种基于二氧化碳压缩储能的地热发电和冷热供应系统及运行方法
CN110552750B (zh) 一种非共沸有机朗肯-双喷射冷热电联供系统
CN113503659B (zh) 一种新型空气源热声热泵系统
CN214172602U (zh) 太阳能喷射与压缩耦合的双蒸发制冷装置
CN111998568A (zh) 一种带喷射器和涡流管的太阳能辅助增效船舶用制冷系统
CN110906582B (zh) 一种基于二次冷凝增压吸收与过冷压缩的制冷系统及方法
CN115540379A (zh) 一种正逆耦合循环冷电联产系统
CN113309612B (zh) 耦合压力能、压缩空气储能和太阳能的冷热电联供系统
CN214039029U (zh) 一种多制冷剂高效循环装置
CN113091349A (zh) 一种高效吸收式热泵
CN116558140B (zh) 一种冷电联供系统
CN212538346U (zh) 一种带喷射器和涡流管的太阳能辅助增效船舶用制冷系统
CN215002381U (zh) 一种高效吸收式热泵
CN110905611B (zh) 一种基于有机朗肯循环和超临界二氧化碳循环的联供系统
CN114623620B (zh) 一种带膨胀机的双温位喷射压缩制冷循环装置
CN115095899B (zh) 一种燃煤机组耦合压缩空气储能余热供热系统及运行方法
CN217844347U (zh) 一种制冷制热切换模块及热泵系统
CN216644608U (zh) 一种冷热并供的喷射循环系统
CN217483027U (zh) 制冷余热回收耦合土壤热泵的制冷制热一体化系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220119

Address after: 030024 No. 79 West Main Street, Taiyuan, Shanxi, Yingze

Applicant after: Taiyuan University of Technology

Applicant after: Taiyuan Boiler Group Co., Ltd

Address before: 030024 No. 79 West Main Street, Taiyuan, Shanxi, Yingze

Applicant before: Taiyuan University of Technology

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant