CN113496102B - 一种基于改进BiGRU的配网超短期功率态势预测方法 - Google Patents
一种基于改进BiGRU的配网超短期功率态势预测方法 Download PDFInfo
- Publication number
- CN113496102B CN113496102B CN202110756805.9A CN202110756805A CN113496102B CN 113496102 B CN113496102 B CN 113496102B CN 202110756805 A CN202110756805 A CN 202110756805A CN 113496102 B CN113496102 B CN 113496102B
- Authority
- CN
- China
- Prior art keywords
- value
- model
- output
- bigru
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000006872 improvement Effects 0.000 title claims abstract description 18
- 238000012549 training Methods 0.000 claims abstract description 29
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 28
- 230000007246 mechanism Effects 0.000 claims abstract description 26
- 238000012795 verification Methods 0.000 claims abstract description 25
- 230000009466 transformation Effects 0.000 claims abstract description 23
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 12
- 238000007781 pre-processing Methods 0.000 claims abstract description 12
- 238000010606 normalization Methods 0.000 claims description 15
- 238000005215 recombination Methods 0.000 claims description 11
- 230000006798 recombination Effects 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 9
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 238000007493 shaping process Methods 0.000 claims description 4
- 101001095088 Homo sapiens Melanoma antigen preferentially expressed in tumors Proteins 0.000 claims description 3
- 102100037020 Melanoma antigen preferentially expressed in tumors Human genes 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 238000011160 research Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/04—Power grid distribution networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/06—Power analysis or power optimisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110756805.9A CN113496102B (zh) | 2021-07-05 | 2021-07-05 | 一种基于改进BiGRU的配网超短期功率态势预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110756805.9A CN113496102B (zh) | 2021-07-05 | 2021-07-05 | 一种基于改进BiGRU的配网超短期功率态势预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113496102A CN113496102A (zh) | 2021-10-12 |
CN113496102B true CN113496102B (zh) | 2024-07-09 |
Family
ID=77998138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110756805.9A Active CN113496102B (zh) | 2021-07-05 | 2021-07-05 | 一种基于改进BiGRU的配网超短期功率态势预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113496102B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113988395B (zh) * | 2021-10-21 | 2024-10-18 | 中国电建集团华东勘测设计研究院有限公司 | 基于SSD和双重注意力机制BiGRU的风电超短期功率预测方法 |
CN115293244B (zh) * | 2022-07-15 | 2023-08-15 | 北京航空航天大学 | 一种基于信号处理及数据约简的智能电网虚假数据注入攻击检测方法 |
CN115299962A (zh) * | 2022-08-12 | 2022-11-08 | 山东大学 | 一种基于双向门控循环单元和注意力机制的麻醉深度监测方法 |
CN116388865B (zh) * | 2023-06-05 | 2023-09-15 | 深圳市飞思卓科技有限公司 | 一种基于pon光模块光功率异常的自动筛选方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113964825A (zh) * | 2021-10-21 | 2022-01-21 | 中国电建集团华东勘测设计研究院有限公司 | 基于二次分解和BiGRU的超短期风电功率预测方法 |
CN117856204A (zh) * | 2023-11-23 | 2024-04-09 | 国网江苏省电力有限公司南京供电分公司 | 配电网超短期负荷功率区间的预测方法、系统及存储介质 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110048438B (zh) * | 2019-05-09 | 2023-05-19 | 武汉龙德控制科技有限公司 | 一种基于模型预测控制的配电网馈线级负荷功率控制方法 |
CN111461173B (zh) * | 2020-03-06 | 2023-06-20 | 华南理工大学 | 一种基于注意力机制的多说话人聚类系统及方法 |
CN113067344A (zh) * | 2021-03-08 | 2021-07-02 | 南京理工大学 | 一种基于模型预测控制的主动配电网无功优化方法 |
-
2021
- 2021-07-05 CN CN202110756805.9A patent/CN113496102B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113964825A (zh) * | 2021-10-21 | 2022-01-21 | 中国电建集团华东勘测设计研究院有限公司 | 基于二次分解和BiGRU的超短期风电功率预测方法 |
CN117856204A (zh) * | 2023-11-23 | 2024-04-09 | 国网江苏省电力有限公司南京供电分公司 | 配电网超短期负荷功率区间的预测方法、系统及存储介质 |
Non-Patent Citations (1)
Title |
---|
基于改进循环神经网络的配电网超短期功率预测方法;赵振兵;电力科学与技术学报;20220824;第37卷(第5期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113496102A (zh) | 2021-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113496102B (zh) | 一种基于改进BiGRU的配网超短期功率态势预测方法 | |
CN109034054B (zh) | 基于lstm的谐波多标签分类方法 | |
Xia et al. | A hybrid application of soft computing methods with wavelet SVM and neural network to electric power load forecasting | |
CN112651290A (zh) | 一种水电机组振动趋势预测方法和系统 | |
CN113078641A (zh) | 一种基于评估器和强化学习的配电网无功优化方法及装置 | |
CN114006370B (zh) | 一种电力系统暂态稳定分析评估方法及系统 | |
CN116796644A (zh) | 基于多智能体sac深度强化学习的风电场参数辨识方法 | |
CN117293809A (zh) | 一种基于大模型的多时空尺度新能源发电功率预测方法 | |
CN115965150A (zh) | 一种基于权重分配的电力负荷预测方法 | |
CN117132132A (zh) | 基于气象数据的光伏发电功率预测方法 | |
CN115632406A (zh) | 基于数字-机理融合驱动建模的无功电压控制方法及系统 | |
CN111506868A (zh) | 一种基于hht权值优化的超短期风速预测方法 | |
Jiang et al. | Super short-term wind speed prediction based on CEEMD decomposition and BILSTM-Transformer model | |
CN114493925A (zh) | 基于bert与gcnn混合网络的非侵入式负荷分解方法 | |
CN117313990A (zh) | 基于元集成学习的空调负荷预测方法、系统和电子设备 | |
CN116883199A (zh) | 一种基于人工掩码卷积自编码器的多元负荷数据补全方法 | |
CN114298408A (zh) | 一种基于ceemd-lstm-mlr的短期电力负荷预测方法 | |
CN109840629B (zh) | 基于小波变换-树突状神经元模型的光伏功率预测方法 | |
CN115099448A (zh) | 一种基于VMD-Prophet的短期负荷预测方法 | |
Sun et al. | Reliability prediction of distribution network based on PCA-GA-BP neural network | |
CN112183814A (zh) | 一种短期风速预测方法 | |
CN112183848A (zh) | 基于dwt-svqr集成的电力负荷概率预测方法 | |
Xiaosheng et al. | Short-Term wind power prediction based on wavelet transform and convolutional neural networks | |
Zhang et al. | An Artificial Intelligent Method of Power Load Forecasting in Short-term | |
CN118316037B (zh) | 智能台区电力负荷预测方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230607 Address after: 100096 No. 2, Beinong Road, Huilongguan, Changping District, Beijing Applicant after: NORTH CHINA ELECTRIC POWER University Applicant after: INFORMATION COMMUNICATION BRANCH, STATE GRID JIBEI ELECTRIC POWER Co. Applicant after: STATE GRID JIBEI ELECTRIC POWER Co.,Ltd. Applicant after: STATE GRID BEIJING ELECTRIC POWER Co. Applicant after: STATE GRID CORPORATION OF CHINA Address before: 071003 No. 619 Yonghuabei Street, Lianchi District, Baoding City, Hebei Province Applicant before: NORTH CHINA ELECTRIC POWER University (BAODING) Applicant before: STATE GRID BEIJING ELECTRIC POWER Co. Applicant before: STATE GRID JIBEI ELECTRIC POWER Co.,Ltd. Applicant before: INFORMATION COMMUNICATION BRANCH, STATE GRID JIBEI ELECTRIC POWER Co. Applicant before: STATE GRID CORPORATION OF CHINA |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |