CN113489038A - 一种电动汽车充放电定价方法、装置及电力系统 - Google Patents

一种电动汽车充放电定价方法、装置及电力系统 Download PDF

Info

Publication number
CN113489038A
CN113489038A CN202110767202.9A CN202110767202A CN113489038A CN 113489038 A CN113489038 A CN 113489038A CN 202110767202 A CN202110767202 A CN 202110767202A CN 113489038 A CN113489038 A CN 113489038A
Authority
CN
China
Prior art keywords
charging
discharging
information
electric
electric automobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110767202.9A
Other languages
English (en)
Other versions
CN113489038B (zh
Inventor
罗通
刘伟豪
宋晴宇
周伟彬
周宇
王慧
李书生
钟敏娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Power Grid Co Ltd
Heyuan Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
Guangdong Power Grid Co Ltd
Heyuan Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Power Grid Co Ltd, Heyuan Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical Guangdong Power Grid Co Ltd
Priority to CN202110767202.9A priority Critical patent/CN113489038B/zh
Publication of CN113489038A publication Critical patent/CN113489038A/zh
Application granted granted Critical
Publication of CN113489038B publication Critical patent/CN113489038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种电动汽车充放电定价方法、装置及电力系统。该电动汽车充放电定价方法包括:获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。本发明实施例的技术方案,以实现对电网负荷起到较好的削峰填谷的作用,保证了电动汽车参与车网互动的过程中不影响用户的正常出行计划。

Description

一种电动汽车充放电定价方法、装置及电力系统
技术领域
本发明涉及电动汽车充放电定价技术领域,尤其涉及一种电动汽车充放电定价方法、装置及电力系统。
背景技术
车网互动(V2G,Vehicle-to-grid)技术将电动汽车同时视为用电器和电源,即电动汽车可以从电网获得电能,也可以将电能传递到电网,从而实现电动汽车与电网之间的双向能量流动。
在满足电动汽车正常行驶的前提下,通过分时电价来合理引导电动汽车参与充放电,既可以平滑电网的负荷曲线,也可以使用户获得一定的经济收益。充放电分时电价是电网负荷“削峰填谷”的控制方法之一,但是,电动汽车的充电行为具有不确定性,若不对其进行合理调控,负荷曲线可能出现峰峰叠加的情况,在一定程度上会影响电力系统的安全运行。
发明内容
本发明提供一种电动汽车充放电定价方法、装置及电力系统,以实现对电网负荷起到较好的削峰填谷的作用,保证了电动汽车参与车网互动的过程中不影响用户的正常出行计划。
第一方面,本发明提供了一种电动汽车充放电定价方法,该电动汽车充放电定价方法包括:
获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;
获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;
将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。
可选的,获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息,包括:
根据下述公式(一)确定电动汽车的次日出行计划信息;
Figure BDA0003152226690000021
其中,TIMEi为电动汽车的次日出行计划信息;
Figure BDA0003152226690000022
为电动汽车第h次停驶的开始时刻;
Figure BDA0003152226690000023
为电动汽车第h次停驶的结束时刻;H为电动汽车在第i天内的停驶次数;
根据下述公式(二)确定电动汽车的当日停驶接入电网的充电桩使用状态信息;
Figure BDA0003152226690000024
其中,Xi为电动汽车第h次停驶是否接入电网的充电桩使用状态信息;
根据下述公式(三)确定电动汽车的车辆基础参数信息;
Figure BDA0003152226690000025
其中,Ei为电动汽车i的车辆基础参数信息;
Figure BDA0003152226690000026
为电动汽车i的最大充放电功率;
Figure BDA0003152226690000027
为电动汽车i的行驶等效放电功率;Ci为电动汽车i的电池容量;
Figure BDA0003152226690000031
为电池充放电单位电量损耗。
可选的,电动汽车充放电定价方法还包括:
基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,以及将各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息;
根据所述电网使用负荷信息确定所述电力系统的适应度函数值,所述适应度函数值用于表示所述电力系统负荷波动,所述电力系统负荷波动通过所述电力系统负荷波动的方差表示;
基于所述适应度函数值对所述历史充放电分时电价策略进行调整。
可选的,将各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息,包括:
根据下述电网互动的效用函数公式(四)以及所述电网使用负荷信息确定所述电力系统的适应度函数值;
Figure BDA0003152226690000032
其中,UG为电力系统负荷波动的方差;Lt为t时段的次日预测负荷信息;Lav为优化后电力系统负荷的平均值;T为一天内划分的时段数,取T为24;I为电动汽车的数量;
Figure BDA0003152226690000033
为电动汽车在t时段进行充放电时的电网使用负荷信息。
可选的,在基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略以及所述电动汽车的电网使用负荷信息之前,还包括:
设置充放电分时电价策略的求解次数;
在基于所述适应度函数值对所述历史充放电分时电价策略进行调整之后,还包括:
根据所述求解次数重复调整所述历史充放电分时电价策略后,输出样本充放电分时电价策略。
可选的,基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,包括:
通过博弈均衡求解法确定各所述电动汽车在各所述历史充放电分时电价策略下对应的充放电策略。
可选的,博弈均衡求解法为主从博弈工具箱求解器、遗传算法或粒子群算法中的一种。
可选的,电动汽车充放电定价方法还包括:
将所述目标充放电分时电价策略发布至各充电桩,以通过所述充电桩向所述电动汽车提供所述目标充放电分时电价策略。
第二方面,本发明还提供了一种电动汽车充放电定价装置,该电动汽车充放电定价装置包括:
信息获取模块,用于获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;
负荷信息确定模块,用于获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;
充放电定价模块,用于将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。
第三方面,本发明还提供了一种电力系统,该电力系统包括本发明第二方面所述的电动汽车充放电定价装置,该电力系统执行时实现本发明第一方面所述的电动汽车充放电定价方法。
本发明的技术方案,通过获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。解决了当前电动汽车的充电行为具有不确定性可能导致负荷曲线出现峰峰叠加的情况,并将影响电力系统的安全运行的问题,以实现对电网负荷起到较好的削峰填谷的作用,保证了电动汽车参与车网互动的过程中不影响用户的正常出行计划。
附图说明
图1是本发明实施例一提供的一种电动汽车充放电定价方法的流程示意图;
图2是本发明实施例二提供的一种电动汽车充放电定价方法的流程示意图;
图3是本发明实施例提供车网互动主从博弈模型中电网和电动汽车之间的关系示意图;
图4是本发明实施例提供的电动汽车i首次接入电网的电池可用容量约束区域的示意图;
图5是本发明实施例提供的电动汽车i行驶后接入电网的电池可用容量约束区域的示意图;
图6是本发明实施例提供的电动汽车i处于行驶状态下的电池可用容量约束区域的示意图;
图7为本发明实施例提供电动汽车一天内的电池可用容量约束区域的示意图;
图8是本发明实施例提供的日前充放电分时电价的电价与时段的折线图;
图9是本发明实施例提供的电动汽车充放电总功率的充放电功率与时段的柱状图;
图10是本发明实施例提供的电网负荷曲线对比的负荷与时段的折线图;
图11是本发明实施例提供的某电动汽车在不同分时电价下的电池状态变化的折线图;
图12是本发明实施例三提供的一种电动汽车充放电定价装置的结构图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明具体实施例作进一步的详细描述。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。
另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
实施例一
图1为本发明实施例一提供的一种电动汽车充放电定价方法的流程示意图,本实施例可适用于考虑电动汽车用户出行计划及电力系统收益最大化对电动汽车进行充放电定价的情况,该方法可以由电动汽车充放电定价装置来执行,该电动汽车充放电定价装置可以通过软件和/或硬件的形式实现。该电动汽车充放电定价方法具体包括如下步骤:
S110、获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息。
由于电动汽车在一天内将处于不同的位置,例如,电动汽车在住宅区或是工作区,则电动汽车在一天内可能会接入不同位置的充电桩。加之,每个位置不一定都有充电桩,无法保证充电桩的覆盖率,同时,电动汽车在停驶时也未必会接入电网,则对于不同时段接入电网的电动汽车需要根据其当日停驶时,是否接入电网以及停驶的开始时刻、结束时刻、停驶次数综合考量电动汽车的当日使用状态,即得到充电桩使用状态信息。
可以理解的是,电动汽车可以为一辆、两辆或多辆,每辆电动汽车分别获取自身的当日的充电桩使用状态信息。
在车网互动中,考虑电动汽车收益最大化,每辆电动汽车在当日接入不同充电桩的情况下,均执行根据目标充放电分时电价策略制定的收益最大对应的充放电策略。
具体的,根据下述公式(一)确定电动汽车的次日出行计划信息;
Figure BDA0003152226690000071
其中,TIMEi为电动汽车的次日出行计划信息;
Figure BDA0003152226690000072
为电动汽车第h次停驶的开始时刻;
Figure BDA0003152226690000081
为电动汽车第h次停驶的结束时刻;H为电动汽车在第i天内的停驶次数;
需要说明的是,为了便于分析,本实施例将
Figure BDA0003152226690000082
向下取整,
Figure BDA0003152226690000083
向上取整,故TIMEi矩阵中的元素均为[0,24]内的整数。
根据下述公式(二)确定电动汽车的当日停驶接入电网的充电桩使用状态信息;
Figure BDA0003152226690000084
其中,Xi为电动汽车第h次停驶是否接入电网的充电桩使用状态信息;
需要说明的是,Xi矩阵中的元素为1或0,1代表电动汽车在本次停驶接入电网,0代表电动汽车在本次停驶不接入电网,本实施例对此仅为示例性说明,而不对其进行任何限制。
根据下述公式(三)确定电动汽车的车辆基础参数信息;
Figure BDA0003152226690000085
其中,Ei为电动汽车i的车辆基础参数信息;
Figure BDA0003152226690000086
为电动汽车i的最大充放电功率;
Figure BDA0003152226690000087
为电动汽车i的行驶等效放电功率;Ci为电动汽车i的电池容量;
Figure BDA0003152226690000088
为电池充放电单位电量损耗。
需要说明的是,车辆基础参数信息仅需向电力系统上报一次,实现车辆与电网的绑定即可。
进一步的,电池充放电单位电量损耗
Figure BDA0003152226690000089
其由电动汽车电池的寿命具体决定,可以根据下述公式进行计算得到:
Figure BDA00031522266900000810
其中,cx为电动汽车新电池的总成本;Lc为电动汽车在一定放电深度下电池的寿命,以循环次数表示;Eb为电动汽车电池总能量容量;DoD为Lc中使用的放电深度。
S120、获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息。
其中,次日预测负荷信息为电力系统在不接入电动汽车时,所需消耗的电能,即次日预测负荷信息为除电动汽车以外的用电设备消耗的电能,本实施例对具体用电设备不作任何限制。
考虑电力系统的次日预测负荷信息的目的在于,在电动汽车通过智能充电桩与电网进行能量互动中,充分考虑电网运营商的利益最大化,避免了传统定价机制下参与者与电网利益的冲突;另一方面,由于电网运营商管辖的电动汽车数量过大,直接对其进行充放电功率控制会造成变量维数灾难,预先对电力系统的次日预测负荷信息进行获取,能够达到通过大规模电动汽车接入电网改善电网负荷曲线的作用。
S130、将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。
由于电动汽车的日出行计划和车辆基础参数信息不同,不同电动汽车对同一分时电价做出的最优充放电策略也不相同,因此电网与电动汽车实际上为一主多从的博弈关系,则通过构建车网互动主从博弈模型,以确定电网最优的充放电分时电价策略,即目标充放电分时电价策略。
进一步的,由智能充电桩向电动汽车提供智能充电桩接收到的电网发布的最优的充放电分时电价策略,并在电动汽车在日前接入不同充电桩的情况下,按照最优的充放电分时电价策略确定电动汽车的充放电策略。可以理解的是,电动汽车在一天内处于不同的位置,仍按日前确定最优的充放电分时电价策略执行其对应的充放电策略。
为使得车网互动主从博弈模型输出的充放电分时电价策略为电网和电动汽车均为收益最大的情况,即得到目标充放电分时电价策略,在将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中后,执行下述步骤以得到目标充放电分时电价策略,具体为:基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,以及将各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息,根据所述电网使用负荷信息确定所述电力系统的适应度函数值,所述适应度函数值用于表示所述电力系统负荷波动,所述电力系统负荷波动通过所述电力系统负荷波动的方差表示;基于所述适应度函数值对所述历史充放电分时电价策略进行调整。
在上述实施例的基础上,将各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息,包括:根据下述电网互动的效用函数公式(四)以及所述电网使用负荷信息确定所述电力系统的适应度函数值;
Figure BDA0003152226690000101
其中,UG为电力系统负荷波动的方差;Lt为t时段的次日预测负荷信息;Lav为优化后电力系统负荷的平均值;T为一天内划分的时段数,取T为24;I为电动汽车的数量;
Figure BDA0003152226690000102
为电动汽车在t时段进行充放电时的电网使用负荷信息。
其中,优化后电力系统负荷的平均值Lav可以通过下式求解:
Figure BDA0003152226690000111
进一步的,可以理解的是,在电网制定分时电价进行充放电引导时,除了考虑用户侧对电价的响应行为外,还应考虑电网自身的收益和成本,则目标充放电分时电价策略是在下述充放电分时电价的约束下确定的:
rmin<rt<rmax,t=1,2,…,T
式中:rt为日前充放电分时电价;rmin为分时电价的最小值;rmax为分时电价的最大值。
在本实施例中,车网互动的双方互相均衡的求解转化为目标优化问题,则在基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略以及所述电动汽车的电网使用负荷信息之前,还包括:设置充放电分时电价策略的求解次数;在基于所述适应度函数值对所述历史充放电分时电价策略进行调整之后,还包括:根据所述求解次数重复调整所述历史充放电分时电价策略后,输出样本充放电分时电价策略。
其中,样本充放电分时电价策略为每一次调整充放电分时电价策略后,再次确定所述电动汽车对应的充放电策略以及所述电动汽车的电网使用负荷信息;并根据所述电网使用负荷信息确定所述电力系统的适应度函数值,直至达到充放电分时电价策略的求解次数,即达到主从博弈均衡,输出最优的充放电分时电价策略,即本实施例的目标充放电分时电价策略。
充放电分时电价策略的求解次数可以由本领域技术人员根据实际情况进行选择设置,本实施例对具体的求解次数不作任何限制。
可以理解的是,在充放电分时电价策略的求解次数中,每一次充放电分时电价策略的调整可以通过选择、交叉或变异运算方式中的一种或多种。
在上述实施例的基础上,基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,包括:通过博弈均衡求解法确定各所述电动汽车在各所述历史充放电分时电价策略下对应的充放电策略。其中,博弈均衡求解法为主从博弈工具箱求解器、遗传算法或粒子群算法中的一种。
在上述实施例的基础上,电动汽车充放电定价方法还包括:将所述目标充放电分时电价策略发布至各充电桩,以通过所述充电桩向所述电动汽车提供所述目标充放电分时电价策略。
具体的,电网可以在每日24时前将目标充放电分时电价策略发布至各个智能充电桩上,具体发布时间可以由本领域技术人员根据实际情况进行选择设置,本实施例对具体发布时间不做任何限制。之后,由各个智能充电桩向电动汽车提供收益最大的充放电分时电价策略,即可以使用目标充放电分时电价策略。
可以理解的是,本实施例的方案电网希望在获取更多功率支撑的情况下,付出的价差更小,而电动汽车希望在付出更小功率交换的情况下获取更多的经济收益,车网互动中电网和电动汽车双方之间的利益存在着冲突,则需要为互动双方寻找各自认为的最大效用,从而保证车网双方参与互动的积极性。
本发明实施例的技术方案,通过获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。解决了当前电动汽车的充电行为具有不确定性可能导致负荷曲线出现峰峰叠加的情况,并将影响电力系统的安全运行的问题,以实现对电网负荷起到较好的削峰填谷的作用,保证了电动汽车参与车网互动的过程中不影响用户的正常出行计划。
实施例二
图2为本发明实施例二提供的一种电动汽车充放电定价方法的流程示意图,本实施例以上述实施例为基础进行优化。
相应的,本实施例的电动汽车充放电定价方法具体包括:
S210、获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息。
具体的,获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息,包括:
根据下述公式(一)确定电动汽车的次日出行计划信息;
Figure BDA0003152226690000131
其中,TIMEi为电动汽车的次日出行计划信息;
Figure BDA0003152226690000132
为电动汽车第h次停驶的开始时刻;
Figure BDA0003152226690000133
为电动汽车第h次停驶的结束时刻;H为电动汽车在第i天内的停驶次数;
根据下述公式(二)确定电动汽车的当日停驶接入电网的充电桩使用状态信息;
Figure BDA0003152226690000134
其中,Xi为电动汽车第h次停驶是否接入电网的充电桩使用状态信息;
根据下述公式(三)确定电动汽车的车辆基础参数信息;
Figure BDA0003152226690000141
其中,Ei为电动汽车i的车辆基础参数信息;
Figure BDA0003152226690000142
为电动汽车i的最大充放电功率;
Figure BDA0003152226690000143
为电动汽车i的行驶等效放电功率;Ci为电动汽车i的电池容量;
Figure BDA0003152226690000144
为电池充放电单位电量损耗。
S220、获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息,并设置充放电分时电价策略的求解次数。
S230、将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中。
车网互动主从博弈模型为电网运营商和电动汽车用户之间构成的主从博弈模型,车网互动主从博弈模型的关系参见图3,图3是本发明实施例提供车网互动主从博弈模型中电网和电动汽车之间的关系示意图,由于出行计划和车辆参数不同,不同电动汽车对同一分时电价做出的最优充放电策略也不相同,因此,电网与电动汽车实际上为一主多从的博弈关系。
在车网互动主从博弈模型中,电网的策略集为Γr,其中:
rw∈Γr
rw=[rw,1,...,rw,t,...,rw,T]
w=1,...,W
式中:rw为日前分时电价策略向量;T为一天内划分的时段数,取T=24;W为策略集Γr中的总策略数量。
电动汽车i的充放电策略集为Γi,P,其中:
Pi,j∈Γi,P
Figure BDA0003152226690000151
式中:Pi,j为电动汽车i的充放电策略,J为策略集Γi,P中的总策略数量。
具体车网互动主从博弈模型中的博弈流程如下:电网作为领导者从其策略集Γr中选择一个分时电价策略rw,其他跟随者(各电动汽车)观测到rw,随后从自身的策略集Γi,P中选择最优的充放电策略。
假设领导者电网的效用函数为UG(rw,P1,j,...,Pi,j,...,PI,j),I为该地区电动汽车的总量,该效用函数可以用总负荷曲线的方差来描述,则领导者的目标在于效用函数最小化;跟随者电动汽车i的效用函数为
Figure BDA0003152226690000152
该效用函数可以用电动汽车一天内的收益来描述,则跟随者的目标在于效用函数最大化。
S240、基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,以及将各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息;
在上述实施例的基础上,将各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息,包括:
根据下述电网互动的效用函数公式(四)以及所述电网使用负荷信息确定所述电力系统的适应度函数值;
Figure BDA0003152226690000153
其中,UG为电力系统负荷波动的方差;Lt为t时段的次日预测负荷信息;Lav为优化后电力系统负荷的平均值;T为一天内划分的时段数,取T为24;I为电动汽车的数量;
Figure BDA0003152226690000154
为电动汽车在t时段进行充放电时的电网使用负荷信息。
进一步的,基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,包括:通过博弈均衡求解法确定各所述电动汽车在各所述历史充放电分时电价策略下对应的充放电策略。其中,博弈均衡求解法为主从博弈工具箱求解器、遗传算法或粒子群算法中的一种。
具体的,电动汽车参与互动的主要目标是在不影响自身出行的情况下,利用分时电价的价差,通过充放电策略为自身获取一定的经济收益。因此,在不影响出行的前提下获取最大的收益,是电动汽车最优响应的目标。则电动汽车的效用函数为:
Figure BDA0003152226690000161
Figure BDA0003152226690000162
式中:ΔT为每时段的时长;
Figure BDA0003152226690000163
为电动汽车i在时段t进行充放电产生的电池损耗成本。
进一步的,电动汽车的充放电功率约束为在电动汽车接入电网时,其充放电功率受自身的硬件条件和充电桩的限制,而未接入电网的电动汽车,其对电网的充放电功率等于0,由此可以得到如下电动汽车的充放电功率约束条件:
Figure BDA0003152226690000164
式中:ωi,t为电动汽车在时段t的状态变量,电动汽车接入电网状态为1,电动汽车未接入电网状态为0。
电动汽车的电池可用容量约束一般由电池荷电状态(SOC)表示,电动汽车电池SOC值随时间变化的曲线将处于电池约束区域内。
图4是本发明实施例提供的电动汽车i首次接入电网的电池可用容量约束区域的示意图,参见图4,图中
Figure BDA0003152226690000165
为电动汽车接入电网时刻的SOC值;SOCmax为保护车载电池安全运行所设定的最大SOC值;
Figure BDA0003152226690000171
为电动汽车为了保证在
Figure BDA0003152226690000172
时刻达到出行前行驶需求的最小SOC值时必须进行充电的时刻;
Figure BDA0003152226690000173
为满足电动汽车行驶需求的最小SOC值,具体计算公式如下:
Figure BDA0003152226690000174
折线段ABC为电池约束区域的上边界,表示电动汽车在接入电网时刻便以最大充电功率充电直到充满或者离开电网;折线段AFED为电池约束区域下边界,表示电动汽车接入电网后便以最大放电功率放电直到强制充电开始时刻后,以最大充电功率充电。
图4中的ABCFED包围部分则为电动汽车单次接入电网的电池约束区域,即为6条直线AB、BC、CD、DE、EF、FA围成的区域。以t和SOC作为变量,6条直线的数学方程式分别如下述公式。
Figure BDA0003152226690000175
SOC-SOCmax=0
Figure BDA0003152226690000176
Figure BDA0003152226690000177
SOC-SOCmin=0
Figure BDA0003152226690000178
对于行驶后接入电网的电动汽车来说,其接入电网时刻的SOC值将取决于其行驶前离开电网时刻的SOC值,则电动汽车行驶后接入电网的电池约束区域如图5所示。图5是本发明实施例提供的电动汽车i行驶后接入电网的电池可用容量约束区域的示意图,图中的A'BCDEF'A”包围部分则为电动汽车行驶后接入电网的电池约束区域,即为7条直线A'B、BC、CD、DE、EF、FA'、A'A”围成的区域。以t和SOC作为变量,7条直线的数学方程分别如下述公式。
SOC-SOCmax=0
SOC-SOCmin=0
Figure BDA0003152226690000181
Figure BDA0003152226690000182
Figure BDA0003152226690000183
Figure BDA0003152226690000184
Figure BDA0003152226690000185
电动汽车行驶所消耗的电能主要受到其行驶时长、速度、路程等多方面的影响,对于电网来说,可以将电动汽车行驶过程等效为恒功率放电过程,而其行驶过程所消耗的电能大小则取决于行驶等效放电功率。
进一步的,图6是本发明实施例提供的电动汽车i处于行驶状态下的电池可用容量约束区域的示意图,参见图6,值得注意的是,电动汽车行驶状态的运行曲线只可能为约束区域内平行于线段AB的直线,图中的ABCD包围部分则为电动汽车行驶状态的电池约束区域,即为4条直线AB、BC、CD、DA围成的区域。以t和SOC作为变量,4条直线的数学方程分别如下述公式。
Figure BDA0003152226690000186
Figure BDA0003152226690000187
Figure BDA0003152226690000191
Figure BDA0003152226690000192
示例性的,以某电动汽车上报的
Figure BDA0003152226690000193
Xi=[1,1,1]为例,该电动汽车1天内的电池约束区域如图7所示,图7为本发明实施例提供电动汽车一天内的电池可用容量约束区域的示意图。
充电桩进行充放电控制时,调控范围须处于车载电池的可用容量约束区域内。由于是按时段进行调控,所以需将电池可用容量约束区域的上下界进行离散化。据此可得电动汽车电池SOC值的约束:
Figure BDA0003152226690000194
式中:
Figure BDA0003152226690000195
为电动汽车i的电池运行区域上、下界在t时刻的取值;SOCi,t为电动汽车在时刻t的电池荷电状态,计算公式如下:
Figure BDA0003152226690000196
Figure BDA0003152226690000197
式中:
Figure BDA0003152226690000198
为电动汽车在时段t行驶消耗的电量。
S250、根据所述电网使用负荷信息确定所述电力系统的适应度函数值,所述适应度函数值用于表示所述电力系统负荷波动,所述电力系统负荷波动通过所述电力系统负荷波动的方差表示。
S260、基于所述适应度函数值对所述历史充放电分时电价策略进行调整。
S270、根据所述求解次数重复调整所述历史充放电分时电价策略后,输出样本充放电分时电价策略。
电网希望在获取更多功率支撑的情况下,付出的价差更小;而电动汽车则希望在付出更小功率交换的情况下获取更多的经济收益,车网互动双方之间的利益存在着冲突,需要为互动双方寻找各自认为的最大效用,才能保证车网双方参与互动的积极性,得到样本充放电分时电价策略,即为目标充放电分时电价策略。
S280、将所述目标充放电分时电价策略发布至各充电桩,以通过所述充电桩向所述电动汽车提供所述目标充放电分时电价策略。
示例性的,通过使用MATLAB进行仿真求解,可以求得最优分时电价策略如图8所示,图8是本发明实施例提供的日前充放电分时电价的电价与时段的折线图,该分时电价的峰谷时段大致与传统分时电价相同。在图8所示的最优分时电价下,智能充电桩为电动汽车做出最优的充放电响应策略。图9是本发明实施例提供的电动汽车充放电总功率的充放电功率与时段的柱状图,基于图9所示预测负荷叠加所有电动汽车的充放电功率后,得到最优响应策略对电网的影响如图10所示,图10是本发明实施例提供的电网负荷曲线对比的负荷与时段的折线图。
图10为本发明定价方法下智能充电桩为电动汽车做出最优响应策略后,充放电功率对电网负荷曲线的影响情况,从图中可以看到分时电价可以起到很好的削峰填谷效果,很大程度的降低了负荷曲线方差。
进一步的,随机抽取一辆电动汽车进行分析,对于该电动汽车,电池状态在一天内的变化如图11所示,图11是本发明实施例提供的某电动汽车在不同分时电价下的电池状态变化的折线图。
本发明实施例的技术方案,以削峰填谷为目标的车网互动主从博弈模型,对电网来说,本发明的定价方法可以更好的起到削峰填谷的作用,且该电价策略会随预测负荷和用户的出行计划改变而做出改变,确保在任何情况下都发挥出最大的负荷波动平抑能力。对电动汽车来说,本发明的电动汽车最优响应模型保证了在任意分时电价场景下电动汽车均可获得该场景下的最大收益,考虑电动汽车的出行计划构建的电动汽车电池的约束区域,保证了电动汽车参与车网互动的过程中不影响用户的正常出行计划。
实施例三
图12为本发明实施例三提供的一种电动汽车充放电定价装置的结构图,本实施例可适用于考虑电动汽车用户出行计划及电力系统收益最大化对电动汽车进行充放电定价的情况。
如图12所示,所述电动汽车充放电定价装置包括:信息获取模块1210、负荷信息确定模块1220和充放电定价模块1230,其中:
信息获取模块1210,用于获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;
负荷信息确定模块1220,用于获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;
充放电定价模块1230,用于将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。
本实施例的电动汽车充放电定价装置,通过获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。解决了当前电动汽车的充电行为具有不确定性可能导致负荷曲线出现峰峰叠加的情况,并将影响电力系统的安全运行的问题,以实现对电网负荷起到较好的削峰填谷的作用,保证了电动汽车参与车网互动的过程中不影响用户的正常出行计划。
在上述各实施例的基础上,获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息,包括:
根据下述公式(一)确定电动汽车的次日出行计划信息;
Figure BDA0003152226690000221
其中,TIMEi为电动汽车的次日出行计划信息;
Figure BDA0003152226690000222
为电动汽车第h次停驶的开始时刻;
Figure BDA0003152226690000223
为电动汽车第h次停驶的结束时刻;H为电动汽车在第i天内的停驶次数;
根据下述公式(二)确定电动汽车的当日停驶接入电网的充电桩使用状态信息;
Figure BDA0003152226690000224
其中,Xi为电动汽车第h次停驶是否接入电网的充电桩使用状态信息;
根据下述公式(三)确定电动汽车的车辆基础参数信息;
Figure BDA0003152226690000225
其中,Ei为电动汽车i的车辆基础参数信息;
Figure BDA0003152226690000226
为电动汽车i的最大充放电功率;
Figure BDA0003152226690000227
为电动汽车i的行驶等效放电功率;Ci为电动汽车i的电池容量;
Figure BDA0003152226690000231
为电池充放电单位电量损耗。
在上述各实施例的基础上,电动汽车充放电定价装置还包括:
基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,以及各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息;
根据所述电网使用负荷信息确定所述电力系统的适应度函数值,所述适应度函数值用于表示所述电力系统负荷波动,所述电力系统负荷波动通过所述电力系统负荷波动的方差表示;
基于所述适应度函数值对所述历史充放电分时电价策略进行调整。
在上述各实施例的基础上,将各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息,包括:
根据下述电网互动的效用函数公式(四)以及所述电网使用负荷信息确定所述电力系统的适应度函数值;
Figure BDA0003152226690000232
其中,UG为电力系统负荷波动的方差;Lt为t时段的次日预测负荷信息;Lav为优化后电力系统负荷的平均值;T为一天内划分的时段数,取T为24;I为电动汽车的数量;
Figure BDA0003152226690000233
为电动汽车在t时段进行充放电时的电网使用负荷信息。
在上述各实施例的基础上,在基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略以及所述电动汽车的电网使用负荷信息之前,还包括:
设置充放电分时电价策略的求解次数;
在基于所述适应度函数值对所述历史充放电分时电价策略进行调整之后,还包括:
根据所述求解次数重复调整所述历史充放电分时电价策略后,输出样本充放电分时电价策略。
在上述各实施例的基础上,基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,包括:
通过博弈均衡求解法确定各所述电动汽车在各所述历史充放电分时电价策略下对应的充放电策略。
在上述各实施例的基础上,博弈均衡求解法为主从博弈工具箱求解器、遗传算法或粒子群算法中的一种。
在上述各实施例的基础上,电动汽车充放电定价装置还包括:
将所述目标充放电分时电价策略发布至各充电桩,以通过所述充电桩向所述电动汽车提供所述目标充放电分时电价策略。
上述各实施例所提供的电动汽车充放电定价装置可执行本发明任意实施例所提供的电动汽车充放电定价方法,具备执行电动汽车充放电定价方法相应的功能模块和有益效果。
本发明实施例还提供了一种电力系统,该电力系统包括上述实施例所述的电动汽车充放电定价装置,该电力系统执行时实现上述实施例所述的电动汽车充放电定价方法。
本发明实施例提供的电动汽车充放电定价方法,通过获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。解决了当前电动汽车的充电行为具有不确定性可能导致负荷曲线出现峰峰叠加的情况,并将影响电力系统的安全运行的问题,以实现对电网负荷起到较好的削峰填谷的作用,保证了电动汽车参与车网互动的过程中不影响用户的正常出行计划。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

1.一种电动汽车充放电定价方法,其特征在于,包括:
获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;
获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;
将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。
2.根据权利要求1所述的电动汽车充放电定价方法,其特征在于,获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息,包括:
根据下述公式(一)确定电动汽车的次日出行计划信息;
Figure FDA0003152226680000011
其中,TIMEi为电动汽车的次日出行计划信息;
Figure FDA0003152226680000012
为电动汽车第h次停驶的开始时刻;
Figure FDA0003152226680000013
为电动汽车第h次停驶的结束时刻;H为电动汽车在第i天内的停驶次数;
根据下述公式(二)确定电动汽车的当日停驶接入电网的充电桩使用状态信息;
Figure FDA0003152226680000014
其中,Xi为电动汽车第h次停驶是否接入电网的充电桩使用状态信息;
根据下述公式(三)确定电动汽车的车辆基础参数信息;
Figure FDA0003152226680000015
其中,Ei为电动汽车i的车辆基础参数信息;Pi max,ev为电动汽车i的最大充放电功率;Pi eq为电动汽车i的行驶等效放电功率;Ci为电动汽车i的电池容量;
Figure FDA0003152226680000021
为电池充放电单位电量损耗。
3.根据权利要求1所述的电动汽车充放电定价方法,其特征在于,还包括:
基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,以及将各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息;
根据所述电网使用负荷信息确定所述电力系统的适应度函数值,所述适应度函数值用于表示所述电力系统负荷波动,所述电力系统负荷波动通过所述电力系统负荷波动的方差表示;
基于所述适应度函数值对所述历史充放电分时电价策略进行调整。
4.根据权利要求3所述的电动汽车充放电定价方法,其特征在于,将各所述电动汽车对应的所述充放电策略进行功率叠加确定所述电动汽车的电网使用负荷信息,包括:
根据下述电网互动的效用函数公式(四)以及所述电网使用负荷信息确定所述电力系统的适应度函数值;
Figure FDA0003152226680000022
其中,UG为电力系统负荷波动的方差;Lt为t时段的次日预测负荷信息;Lav为优化后电力系统负荷的平均值;T为一天内划分的时段数,取T为24;I为电动汽车的数量;
Figure FDA0003152226680000023
为电动汽车在t时段进行充放电时的电网使用负荷信息。
5.根据权利要求3所述的电动汽车充放电定价方法,其特征在于,在基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略以及所述电动汽车的电网使用负荷信息之前,还包括:
设置充放电分时电价策略的求解次数;
在基于所述适应度函数值对所述历史充放电分时电价策略进行调整之后,还包括:
根据所述求解次数重复调整所述历史充放电分时电价策略后,输出样本充放电分时电价策略。
6.根据权利要求3所述的电动汽车充放电定价方法,其特征在于,基于至少一个历史充放电分时电价策略和各所述电动汽车的效用函数确定各所述电动汽车对应的充放电策略,包括:
通过博弈均衡求解法确定各所述电动汽车在各所述历史充放电分时电价策略下对应的充放电策略。
7.根据权利要求6所述的电动汽车充放电定价方法,其特征在于,博弈均衡求解法为主从博弈工具箱求解器、遗传算法或粒子群算法中的一种。
8.根据权利要求1所述的电动汽车充放电定价方法,其特征在于,还包括:
将所述目标充放电分时电价策略发布至各充电桩,以通过所述充电桩向所述电动汽车提供所述目标充放电分时电价策略。
9.一种电动汽车充放电定价装置,其特征在于,包括:
信息获取模块,用于获取电动汽车的当日停驶接入电网的充电桩使用状态信息,以及次日出行计划信息和车辆基础参数信息;
负荷信息确定模块,用于获取电力系统的次日预测负荷信息,所述次日预测负荷信息不包括所述电动汽车的电网使用负荷信息;
充放电定价模块,用于将所述充电桩使用状态信息、所述次日出行计划信息、所述车辆基础参数信息和所述次日预测负荷信息输入车网互动主从博弈模型中,输出目标充放电分时电价策略。
10.一种电力系统,其特征在于,该电力系统包括如权利要求9所述的电动汽车充放电定价装置,该电力系统执行时实现如权利要求1-8中任一项所述的电动汽车充放电定价方法。
CN202110767202.9A 2021-07-07 2021-07-07 一种电动汽车充放电定价方法、装置及电力系统 Active CN113489038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110767202.9A CN113489038B (zh) 2021-07-07 2021-07-07 一种电动汽车充放电定价方法、装置及电力系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110767202.9A CN113489038B (zh) 2021-07-07 2021-07-07 一种电动汽车充放电定价方法、装置及电力系统

Publications (2)

Publication Number Publication Date
CN113489038A true CN113489038A (zh) 2021-10-08
CN113489038B CN113489038B (zh) 2023-07-11

Family

ID=77941809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110767202.9A Active CN113489038B (zh) 2021-07-07 2021-07-07 一种电动汽车充放电定价方法、装置及电力系统

Country Status (1)

Country Link
CN (1) CN113489038B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285029A (zh) * 2021-12-17 2022-04-05 国网河南省电力公司经济技术研究院 一种激励电动汽车参与车网互动的调度控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600729A (zh) * 2014-08-19 2015-05-06 浙江工业大学 基于v2g技术的电动汽车参与经济调度优化控制方法
CN108596667A (zh) * 2018-04-25 2018-09-28 国网天津市电力公司电力科学研究院 一种基于车联网的电动汽车实时充电电价计算方法
CN108790893A (zh) * 2018-06-20 2018-11-13 广东电网有限责任公司电力科学研究院 一种交流充电桩及充电控制方法
US20200143489A1 (en) * 2018-11-01 2020-05-07 Battelle Memorial Institute Flexible allocation of energy storage in power grids
CN111756064A (zh) * 2020-06-29 2020-10-09 山东理工大学 基于分时电价的含电动汽车电网优化调度方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600729A (zh) * 2014-08-19 2015-05-06 浙江工业大学 基于v2g技术的电动汽车参与经济调度优化控制方法
CN108596667A (zh) * 2018-04-25 2018-09-28 国网天津市电力公司电力科学研究院 一种基于车联网的电动汽车实时充电电价计算方法
CN108790893A (zh) * 2018-06-20 2018-11-13 广东电网有限责任公司电力科学研究院 一种交流充电桩及充电控制方法
US20200143489A1 (en) * 2018-11-01 2020-05-07 Battelle Memorial Institute Flexible allocation of energy storage in power grids
CN111756064A (zh) * 2020-06-29 2020-10-09 山东理工大学 基于分时电价的含电动汽车电网优化调度方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285029A (zh) * 2021-12-17 2022-04-05 国网河南省电力公司经济技术研究院 一种激励电动汽车参与车网互动的调度控制方法及系统
CN114285029B (zh) * 2021-12-17 2023-08-29 国网河南省电力公司经济技术研究院 一种激励电动汽车参与车网互动的调度控制方法及系统

Also Published As

Publication number Publication date
CN113489038B (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN111934335B (zh) 一种基于深度强化学习的集群电动汽车充电行为优化方法
CN106469926B (zh) 通过平衡实用程序和用户考虑而为电动车辆自动选择充电例程
Yao et al. Robust frequency regulation capacity scheduling algorithm for electric vehicles
Meng et al. Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system
CN109177802B (zh) 一种基于无线通信的电动汽车有序充电系统及其方法
CN107618393B (zh) 一种基于杠杆电价的电动汽车充电负荷调控系统及方法
DE102020132576A1 (de) Leistungsverwaltungssystem und Server
Wang et al. Design of a V2G aggregator to optimize PHEV charging and frequency regulation control
JP7111078B2 (ja) 電動車両
CN111422094A (zh) 分布式充电桩的充放电协调优化控制方法
US20210053459A1 (en) Electric power system and vehicle
DE102020132755A1 (de) Server und Leistungsverwaltungssystem
JP6885300B2 (ja) 料金設定装置、料金設定方法、料金設定システム、料金設定プログラム
CN108062619B (zh) 一种轨道车辆车地一体化容量配置方法及装置
CN116001624A (zh) 基于深度强化学习的一桩多联电动汽车有序充电方法
CN113269372A (zh) 一种考虑用户意愿的集群电动汽车可调度容量预测评估方法
CN113437754A (zh) 一种基于台区智能融合终端的电动汽车有序充电方法及系统
CN114425964B (zh) 一种自主参与需求响应的电动汽车充电桩控制器及方法
CN107379990A (zh) 充电桩功率的限制方法及装置
US20160140449A1 (en) Fuzzy linear programming method for optimizing charging schedules in unidirectional vehicle-to-grid systems
CN107351713A (zh) 充电桩的控制方法及装置
CN114039372B (zh) 参与电网分区削峰填谷的电动汽车车辆调度方法及系统
CN113489038B (zh) 一种电动汽车充放电定价方法、装置及电力系统
CN112277711B (zh) 一种考虑匹配电动汽车的多充电模式充电桩控制方法
CN109327035A (zh) 一种电动汽车充电功率调节方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant