CN113499779A - 一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备及应用 - Google Patents

一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备及应用 Download PDF

Info

Publication number
CN113499779A
CN113499779A CN202110775910.7A CN202110775910A CN113499779A CN 113499779 A CN113499779 A CN 113499779A CN 202110775910 A CN202110775910 A CN 202110775910A CN 113499779 A CN113499779 A CN 113499779A
Authority
CN
China
Prior art keywords
uranium
photocatalytic material
doped zno
reduced
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110775910.7A
Other languages
English (en)
Other versions
CN113499779B (zh
Inventor
竹文坤
何嵘
袁鑫
陈涛
雷佳
李宸
刘欢欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN202110775910.7A priority Critical patent/CN113499779B/zh
Publication of CN113499779A publication Critical patent/CN113499779A/zh
Application granted granted Critical
Publication of CN113499779B publication Critical patent/CN113499779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备及应用,包括:将Zn(Ac)2·2H2O、尿素、Na3C6H5O7·2H2O和Co(Ac)2·4H2O溶于水中,超声,得到混合溶液;将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在115~125℃下反应5~7h,离心,沉淀干燥;将干燥后的沉淀在280~350℃下煅烧1~3h,得到铀还原的Co掺杂ZnO纳米微球光催化材料。本发明开发了一种Co掺杂ZnO纳米微球,通过引入Co这一杂质能级来修饰ZnO的能带结构,使氧化锌的导、价带位置提高和带隙降低,实现了催化剂光吸收能力的提高,Co掺杂的ZnO样品在可见光下还原U(VI)的光催化性能均优于原始ZnO样品。

Description

一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备及应用
技术领域
本发明涉及属于有无机纳米材料及其制备技术领域,具体涉及一种铀还 原的Co掺杂ZnO纳米微球光催化材料的制备及应用。
背景技术
随着核能的发展,核工业活动和铀矿开采等产生的放射性物质不可避免 的会释放到自然环境中。鉴于铀的化学毒性和放射性毒性对生态系统和人类 健康造成的威胁,铀污染物的去除已成为一个紧迫而有意义的问题。自然环 境中的铀主要由高流动性的六价铀(VI)和相对不流动性的四价铀(IV)组成,将 可溶性铀(VI)还原为稀溶性铀(IV)被认为是对抗铀污染物的有效途径。U(VI) 还原为U(IV)可以通过生物、化学和光催化技术实现。由于光催化技术对阳光 的有效吸收、反应条件温和以及光催化剂在光激发下独特的强氧化还原能力, 已成为一种绿色环保的去除U(VI)的手段。到目前为止,各种光催化材料,如二氧化钛、三氧化二铁、硫化钼等半导体材料,及其与氧化石墨烯、石墨相 氮化碳等碳材料组合的复合材料被报道用于U(VI)的还原。氧化锌由于具有光 吸收系数高、空穴传输快、水下稳定性好等特点,对U(VI)也表现出一定的光 催化活性。但ZnO具有相当大的带隙(3.2eV),光吸收区域仅在紫外光区域, 使得活性受到限制。为了将ZnO的光吸收范围扩展到可见光区域,元素掺杂 是调整其能带结构的一种可行的方法,因为杂原子的引入会导致掺杂剂和原 始材料之间的能级杂化,可以修饰能带结构、d带中心、活性位点的价态等, 从而增强光催化性能。
因此,本发明开发了一种Co掺杂ZnO纳米微球,通过引入Co这一杂质 能级来修饰ZnO的能带结构,其能够实现催化剂光吸收能力的提高。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说 明的优点。
为了实现根据本发明的这些目的和其它优点,提供了一种铀还原的Co 掺杂ZnO纳米微球光催化材料的制备方法,包括以下步骤:
步骤一、将Zn(Ac)2·2H2O、尿素、Na3C6H5O7·2H2O和Co(Ac)2·4H2O溶 于水中,超声,得到混合溶液;
步骤二、将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在 115~125℃下反应5~7h,离心,沉淀干燥;
步骤三、将干燥后的沉淀在280~350℃下煅烧1~3h,得到铀还原的Co 掺杂ZnO纳米微球光催化材料。
优选的是,所述步骤一中,Zn(Ac)2·2H2O和尿素的摩尔比为3.5~4:14~16; Zn(Ac)2·2H2O和Na3C6H5O7·2H2O的摩尔比为3.5~4:0.5~0.8;Zn(Ac)2·2H2O 和Co(Ac)2·4H2O的摩尔比为3.5~4:0.015~0.075;所述Zn(Ac)2·2H2O与水的摩 尔体积比为3.5~4mmol:70~100mL。
优选的是,所述步骤一中,所述超声采用加压超声,加压超声的压力为 0.5~0.8MPa、频率为35~45KHz,功率为200W~500W。
优选的是,所述步骤二的过程替换为:将混合溶液加入超临界二氧化碳 反应釜中,向超临界二氧化碳反应釜中注入二氧化碳,在压力为12~18MPa、 温度为85~100℃的条件下搅拌2.5~3.5h,泄压,离心,沉淀干燥。
优选的是,还包括在超临界二氧化碳反应釜外施加磁场强度为3~8mT的 磁场。
优选的是,所述步骤三中,利用低温等离子体处理仪对得到的铀还原的 Co掺杂ZnO纳米微球光催化材料进行处理1~3min。
优选的是,其特征在于,所述低温等离子体处理仪的气氛为氩气;所述 低温等离子体处理仪的频率为35~45KHz,功率为45~60W,气氛的压强为 30~45Pa。
本发明提供一种如上述的铀还原的Co掺杂ZnO纳米微球光催化材料在 放射性废水处理中的应用,其特征在于,所述放射性废水为含铀放射性废水。
优选的是,取铀还原的Co掺杂ZnO纳米微球光催化材料加入含铀放射 性废水中,在光照条件下,进行光催化反应,实现含铀放射性废水中六价铀 的光催化还原;同时将光催化反应后的光催化材料在空气中再氧化24h后, 将光催化剂材料分散到0.1mol/L KHCO3溶液中进行洗脱反应,然后水洗, 将收集的光催化材料干燥后再次循环用于放射性废水处理中六价铀的光催化 还原。
本发明至少包括以下有益效果:本发明开发了一种Co掺杂ZnO纳米微 球,通过引入Co这一杂质能级来修饰ZnO的能带结构,使氧化锌的导、价 带位置提高和带隙降低,实现了催化剂光吸收能力的提高,Co掺杂的ZnO 样品在可见光下还原U(VI)的光催化性能均优于原始ZnO样品。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将 通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明:
图1为本发明1%Co-ZnO的FESEM图(a)和HRTEM图(b);
图2为本发明制备的光催化材料的XRD图;
图3为本发明制备的光催化材料的XPS光谱图;
图4为本发明制备的光催化材料的XPS光谱图(Co 2p3/2);
图5为本发明制备的光催化材料的XPS光谱图(O 1s);
图6为本发明制备的光催化材料的XPS光谱图(Zn 2p);
图7为本发明制备的光催化材料在黑暗条件下的U(VI)去除率曲线;
图8为本发明制备的光催化材料在黑暗条件下的U(VI)去除率曲线;
图9为本发明制备的光催化材料在黑暗条件下的U(VI)去除率曲线;
图10为本发明制备的光催化材料在光照条件下的U(VI)去除率曲线;
图11为本发明制备的光催化材料在光照条件下的U(VI)去除率曲线;
图12为本发明制备的光催化材料在光照条件下的U(VI)去除率曲线;
图13为本发明制备的光催化材料(1%Co-ZnO)在光照条件下循环使用 的U(VI)去除率;
图14为本发明制备的光催化材料(1%Co-ZnO)在光照射下U 4f区Co 掺杂ZnO微球的XPS光谱;
图15为本发明制备的光催化材料(1%Co-ZnO)在不同固液比条件下的U(VI)去除率;
图16为本发明制备的光催化材料(1%Co-ZnO)在不同初始浓度条件下 的U(VI)去除率;
图17为本发明制备的光催化材料(1%Co-ZnO)在不同pH条件下的U(VI) 去除率;
图18为本发明制备的光催化材料的Mott-Schottky曲线;
图19为本发明制备的光催化材料的PL图谱。
具体实施方式:
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照 说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一 个或多个其它元件或其组合的存在或添加。
实施例1:
一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,包括以下 步骤:
步骤一、将3.75mmol Zn(Ac)2·2H2O、15mmol尿素、0.75mmol Na3C6H5O7·2H2O和4.1mg Co(Ac)2·4H2O溶于80mL水中,加压超声,得到混 合溶液;加压超声的压力为0.5MPa、频率为35KHz,功率为200W;
步骤二、将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在 120℃下反应6h,离心,沉淀干燥;
步骤三、将干燥后的沉淀在300℃下煅烧2h,得到铀还原的Co掺杂ZnO 纳米微球光催化材料(0.5%Co-ZnO)。
实施例2:
一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,包括以下 步骤:
步骤一、将3.75mmol Zn(Ac)2·2H2O、15mmol尿素、0.75mmol Na3C6H5O7·2H2O和8.3mg Co(Ac)2·4H2O溶于80mL水中,加压超声,得到混 合溶液;加压超声的压力为0.5MPa、频率为35KHz,功率为200W;
步骤二、将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在 120℃下反应6h,离心,沉淀干燥;
步骤三、将干燥后的沉淀在300℃下煅烧2h,得到铀还原的Co掺杂ZnO 纳米微球光催化材料(1%Co-ZnO)。
实施例3:
一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,包括以下 步骤:
步骤一、将3.75mmol Zn(Ac)2·2H2O、15mmol尿素、0.75mmol Na3C6H5O7·2H2O和8.3mg Co(Ac)2·4H2O溶于80mL水中,加压超声,得到混 合溶液;加压超声的压力为0.5MPa、频率为35KHz,功率为200W;
步骤二、将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在 120℃下反应6h,离心,沉淀干燥;
步骤三、将干燥后的沉淀在300℃下煅烧2h,得到铀还原的Co掺杂ZnO 纳米微球光催化材料(2%Co-ZnO)。
实施例4:
一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,包括以下 步骤:
步骤一、将3.75mmol Zn(Ac)2·2H2O、15mmol尿素、0.75mmol Na3C6H5O7·2H2O和4.1mg Co(Ac)2·4H2O溶于80mL水中,加压超声,得到混 合溶液;加压超声的压力为0.5MPa、频率为35KHz,功率为200W;
步骤二、将混合溶液加入超临界二氧化碳反应釜中,向超临界二氧化碳 反应釜中注入二氧化碳,在超临界二氧化碳反应釜外施加磁场强度为5mT的 磁场;在压力为15MPa、温度为90℃的条件下搅拌2.5h,泄压,离心,沉淀 干燥;
将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在120℃下 反应6h,离心,沉淀干燥;
步骤三、将干燥后的沉淀在300℃下煅烧2h,得到铀还原的Co掺杂ZnO 纳米微球光催化材料(0.5%Co-ZnO-1)。
实施例5:
一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,包括以下 步骤:
步骤一、将3.75mmol Zn(Ac)2·2H2O、15mmol尿素、0.75mmol Na3C6H5O7·2H2O和4.1mg Co(Ac)2·4H2O溶于80mL水中,加压超声,得到混 合溶液;加压超声的压力为0.5MPa、频率为35KHz,功率为200W;
步骤二、将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在 120℃下反应6h,离心,沉淀干燥;
步骤三、将干燥后的沉淀在300℃下煅烧2h,得到的材料利用低温等离 子体处理仪进行处理2min,得到铀还原的Co掺杂ZnO纳米微球光催化材料 (0.5%Co-ZnO-2);所述低温等离子体处理仪的气氛为氩气;所述低温等离 子体处理仪的频率为40KHz,功率为60W,气氛的压强为45Pa;
实施例6:
一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,包括以下 步骤:
步骤一、将3.75mmol Zn(Ac)2·2H2O、15mmol尿素、0.75mmol Na3C6H5O7·2H2O和4.1mg Co(Ac)2·4H2O溶于80mL水中,加压超声,得到混 合溶液;加压超声的压力为0.5MPa、频率为35KHz,功率为200W;
步骤二、将混合溶液加入超临界二氧化碳反应釜中,向超临界二氧化碳 反应釜中注入二氧化碳,在超临界二氧化碳反应釜外施加磁场强度为5mT的 磁场;在压力为15MPa、温度为90℃的条件下搅拌2.5h,泄压,离心,沉淀 干燥;
将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在120℃下 反应6h,离心,沉淀干燥;
步骤三、将干燥后的沉淀在300℃下煅烧2h,得到的材料利用低温等离 子体处理仪进行处理2min,得到铀还原的Co掺杂ZnO纳米微球光催化材料 (0.5%Co-ZnO-3);所述低温等离子体处理仪的气氛为氩气;所述低温等离 子体处理仪的频率为40KHz,功率为60W,气氛的压强为45Pa。
对比例1:
一种ZnO纳米微球光催化材料的制备方法,包括以下步骤:
步骤一、将3.75mmol Zn(Ac)2·2H2O、15mmol尿素和0.75mmol Na3C6H5O7·2H2O溶于80mL水中,加压超声,得到混合溶液;加压超声的压 力为0.5MPa、频率为35KHz,功率为200W;
步骤二、将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在 120℃下反应6h,离心,沉淀干燥;
步骤三、将干燥后的沉淀在300℃下煅烧2h,得到ZnO纳米微球光催化 材料(ZnO)。
图1(a)为实施例2制备的1%Co-ZnO的FESEM图像,图1(b)为实 施例2制备的1%Co-ZnO的HRTEM图像;从图中可以看出,制备的1% Co-ZnO是由纳米片组成的分数微球,粒径分布在2~3μm范围内相对均匀。高 分辨率透射电子显微镜(HRTEM)图像显示均匀1%Co-ZnO的ZnO微球表 明良好的结晶度和晶格条纹。不同晶格条纹的晶面间距为0.247nm。
图2为实施例1~3和对比例1制备的光催化材料的XRD。如图2所示, 原始ZnO微球在31.8°、34.4°、36.3°、47.5°、56.6°、62.9°和67.9°附近 有七个不同的衍射峰,可以与ZnO(JCPDS No.36-1451)。此外,随着Co 含量的逐渐增加,42.4°、73.7°和77.6°的弱衍射峰归因于CoO(JCPDS No. 43-1004),这表明Co掺杂的ZnO微球与CoO相不均匀。
图3为实施例1~3和对比例1制备的光催化材料的XPS谱图;图4为本 发明的光催化材料的Co 2p XPS谱图;图5为本发明的光催化材料的O1s XPS谱图;图6为本发明的光催化材料的Zn 2p XPS谱图;从图4中可知, 796.7eV和781.3eV处的峰分别归因于1%Co-ZnO微球的Co 2p1/2和 Co2p3/2。在2%Co-ZnO微球的情况下,Co 2p1/2和Co 2p3/2均由接近1%Co-ZnO微球的峰组成。该结果表明Co在Co-ZnO的表面处于+2态。Zn 2p 和O1s XPS光谱如图4和图5所示,与未掺杂的ZnO相比,Co-ZnO的Zn 和O的结合能没有随着Co的增加而变化,这进一步证明了Co是等效的掺杂 氧化锌。
对对比例1、实施例1~6制备的铀还原的Co掺杂ZnO纳米微球光催化 材料进行U(VI)的吸附-催化还原实验:
光催化还原铀后,将偶氮胂III与反应后的溶液混合,利用波长651.8nm 的紫外可见吸收光谱监测溶液中的UO2 2+的浓度。
黑暗条件:分别在20mL UO2 2+溶液(C0=400mg/L,T=293K,pH=5) 中加入5mg样品(对比例1、实施例1~6制备的Co掺杂ZnO纳米微球), 在黑暗条件下600r/min速度搅拌120min,通过紫外分光光度计测量反应后溶 液的吸光度(紫外可见吸收光谱在651.8nm的波长下监测不同反应时间的 UO2 2+浓度),计算出光催化还原铀的效率;所有实验一式三份,取平均值; 其中,去除率=(C0-Ct)/C0×100%,C0为初始浓度,Ct为吸附后浓度;
光照条件:分别在20mL UO2 2+溶液(C0=400mg/L,T=293K,pH=5) 中加入5mg样品(对比例1、实施例1~6制备的铀还原的Co掺杂ZnO纳米 微球光催化材料),在黑暗中用N2鼓泡水体系120分钟,以除去溶解的O2, 确保厌氧条件和吸附-解吸平衡;施加模拟日光照射(装有AM 1.5G滤光片的 300-W Xe灯BL-GHX-V),600r/min速度搅拌140min,通过紫外分光光度 计测量反应后溶液的吸光度(紫外可见吸收光谱在651.8nm的波长下监测不 同反应时间的UO2 2+浓度),计算出光催化还原铀的效率;所有实验一式三份, 取平均值;其中,去除率=(C0-Ct)/C0×100%,C0为初始浓度,Ct为吸附后浓 度;
如图7~12所示,所有Co掺杂的ZnO样品在可见光下还原U(VI)的光催 化性能均优于原始ZnO样品。当钴的掺杂量为1%时,1%Co-ZnO具有最高 的光催化效率。在光照条件下,1%Co-ZnO在较高U(VI)浓度下(0.4g/L)去 除率达到94.3%,是原始ZnO的1.5倍;同时,0.5%Co-ZnO-1、0.5%Co-ZnO-2、 和0.5%Co-ZnO-3在U(VI)浓度为0.4g/L下的去除率均优于0.5%Co-ZnO;通 过在超临界反应釜及施加磁场的条件下进行反应,可以提高混合溶液的反应 效果,进一步提高0.5%Co-ZnO在可见光下还原U(VI)的效果;此外,通过低 温等离子体对0.5%Co-ZnO进行表面处理,更进一步提高0.5%Co-ZnO的亲 水性,更加显著的提高对U(VI)的去除。
以1%Co-ZnO的材料进行循环实验(C0=400mg/L,T=293K,pH=5, 将光催化反应后的光催化材料在空气中再氧化24h后,将光催化剂材料分散 到0.1mol/L KHCO3溶液中进行洗脱反应,然后水洗,将收集的光催化材料 干燥后再次循环用于放射性废水处理中六价铀的光催化还原),在5次循环 后依然保持80%以上的U(VI)去除效率(图13)。
图14为模拟阳光照射下U 4f区Co掺杂ZnO微球的XPS光谱,U 4f XPS 光谱中光照条件下铀物种的变化也进一步证实了U(VI)的还原(图14)。
比较了固液比(图15,20mL UO2 2+溶液,C0=400mg/L,T=293K,pH= 5,添加不同量的1%Co-ZnO,搅拌120min)和初始U(VI)浓度(图16,20mL UO2 2+溶液,T=293K,pH=5,添加5mg 1%Co-ZnO,搅拌120min)对Co 掺杂ZnO微球(1%Co-ZnO)U(VI)去除性能的影响。随着固液比的增加,最大 U(VI)去除率可达96.8%。在光照条件下,1%Co-ZnO在较宽的U(VI)浓度范 围内(0.1~0.5g/L)也能保持较高的U(VI)去除率。图17为不同pH(20mL UO2 2+溶液,C0=400mg/L,T=293K,,添加5mg 1%Co-ZnO,搅拌120min)对 Co掺杂ZnO微球(1%Co-ZnO)U(VI)去除率的影响。
如图18所示,ZnO和Co掺杂的ZnO微球的Mott-Schottky图显示正斜 率,揭示了n型性质。重要的是,与ZnO微球相比,1%Co-ZnO微球的 Mott-Schottky图斜率更小,表明载流子转移过程更快。
此外,在掺杂Co后,1%Co-ZnO微球表现出最低的PL强度值(图19)。 这些结果表明Co的掺杂有效地促进了电子-空穴对的分离,从而降低了载流 子的复合率。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方 式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领 域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范 围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图 例。

Claims (9)

1.一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,其特征在于,包括以下步骤:
步骤一、将Zn(Ac)2·2H2O、尿素、Na3C6H5O7·2H2O和Co(Ac)2·4H2O溶于水中,超声,得到混合溶液;
步骤二、将混合溶液加入聚四氟乙烯内衬的不锈钢反应釜中,密封并在115~125℃下反应5~7h,离心,沉淀干燥;
步骤三、将干燥后的沉淀在280~350℃下煅烧1~3h,得到铀还原的Co掺杂ZnO纳米微球光催化材料。
2.如权利要求1所述的铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,其特征在于,所述步骤一中,Zn(Ac)2·2H2O和尿素的摩尔比为3.5~4:14~16;Zn(Ac)2·2H2O和Na3C6H5O7·2H2O的摩尔比为3.5~4:0.5~0.8;Zn(Ac)2·2H2O和Co(Ac)2·4H2O的摩尔比为3.5~4:0.015~0.075;所述Zn(Ac)2·2H2O与水的摩尔体积比为3.5~4mmol:70~100mL。
3.如权利要求1所述的铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,其特征在于,所述步骤一中,所述超声采用加压超声,加压超声的压力为0.5~0.8MPa、频率为35~45KHz,功率为200W~500W。
4.如权利要求1所述的铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,其特征在于,所述步骤二的过程替换为:将混合溶液加入超临界二氧化碳反应釜中,向超临界二氧化碳反应釜中注入二氧化碳,在压力为12~18MPa、温度为85~100℃的条件下搅拌2.5~3.5h,泄压,离心,沉淀干燥。
5.如权利要求4所述的铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,其特征在于,还包括在超临界二氧化碳反应釜外施加磁场强度为3~8mT的磁场。
6.如权利要求1所述的铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,其特征在于,所述步骤三中,利用低温等离子体处理仪对得到的铀还原的Co掺杂ZnO纳米微球光催化材料进行处理1~3min。
7.如权利要求6所述的铀还原的Co掺杂ZnO纳米微球光催化材料的制备方法,其特征在于,其特征在于,所述低温等离子体处理仪的气氛为氩气;所述低温等离子体处理仪的频率为35~45KHz,功率为45~60W,气氛的压强为30~45Pa。
8.一种如权利要求1~8任一项所述的铀还原的Co掺杂ZnO纳米微球光催化材料在放射性废水处理中的应用,其特征在于,所述放射性废水为含铀放射性废水。
9.如权利要求8所述的铀还原的Co掺杂ZnO纳米微球光催化材料在放射性废水处理中的应用,其特征在于,取铀还原的Co掺杂ZnO纳米微球光催化材料加入含铀放射性废水中,在光照条件下,进行光催化反应,实现含铀放射性废水中六价铀的光催化还原;同时将光催化反应后的光催化材料在空气中再氧化24h后,将光催化剂材料分散到0.1mol/L KHCO3溶液中进行洗脱反应,然后水洗,将收集的光催化材料干燥后再次循环用于放射性废水处理中六价铀的光催化还原。
CN202110775910.7A 2021-07-08 2021-07-08 一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备及应用 Active CN113499779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110775910.7A CN113499779B (zh) 2021-07-08 2021-07-08 一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110775910.7A CN113499779B (zh) 2021-07-08 2021-07-08 一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备及应用

Publications (2)

Publication Number Publication Date
CN113499779A true CN113499779A (zh) 2021-10-15
CN113499779B CN113499779B (zh) 2023-08-22

Family

ID=78012144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110775910.7A Active CN113499779B (zh) 2021-07-08 2021-07-08 一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备及应用

Country Status (1)

Country Link
CN (1) CN113499779B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106077A (zh) * 2022-06-24 2022-09-27 西南科技大学 基于光催化还原铀的铒掺杂氧化锌纳米片的制备及应用
CN115354359A (zh) * 2022-07-01 2022-11-18 西南科技大学 铀负载四氧化三钴纳米片的制备及在电催化碱性析氧反应中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085469A1 (en) * 2011-12-08 2013-06-13 National University Of Singapore Photocatalytic metal oxide nanomaterials; method of making via h2-plasma treatment; use for organic waste decontamination in water
CN105032434A (zh) * 2015-06-01 2015-11-11 东南大学 铁磁性ZnO可见光催化剂的制备方法
CN110668546A (zh) * 2019-10-25 2020-01-10 南华大学 一种催化还原含铀废水中铀酰离子的方法
CN112169804A (zh) * 2020-09-28 2021-01-05 中南大学 一种氧化锌负载铜基多金属合金催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085469A1 (en) * 2011-12-08 2013-06-13 National University Of Singapore Photocatalytic metal oxide nanomaterials; method of making via h2-plasma treatment; use for organic waste decontamination in water
CN105032434A (zh) * 2015-06-01 2015-11-11 东南大学 铁磁性ZnO可见光催化剂的制备方法
CN110668546A (zh) * 2019-10-25 2020-01-10 南华大学 一种催化还原含铀废水中铀酰离子的方法
CN112169804A (zh) * 2020-09-28 2021-01-05 中南大学 一种氧化锌负载铜基多金属合金催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
武华乙;倪婕;邵文俊;余静怡;: "Co掺杂ZnO微球的光降解及抗菌性能研究" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106077A (zh) * 2022-06-24 2022-09-27 西南科技大学 基于光催化还原铀的铒掺杂氧化锌纳米片的制备及应用
CN115106077B (zh) * 2022-06-24 2023-05-23 西南科技大学 基于光催化还原铀的铒掺杂氧化锌纳米片的制备及应用
CN115354359A (zh) * 2022-07-01 2022-11-18 西南科技大学 铀负载四氧化三钴纳米片的制备及在电催化碱性析氧反应中的应用

Also Published As

Publication number Publication date
CN113499779B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
Pan et al. Facile fabrication of ZnIn2S4/SnS2 3D heterostructure for efficient visible-light photocatalytic reduction of Cr (VI)
Wu et al. Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of UO22+
Yu et al. Novel rugby-ball-like Zn3 (PO4) 2@ C3N4 photocatalyst with highly enhanced visible-light photocatalytic performance
Kalikeri et al. Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO 3/Bi 25 FeO 40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis
Li et al. Photocatalytic reduction of Cr (VI) on nano-sized red phosphorus under visible light irradiation
Xu et al. Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst
CN113499779B (zh) 一种铀还原的Co掺杂ZnO纳米微球光催化材料的制备及应用
CN112808313B (zh) 一种氮掺杂碳量子点/金属有机框架材料mof-5光催化剂及其制备方法和应用
Doong et al. Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations
CN105289693A (zh) 一种Zn0.5Co0.5Fe2O4/g-C3N4复合光催化剂的制备方法
Sun et al. Biological renewable nanocellulose templated CeO2/TiO2 synthesis and its photocatalytic removal efficiency of pollutants
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
Mu et al. Visible light photocatalytic activity of Cu, N co-doped carbon dots/Ag3PO4 nanocomposites for neutral red under green LED radiation
Li et al. Large-scale pattern fabrication of 3D rGO-Ag@ Ag3PO4 hydrogel composite photocatalyst with the excellent synergistic effect of adsorption and photocatalysis degradation
Xu et al. Visible-light-driven photocatalytic degradation of rhodamine B in water by BiOCl x I1− x solid solutions
Ellouzi et al. Synthesis of Fe-doped TiO2 with improved photocatalytic properties under Vis-L irradiation
Gui et al. The effective strategies of preparing black F-TiIII-codoping TiO2 anchored on sepiolite for enhanced photodegradation
CN110918099A (zh) 一种氧化镍-钴酸镍-黑二氧化钛复合物光催化还原处理含六价铬废水的方法
Li et al. Visible light assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism
CN105561969A (zh) 一种多孔TixSn1-xO2固溶体微球的制备和应用
Yu et al. Preparation of Bi2O2CO3/BiOBr0. 9I0. 1 photocatalyst and its degradation performance for 2, 4-dichlorophenoxyacetic acid
CN112844432B (zh) 一种三元磁性复合纳米材料及其制备方法与应用
CN107570213A (zh) 一种四氧化三铁纸基多相催化材料的制备方法
CN107930613A (zh) 一种粉末催化材料、含钠基蒙脱石复合多孔纳米催化材料的制备及应用
Li et al. Novel Fe-doped BiOI nanosheets attaching surface Fe (III) clusters: Additional superoxide radical and enhanced charge separation efficiency for remarkable tetracycline decomposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant