CN113488301A - 一种三支柱绝缘子固化方法 - Google Patents

一种三支柱绝缘子固化方法 Download PDF

Info

Publication number
CN113488301A
CN113488301A CN202110628508.6A CN202110628508A CN113488301A CN 113488301 A CN113488301 A CN 113488301A CN 202110628508 A CN202110628508 A CN 202110628508A CN 113488301 A CN113488301 A CN 113488301A
Authority
CN
China
Prior art keywords
curing
post insulator
time
temperature
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110628508.6A
Other languages
English (en)
Other versions
CN113488301B (zh
Inventor
高超
周福升
杨芸
黄若栋
熊佳明
王国利
姚聪伟
庞小峰
宋坤宇
王增彬
赵晓凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China South Power Grid International Co ltd
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Original Assignee
China South Power Grid International Co ltd
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China South Power Grid International Co ltd, Electric Power Research Institute of Guangdong Power Grid Co Ltd filed Critical China South Power Grid International Co ltd
Priority to CN202110628508.6A priority Critical patent/CN113488301B/zh
Priority to PCT/CN2021/104192 priority patent/WO2022252331A1/zh
Publication of CN113488301A publication Critical patent/CN113488301A/zh
Application granted granted Critical
Publication of CN113488301B publication Critical patent/CN113488301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies

Landscapes

  • Insulating Bodies (AREA)

Abstract

本申请涉及一种三支柱绝缘子固化方法,所述方法包括:将待固化的三支柱绝缘子置于预热后的固化箱内,按照第一升温速率升温第一时间后,在第一温度环境下预固化第二时间;将预固化后的三支柱绝缘子按照第二升温速率升温第三时间后,在第二温度环境下初次固化第三时间;将初次固化后的三支柱绝缘子按照第三温度速率升温第一时间后,在第三温度环境下二次固化第四时间,并在二次固化后进行第四时间的线性降温;对二次固化后的所述三支柱绝缘子进行应力检测,若所测得的应力值小于标准值,则固化得到的所述三支柱绝缘子合格。本发明能够减小三支柱绝缘子固化过程中所产生的残余应力,提高三支柱绝缘子的机械强度,满足了实际应用需求。

Description

一种三支柱绝缘子固化方法
技术领域
本申请涉及输变电绝缘设备领域领域,特别是涉及一种三支柱绝缘子固化方法。
背景技术
三支柱绝缘子作为气体绝缘金属封闭输电线路(GIL)中的关键电气部件,在电气绝缘和机械支撑的起着至关重要的作用。目前工程上的三支柱绝缘子由液体环氧树脂、酸酐固化剂和微米级氧化铝粉末填料混合形成环氧复合材料,与嵌件一体固化而成。
然而,在三支柱绝缘子固化过程中,通常会出现内部残余应力较大状况。同时在实际综合应力场的作用下,可能会使其产生内部应力集中区域,极大提高了微裂纹或气缝形成的概率,微裂纹或气缝在运行初期对输变电设备绝缘的影响并不明显,但运行过程中受到多种载荷周期性作用,在应力集中较大的区域,这些微缺陷逐步演变和劣化,当发展到一定程度时,将诱发局部放电、异常发热等现象,加速绝缘老化,使绝缘子性能下降,严重影响电力系统安全运行的可靠性。
发明内容
基于此,有必要针对上述技术问题,提供一种三支柱绝缘子固化方法,该方法能够解决减小三支柱绝缘子固化过程中所产生的残余应力,提高三支柱绝缘子的机械强度的问题。
第一方面,本发明实施例提供了一种三支柱绝缘子固化方法,所述方法包括以下步骤:
将待固化的三支柱绝缘子置于预热后的固化箱内,按照第一升温速率升温第一时间后,在第一温度环境下预固化第二时间;
将预固化后的三支柱绝缘子按照第二升温速率升温第三时间后,在第二温度环境下初次固化第三时间;
将初次固化后的三支柱绝缘子按照第三温度速率升温第一时间后,在第三温度环境下二次固化第四时间,并在二次固化后进行第四时间的线性降温;
对二次固化后的所述三支柱绝缘子进行应力检测,若所测得的应力值小于标准值,则固化得到的所述三支柱绝缘子合格。
进一步地,将待固化的三支柱绝缘子置于预热后的固化箱之前,所述方法还包括:在室温23±5℃环境下,将所述固化箱内的温度上升至90±0.5℃,并保温12h;其中,所述固化箱的内部最小尺寸不小于三支柱绝缘子模具最大尺寸的3倍。
进一步地,将待固化的三支柱绝缘子置于预热后的固化箱内,按照第一升温速率升温第一时间后,在第一温度环境下预固化第二时间的方法包括:
以20℃/h的升温速率,在10±0.5min内将所述固化箱内的温度由90℃±0.5℃升温至100±0.3℃;
在100±0.3℃的温度环境下对位于所述固化箱内的三支柱绝缘子进行预固化;其中,预固化时间为3h。
进一步地,将预固化后的三支柱绝缘子按照第二升温速率升温第三时间后,在第二温度环境下初次固化第三时间的方法包括:
以30℃/h的升温速率,在30±0.5min内将所述固化箱内的温度由100±0.3℃升温至115±0.3℃;
在100±0.3℃的温度环境下对位于所述固化箱内的三支柱绝缘子进行初次固化;其中,初次固化时间为30±0.5min。
进一步地,将初次固化后的三支柱绝缘子按照第三温度速率升温第一时间后,在第三温度环境下二次固化第四时间的方法包括:
以60℃/h的升温速率,在10±0.5min内将所述固化箱内的温度由115±0.3℃升温至130±0.3℃;
在130±0.3℃的温度环境下对位于所述固化箱内的三支柱绝缘子进行二次固化;其中,二次固化时间为24h。
进一步地,对二次固化后的三支柱绝缘子进行第四时间的线性降温的方法包括:以10℃/h的降温速率,将所述固化箱内的温度由130±0.3℃降温至25±0.3℃;其中,降温时间大于等于24h。
进一步地,对所述固化箱进行清扫,以使所述固化箱内的碳氢化合物的浓度低于预设浓度值。
上述三支柱绝缘子固化方法,将待固化的三支柱绝缘子置于预热后的固化箱内,按照第一升温速率升温第一时间后,在第一温度环境下预固化第二时间;将预固化后的三支柱绝缘子按照第二升温速率升温第三时间后,在第二温度环境下初次固化第三时间;将初次固化后的三支柱绝缘子按照第三温度速率升温第一时间后,在第三温度环境下二次固化第四时间,并在二次固化后进行第四时间的线性降温;对二次固化后的所述三支柱绝缘子进行应力检测,若所测得的应力值小于标准值,则固化得到的所述三支柱绝缘子合格。相比现有技术,本发明能够减小三支柱绝缘子固化过程中所产生的残余应力,提高三支柱绝缘子的机械强度,满足了实际应用需求。
附图说明
图1为本发明实施例提供的三支柱绝缘子固化方法的一种流程示意图;
图2为图1中的固化温度示意图;
图3为本发明实施例提供的计算机设备的一种内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的三支柱绝缘子固化方法,由用于控制三支柱绝缘子进行固化工作的固化设备(如智能终端、计算机设备或服务器)的软件或硬件执行,其中,所述方法包括步骤S11~S14:
步骤S11,将待固化的三支柱绝缘子置于预热后的固化箱内,按照第一升温速率升温第一时间后,在第一温度环境下预固化第二时间。
如上所述,通过将浇注于模具中的待固化三支柱绝缘子置于预热后的固化箱内,并按照第一升温速率升温第一时间后,以使所述固化箱内的温度达到第一温度环境。将待固化的三支柱绝缘子在第一温度环境下预固化第二时间,以实现对所述三支柱绝缘子的预固化。其中,所述固化箱的内部最小尺寸不小于三支柱绝缘子模具最大尺寸的3倍。
具体的,在室温23±5℃环境下,以±15℃的增量将所述固化箱内的温度在6h内循环上升至90±0.5℃,并保温12h,以使所述固化箱内各部分的温度相等、恒定,从而保证环氧复合材料固化前具有较稳定的外部环境温度。
其中,若12h后,所述固化箱内各部分的温度仍不恒定时,则以0.2h为增量进行均温,若2h后固化箱内各部分的温度仍不恒定或误差大于0.5℃时,则发出固化箱故障的通知,以提醒相关人员进行进行固化箱的检修。
可以理解的,在其他实施例中,对所述固化箱升温还可根据相应的升温曲线进行升温。其中,所述升温曲线由经验、多次测试或相应的算法得到,该升温曲线能够实现对固化箱的可靠升温。
进一步地,当所述固化箱内各部分的温度恒定(即述固化箱内各部分的温度保持在90±0.5℃)时,在5min内将浇注有环氧复合材料的三支柱绝缘子模具置于所述固化箱内,以20℃/h的升温速率,在10±0.5min内将所述固化箱内的温度由90℃±0.5℃升温至100±0.3℃;并在100±0.3℃的温度环境下对位于所述固化箱内的三支柱绝缘子进行预固化3h。其中,所述环氧复合材料为液体环氧树脂、酸酐固化剂和微米级氧化铝粉末填料的混合物,且置于所述固化箱前,所述环氧复合材料的湿度范围为40%~56%。
可以理解的,在其他实施例中,所述三支柱绝缘子预固化的时间还可以为2h或5h,即所述三支柱绝缘子预固化的时间为2~5h。通常地,所述三支柱绝缘子预固化的时间不大于总固化时间的1/5。
具体的,若3h后,所述三支柱绝缘子的预固化状态未达到目标状态,或在预固化的过程中所述三支柱绝缘子的固化趋势未达到目标趋势时,则根据所述三支柱绝缘子的当前状态,对各部位进行针对性的固化,或按照预固化温度曲线对所述固化箱的温度进行调控。其中,所述预固化曲线是通过多次试验或经验得到的。
步骤S12,将预固化后的三支柱绝缘子按照第二升温速率升温第三时间后,在第二温度环境下初次固化第三时间。
如上所述,通过将所述固化箱内的预固化三支柱绝缘子按照第二升温速率升温第三时间后,以使所述固化箱内的温度达到第二温度环境。将预固化后的三支柱绝缘子在在第二温度环境下初次固化第三时间,以实现对所述三支柱绝缘子的初次固化。
具体的,将所述固化箱内的温度以30℃/h的升温速率,在30±0.5min内由100±0.3℃升温至115±0.3℃,并在115±0.3℃的温度环境下对位于所述固化箱内的三支柱绝缘子进行初次固化;其中,初次固化时间为30±0.5min。
可以理解的,在其他实施例中,对所述三支柱绝缘子进行初次固化的温度范范围可以为预固化温度与最终固化温度之和的1/3~1/2;也可以为120或150℃,即其初次固化的温度范围可以为120~150℃。
进一步地,若30min后,所述三支柱绝缘子的初次固化状态未达到目标状态,或在初次固化的过程中所述三支柱绝缘子的固化趋势未达到目标趋势时,则根据所述三支柱绝缘子的当前状态,对各部位进行针对性的固化,或按照初次固化温度曲线对所述固化箱的温度进行调控。其中,所述初次固化曲线是通过多次试验或经验得到的。
步骤S13,将初次固化后的三支柱绝缘子按照第三温度速率升温第一时间后,在第三温度环境下二次固化第四时间,并在二次固化后进行第四时间的线性降温。
如上所述,通过将固化箱内初次固化后的三支柱绝缘子按照第三温度速率升温第一时间后,以使所述固化箱内的温度达到第三温度环境。将初次固化后的三支柱绝缘子在第三温度环境下二次固化第四时间,并在二次固化后进行第四时间的线性降温,以保证固化完成阶段后的三支柱绝缘子完全释放内部的热量,逐步降低内部的残余应力。
具体的,将所述固化箱内的温度以60℃/h的升温速率,在10±0.5min内由115±0.3℃升温至130±0.3℃;并在130±0.3℃的温度环境下对位于所述固化箱内的三支柱绝缘子进行二次固化;其中,二次固化时间为24h。可以理解的,在其他实施例中,对所述三支柱绝缘子进行二次固化的时间还可以为18h。
进一步地,通过将二次固化后的三支柱绝缘子以10℃/h的降温速率,将所述固化箱内的温度由130±0.3℃降温至25±0.3℃;其中,降温时间大于等于24h。可以理解的,通过控制每个阶段的固化温度,能够减小三支柱绝缘子因固化过程的残余应力,提高三支柱绝缘子的机械强度。
步骤S14,对二次固化后的所述三支柱绝缘子进行应力检测,若所测得的应力值小于标准值,则固化得到的所述三支柱绝缘子合格。
具体的,对二次固化后的所述三支柱绝缘子进行脱模处理,将脱模后的所述三支柱绝缘子置于应力测试平台进行应力测试,记录应力测试值,并将测得的应力测试值与标准值进行比对,当所述应力测试值小于或等于标准值时,则本次固化所述得到的所述三支柱绝缘子合格。
进一步地,在将所述固化箱预热之前,还需对所述固化箱进行清扫,以使所述固化箱内的碳氢化合物的浓度低于预设浓度值。优选的,所述固化箱内的碳氢化合物的浓度应低于485ppm,其中485ppm是根据多次的测试与分析所得,以避免所述固化箱内的所述碳氢化合物的浓度过高,而使所述三支柱绝缘子固化过程中出现化学特性反应,但不限于此,在其他实施例中所述固化箱内的碳氢化合物的浓度还可以为其他值。
进一步地,在对所述固化箱进行清扫后,为保证固化箱固化性能的可靠性,还需对其进行性能测试。具体测试时,可采用固化温度曲线对所述固化箱进行两日昼夜的循环测试,并判断该测试时间段中固化箱内的温度变化是否正常,从而确定该固化箱的固化性能是否正常。
上述三支柱绝缘子固化方法,将待固化的三支柱绝缘子置于预热后的固化箱内,按照第一升温速率升温第一时间后,在第一温度环境下预固化第二时间;将预固化后的三支柱绝缘子按照第二升温速率升温第三时间后,在第二温度环境下初次固化第三时间;将初次固化后的三支柱绝缘子按照第三温度速率升温第一时间后,在第三温度环境下二次固化第四时间,并在二次固化后进行第四时间的线性降温;对二次固化后的所述三支柱绝缘子进行应力检测,若所测得的应力值小于标准值,则固化得到的所述三支柱绝缘子合格。相比现有技术,本发明能够减小三支柱绝缘子固化过程中所产生的残余应力,提高三支柱绝缘子的机械强度,满足了实际应用需求。
应该理解的是,虽然上述流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,上述流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性取存储存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它存储介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种三支柱绝缘子固化方法,其特征在于,所述方法包括以下步骤:
将待固化的三支柱绝缘子置于预热后的固化箱内,按照第一升温速率升温第一时间后,在第一温度环境下预固化第二时间;
将预固化后的三支柱绝缘子按照第二升温速率升温第三时间后,在第二温度环境下初次固化第三时间;
将初次固化后的三支柱绝缘子按照第三温度速率升温第一时间后,在第三温度环境下二次固化第四时间,并在二次固化后进行第四时间的线性降温;
对二次固化后的所述三支柱绝缘子进行应力检测,若所测得的应力值小于标准值,则固化得到的所述三支柱绝缘子合格。
2.根据权利要求1所述的三支柱绝缘子固化方法,其特征在于,将待固化的三支柱绝缘子置于预热后的固化箱之前,所述方法还包括:在室温23±5℃环境下,将所述固化箱内的温度上升至90±0.5℃,并保温12h;其中,所述固化箱的内部最小尺寸不小于三支柱绝缘子模具最大尺寸的3倍。
3.根据权利要求2所述的三支柱绝缘子固化方法,其特征在于,将待固化的三支柱绝缘子置于预热后的固化箱内,按照第一升温速率升温第一时间后,在第一温度环境下预固化第二时间的方法包括:
以20℃/h的升温速率,在10±0.5min内将所述固化箱内的温度由90℃±0.5℃升温至100±0.3℃;
在100±0.3℃的温度环境下对位于所述固化箱内的三支柱绝缘子进行预固化;其中,预固化时间为3h。
4.根据权利要求3所述的三支柱绝缘子固化方法,其特征在于,将预固化后的三支柱绝缘子按照第二升温速率升温第三时间后,在第二温度环境下初次固化第三时间的方法包括:
以30℃/h的升温速率,在30±0.5min内将所述固化箱内的温度由100±0.3℃升温至115±0.3℃;
在100±0.3℃的温度环境下对位于所述固化箱内的三支柱绝缘子进行初次固化;其中,初次固化时间为30±0.5min。
5.根据权利要求4所述的三支柱绝缘子固化方法,其特征在于,将初次固化后的三支柱绝缘子按照第三温度速率升温第一时间后,在第三温度环境下二次固化第四时间的方法包括:
以60℃/h的升温速率,在10±0.5min内将所述固化箱内的温度由115±0.3℃升温至130±0.3℃;
在130±0.3℃的温度环境下对位于所述固化箱内的三支柱绝缘子进行二次固化;其中,二次固化时间为24h。
6.根据权利要求5所述的三支柱绝缘子固化方法,其特征在于,对二次固化后的三支柱绝缘子进行第四时间的线性降温的方法包括:以10℃/h的降温速率,将所述固化箱内的温度由130±0.3℃降温至25±0.3℃;其中,降温时间大于等于24h。
7.根据权利要求1所述的三支柱绝缘子固化方法,其特征在于,将所述固化箱预热之前,所述方法还包括:
对所述固化箱进行清扫,以使所述固化箱内的碳氢化合物的浓度低于预设浓度值。
CN202110628508.6A 2021-06-04 2021-06-04 一种三支柱绝缘子固化方法 Active CN113488301B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110628508.6A CN113488301B (zh) 2021-06-04 2021-06-04 一种三支柱绝缘子固化方法
PCT/CN2021/104192 WO2022252331A1 (zh) 2021-06-04 2021-07-02 一种三支柱绝缘子固化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110628508.6A CN113488301B (zh) 2021-06-04 2021-06-04 一种三支柱绝缘子固化方法

Publications (2)

Publication Number Publication Date
CN113488301A true CN113488301A (zh) 2021-10-08
CN113488301B CN113488301B (zh) 2022-09-16

Family

ID=77934526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110628508.6A Active CN113488301B (zh) 2021-06-04 2021-06-04 一种三支柱绝缘子固化方法

Country Status (2)

Country Link
CN (1) CN113488301B (zh)
WO (1) WO2022252331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505991A (zh) * 2022-04-20 2022-05-17 广东电网有限责任公司佛山供电局 一种三支柱绝缘子浇注模具和内应力消除方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1378751A (en) * 1971-03-24 1974-12-27 British Insulated Callenders Electric insulators
CN1686951A (zh) * 2005-04-07 2005-10-26 福州大学 防污闪高压陶瓷和玻璃绝缘子的制备方法
CN102814892A (zh) * 2012-08-09 2012-12-12 河南平高电气股份有限公司 环氧浇注件制造方法和环氧浇注绝缘子制造方法
WO2013180328A1 (ko) * 2012-06-01 2013-12-05 주식회사 영테크 절연용 나노 복합재 및 그 제조방법
CN103617845A (zh) * 2013-12-10 2014-03-05 国家电网公司 一种悬式绝缘子
US20140338954A1 (en) * 2011-10-06 2014-11-20 Sediver Societe Europeenne D'isolateurs En Verre Et Composite Method for producing a high-voltage electrical insulator with a mortar including a superplasticizer
CN107403672A (zh) * 2017-08-08 2017-11-28 芜湖市凯鑫避雷器有限责任公司 一种空心硅橡胶复合绝缘子的生产方法
CN107418148A (zh) * 2017-08-08 2017-12-01 芜湖市凯鑫避雷器有限责任公司 一种复合硅橡胶绝缘子的配方及其制备工艺
CN107629412A (zh) * 2017-09-29 2018-01-26 安徽众博新材料有限公司 一种高强度环氧绝缘子材料及其制备方法
CN110660540A (zh) * 2019-09-12 2020-01-07 全球能源互联网研究院有限公司 一种复合绝缘子横担芯体及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004801B2 (ja) * 1992-03-24 2000-01-31 日本碍子株式会社 光ファイバ複合碍子の製造方法
CN108305723A (zh) * 2018-02-01 2018-07-20 清华大学 基于非线性材料掺杂的盆式及支柱绝缘子
CN108305733A (zh) * 2018-02-01 2018-07-20 清华大学 高阻热盆式绝缘子制备方法
CN111370188A (zh) * 2019-12-23 2020-07-03 西安交通大学 一种用于三相共箱式紧凑型gis/gil的三相三支柱绝缘子
CN112017829B (zh) * 2020-08-10 2022-04-12 南方电网科学研究院有限责任公司 一种三支柱绝缘子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1378751A (en) * 1971-03-24 1974-12-27 British Insulated Callenders Electric insulators
CN1686951A (zh) * 2005-04-07 2005-10-26 福州大学 防污闪高压陶瓷和玻璃绝缘子的制备方法
US20140338954A1 (en) * 2011-10-06 2014-11-20 Sediver Societe Europeenne D'isolateurs En Verre Et Composite Method for producing a high-voltage electrical insulator with a mortar including a superplasticizer
WO2013180328A1 (ko) * 2012-06-01 2013-12-05 주식회사 영테크 절연용 나노 복합재 및 그 제조방법
CN102814892A (zh) * 2012-08-09 2012-12-12 河南平高电气股份有限公司 环氧浇注件制造方法和环氧浇注绝缘子制造方法
CN103617845A (zh) * 2013-12-10 2014-03-05 国家电网公司 一种悬式绝缘子
CN107403672A (zh) * 2017-08-08 2017-11-28 芜湖市凯鑫避雷器有限责任公司 一种空心硅橡胶复合绝缘子的生产方法
CN107418148A (zh) * 2017-08-08 2017-12-01 芜湖市凯鑫避雷器有限责任公司 一种复合硅橡胶绝缘子的配方及其制备工艺
CN107629412A (zh) * 2017-09-29 2018-01-26 安徽众博新材料有限公司 一种高强度环氧绝缘子材料及其制备方法
CN110660540A (zh) * 2019-09-12 2020-01-07 全球能源互联网研究院有限公司 一种复合绝缘子横担芯体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郝留成 等: "特高压盆式绝缘子工艺技术研究", 《绝缘材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505991A (zh) * 2022-04-20 2022-05-17 广东电网有限责任公司佛山供电局 一种三支柱绝缘子浇注模具和内应力消除方法
CN114505991B (zh) * 2022-04-20 2022-07-19 广东电网有限责任公司佛山供电局 一种三支柱绝缘子浇注模具和内应力消除方法

Also Published As

Publication number Publication date
CN113488301B (zh) 2022-09-16
WO2022252331A1 (zh) 2022-12-08

Similar Documents

Publication Publication Date Title
CN113488301B (zh) 一种三支柱绝缘子固化方法
US6624734B2 (en) DC voltage/current heating/gelling/curing of resin encapsulated distribution transformer coils
CN110994077A (zh) 一种动力电池包的均温加热方法及存储介质
Lv et al. A method to characterize the shrinking of safe operation area of metallized film capacitor considering electrothermal coupling and aging in power electronics applications
CN113928184A (zh) 汽车动力电池组预热方法、系统、汽车、设备及存储介质
Yang et al. Calculation of hot spot temperature of transformer bushing considering current fluctuation
Zhang et al. Self-healing of mechanical damage of polyethylene/microcapsules electrical insulation composite material
Vasquez et al. Advanced aging failure model for overhead conductors
CN108359119B (zh) 基于线性梯度表面处理的环氧树脂绝缘表面电荷抑制方法
CN114843089B (zh) 一种浇注式干式变压器绕组内绝缘设计方法
US20210242759A1 (en) Electric Insulation System of an Electric Motor, and Associated Manufacturing Process
Wichmann Accelerated voltage endurance testing of micaceous insulation systems for large turbogenerators under combined stresses
Hooker et al. Industrialization of radiation-resistant cyanate ester magnet insulation
CN108384041B (zh) 基于∧型梯度表面处理的环氧树脂绝缘表面电荷抑制方法
Johri et al. Effect of Eccentricity on Electro-thermal Runaway in the Insulation of Extruded High Voltage DC Cables
Ren et al. Thermal Decomposition Mechanism of GIS Basin Insulator and Kinetic Parameters-Based Lifetime Prediction Methodology. Polymers 2021, 13, 653
Czaszejko High-voltage testing fundamentals: a cable testing perspective
Ding et al. Electrical tree growth retardation and acceleration model
Liao et al. A Service Life Prediction Method of Stranded Carbon Fiber Composite Core Conductor for Overhead Transmission Lines. Polymers 2022, 14, 4431
Perera et al. Estimation of optimum transformer capacity based on load curve
Xie et al. Modeling of Microcapsule-based Self-healing Material to Achieve Better Recovering from Electrical Tree Defects
Aganbegović et al. Investigation on the Breakdown Strength of Aged Special Layered Silicone Dielectrics under DC Stres
CN115249587A (zh) 高可靠性长寿命贴片固态电容器及其制造方法
JPS5837954B2 (ja) 架橋ポリエチレンケ−ブルの接続方法
CN115495896A (zh) 变压器绝缘层老化寿命预测建模方法、装置和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant