CN113483748A - 小天体柔性附着多节点相对位姿估计方法 - Google Patents
小天体柔性附着多节点相对位姿估计方法 Download PDFInfo
- Publication number
- CN113483748A CN113483748A CN202110757010.XA CN202110757010A CN113483748A CN 113483748 A CN113483748 A CN 113483748A CN 202110757010 A CN202110757010 A CN 202110757010A CN 113483748 A CN113483748 A CN 113483748A
- Authority
- CN
- China
- Prior art keywords
- curve
- formula
- camera
- matrix
- representing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000011159 matrix material Substances 0.000 claims abstract description 91
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 11
- 238000012216 screening Methods 0.000 claims abstract description 9
- 239000013589 supplement Substances 0.000 claims abstract description 4
- 238000012937 correction Methods 0.000 claims abstract description 3
- 230000009466 transformation Effects 0.000 claims description 10
- 239000011435 rock Substances 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 230000036544 posture Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/02—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Automation & Control Theory (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Astronomy & Astrophysics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Studio Devices (AREA)
- Image Processing (AREA)
Abstract
本发明公开小天体柔性附着多节点相对位姿估计方法,属于深空探测技术领域。本发明实现方法为:建立小天体柔性附着多节点相对位姿估计的特征曲线光学导航观测模型;在同帧下,利用包含信息多的特征曲线构建节点间相对位姿方程,通过解算所述节点间相对位姿方程得到更准确的单应矩阵;归一化单应矩阵,并对归一化后的单应矩阵进行奇异值分解,通过先验信息筛选得到节点间相对位姿,即利用包含信息多的特征曲线提高小天体柔性附着多节点间相对位姿估计精度,为后续精确控制柔性着陆器姿态提供支撑。此外,本发明通过引入同帧曲线特征信息,对帧间信息进行补充,能够为后续修正帧间信息提供支撑。
Description
技术领域
本发明涉及一种多节点相对位姿估计方法,尤其涉及小天体柔性附着多节点相对位姿估计方法,属于深空探测技术领域。
背景技术
近年来,小天体探测逐渐成为深空探测重点领域。目前人类已经开展了23次的小天体探测任务,小天体探测活动对人类了解宇宙和太阳系起源等具有重要的科学意义。小天体附着是开展小天体表面原位探测、采样返回的重要前提。然而,小天体引力场弱,传统刚性附着容易发生倾覆、反弹甚至逃逸,严重威胁着陆安全,进而导致任务失败。
为此,在小天体附着任务中,采用柔性附着方式可有效抑制末端残余速度所导致的着陆器发生倾覆、反弹的可能。然而,柔性着陆器尺度大、刚度低,在附着过程中具有一定形变,给柔性着陆器位姿估计带来困难。柔性着陆器的敏感器配置在柔性体局部刚性节点处,通过节点间相对位置信息可以表征柔性体在下降过程中的姿态。然而,柔性着陆器形变导致节点间相对位姿变化,需要对节点间相对位姿进行估计,从而获得节点间相对位置以近似表征着陆器整体姿态。所以,研究节点间相对位置为后续精确控制柔性着陆器整体姿态具有重要意义。
发明内容
本发明公开小天体柔性附着多节点相对位姿估计方法要解决的问题是:在柔性附着过程中,由于柔性着陆器形变导致的各节点相对位姿变化,通过各节点携带的光学相机获取图像,根据特征在不同图像中相对几何关系,对节点间相对位姿进行估计,将曲线特征作为观测量,提高节点间相对位姿估计精度,为后续精确控制柔性着陆器姿态提供支撑。
本发明的目的是通过下述技术方案实现的。
本发明公开小天体柔性附着多节点相对位姿估计方法,建立小天体柔性附着多节点相对位姿估计的特征曲线光学导航观测模型;在同帧下,利用包含信息多的特征曲线构建节点间相对位姿方程,通过解算所述节点间相对位姿方程得到更准确的单应矩阵;归一化单应矩阵,并对归一化后的单应矩阵进行奇异值分解,通过先验信息筛选得到节点间相对位姿,即利用包含信息多的特征曲线提高小天体柔性附着多节点间相对位姿估计精度。此外,本发明通过引入同帧曲线特征信息,对帧间信息进行补充,能够为后续修正帧间信息提供支撑。
本发明公开的小天体柔性附着多节点相对位姿估计方法,包括如下步骤:
步骤一:建立小天体柔性附着多节点相对位姿估计的特征曲线光学导航观测模型。
由于小天体表面具有能产生曲线特征的地貌特征,通过图像处理后获得特征点及曲线信息。所述能产生曲线特征的地貌特征包括陨石坑、岩石地貌特征。
特征点是最常见的观测特征,包括SIFT点、角点、陨石坑中心点三类。导航相机模型采用小孔成像模型,小天体表面上任一特征点p在i个相机中测量量为
式中,ui,vi表示在第i个相机图像坐标,Cxi,Cyi,Czi表示在第i个相机坐标系下特征点P的三轴分量。
其中,Ci(q)表示着陆坐标系分别到第i个相机坐标系的转换矩阵。Lp表示着陆点p在着陆点坐标系的位置矢量。
着陆区域为平面,且具有能产生曲线特征的地貌特征均位于该平面上。地貌特征边缘椭圆曲线特征在着陆点坐标系下表示为:
结合式(1)和式(2)得地貌曲线特征上任一点Lx的观测模型为
其中,σ表示非零常数因子;C(q)表示着陆点坐标系到相机坐标系的转换矩阵;Lx满足Lx=[Lx Ly Lz]T;由于着陆区域近似为平面,则Lz=0。
将式(4)改写为式(6)所示的齐次形式。
M=KC(q)T (7)
当σ=1,地貌曲线特征在图像坐标系中表达为
其中,E表示曲线特征的二次型矩阵。
根据式(3)、式(6)、和式(9),计算得到任意曲线特征的观测模型为
E=M-TΘM-1 (10)
以特征曲线的中心点、长短轴、倾角作为观测量,表示为:
其中,Ucj表示特征曲线中心点;ucj,vcj表示中心点坐标;Cxcj,Cycj,Czcj分别表示在相机坐标系下特征曲线中心点的三轴分量;aj,bj分别表示特征曲线的长半轴和短半轴;(umj,vmj)和(unj,vnj)分别表示具有曲线特征像的曲线特征的长短轴与像曲线特征的交点坐标;θj表示特征曲线长轴倾角。
特征曲线的光学导航观测模型表示为:
式(15)为小天体柔性附着多节点相对位姿估计的特征曲线光学导航观测模型。
步骤二:在同帧下,利用包含信息多的特征曲线构建节点间相对位姿方程,通过解算所述节点间相对位姿方程得到更准确的单应矩阵。
观测特征点p在不同相机本体系下的相对几何关系由式(16)描述。
pj=Hjipi (16)
式中,pi,pj表示在第i,j相机本体下观测特征点,Hji表示单应矩阵,满足
式中,表示相机i和相机j的相对位置,矩阵表示相机i到相机j相机坐标系转换的方向余弦矩阵,表示相机i与相机j的相对姿态;表示小天体表面在相机i本体系下的方位法向量;表示小天体表面距离探相机i本体系原点的垂直距离。
光学相机模型采用小孔成像模型。特征点p在第i和第j相机中图像坐标系下的相对几何关系如式(18)表示。
具有曲线特征的地貌特征Qk(k=1,2,3,.....)像曲线在相机i和相机j中图像坐标系满足关系如式(19)表示。
式中,Ak,Bk∈R3×3,为非奇异对称矩阵,表示地貌特征像的边缘曲线。
结合式(18)和式(19),得到:
结合式(19)和式(20),得到式(21)
Hji TBkHji=ξiAk (21)
其中,ξij表示非零常数。
由于,矩阵Ak,Bk,Hji均为非奇异矩阵,所以将式(21)变换为式
对于不同地貌特征,结合式(22)得到:
式中,ξ12表示非零常数。
结合式(23),各相机在同一时刻获得图像中任意两对成功匹配的地貌特征特征建立相机本体系下相对位姿约束方程:
其中,i,j为正整数且1≤i<j≤n;矩阵Ai,Aj分别表示相机i中两个地貌特征像边缘曲线;矩阵Bi,Bj分别表示相机j中两个具有曲线特征像的边缘曲线。
相对位姿约束方程式(24)即为在同帧下,利用包含信息多的特征曲线构建的节点间相对位姿方程。
结合式(24),利用Kronecker积建立节点间相对位姿的线性方程:
Jhji=0 (25)
其中,hji表示单应矩阵Hji向量化形式,即hji=(h1,…,h9)T,矩阵J满足:
其中,
其中,I为3×3的单位矩阵。
根据成功匹配具有曲线特征的地貌特征边缘曲线方程,通过计算相对位姿方程得到单应矩阵Hji。所述单应矩阵Hji相对于根据特征点计算得到的单应矩阵更精确。
步骤三:归一化单应矩阵,并对归一化后的单应矩阵进行奇异值分解,通过先验信息筛选得到节点间相对位姿,即利用包含信息多的特征曲线提高小天体柔性附着多节点间相对位姿估计精度。
为降低噪声灵敏度,对步骤二得到的节点间单应矩阵进行归一化,得到标准化矩阵为:
其中,
其中,对于曲线匹配的导航方案,(ui,vi)表示曲线图像中心点;对于特征点匹配的导航方案,(ui,vi)表示特征点的像点坐标。
结合式(28)得到归一化后像曲线Ai′,Aj′,Bi′,Bj′,满足关系如下:
式中,Li,Lj表示相机i,j中图像特征根据式(28)求得的标准化矩阵。
图像特征标准化后,单应矩阵通过反标准化得到,即
利用奇异值分解得到式(31),
Hji=UjiSjiVji T (32)
结合任一节点安装的激光测距仪输出的高度信息,得到节点间相对位姿如式(33):
其中,ω为比例因子,u1,u3为矩阵U的列向量,R'表示为式(34)。
式中,α,β,η,δ表示为式(35)。
通过分解得到多个相对位姿结果,根据先验信息筛选得到正确相对位姿,即利用包含信息多的特征曲线提高小天体柔性附着多节点间相对位姿估计精度。
有益效果
1、本发明公开的小天体柔性附着多节点相对位姿估计方法,在小天体柔性附着过程中,利用同帧下包含信息多的特征曲线构建节点间相对位姿方程,通过解算所述节点间相对位姿方程得到更准确的单应矩阵,通过解算更精确的单应矩阵并筛选得到节点间相对位姿,解决柔性着陆器由于形变带来各节点相对位姿变化问题,进而提高节点间相对位姿估计精度。
2、本发明公开的小天体柔性附着多节点相对位姿估计方法,引入同帧曲线特征信息,对帧间信息进行补充,为后续修正帧间信息提供支撑。
附图说明
图1为本发明公开的小天体柔性附着多节点相对位姿估计方法的流程图;
图2为具体实施案例中三节点柔性着陆器示意图;
图3为具体实施案例中三个相机同一时刻图像。
具体实施方式
为了更好的说明本发明的目的和优点,下面结合一个实施例和相应附图对发明内容做进一步说明。
实施例1:为验证本发明方法的可行性和有益效果,本实施例以三节点柔性着陆器为例。
如图1所示,本实施例公开的小天体柔性附着多节点相对位姿估计方法,具体实现步骤如下:
步骤一:建立小天体柔性附着多节点相对位姿估计的特征曲线光学导航观测模型。
由于小天体表面具有陨石坑、岩石等地貌特征,通过图像处理后可以获得特征点及二次曲线等信息。导航方案采用光学导航,每个节点安装光学相机,其中一个节点安装激光测距仪。以三节点为例,示意图如图2所示。
导航相机参数如表1所示。
表1导航相机参数
特征点是最常见的观测特征,主要包括SIFT点、角点、陨石坑中心点三类。导航相机模型采用小孔成像模型,小天体表面上任一特征点p在三相机中测量量为
式中,ui,vi表示在第i个相机图像坐标,Cxi,Cyi,Czi表示在第i个相机坐标系下特征点P的三轴分量。
其中,Ci(q)表示着陆坐标系分别到三个相机坐标系的转换矩阵。Lp表示着陆点p在着陆点坐标系的位置矢量。
着陆区域为平面,且陨石坑、岩石等均位于该平面上。陨石坑或岩石等边缘椭圆曲线特征在着陆点坐标系下表示为:
结合式(36)和式(37)可得在一个尺度因子下着陆平面陨石坑曲线特征上任一点Lx的观测模型为
其中,σ表示非零常数因子,C(q)表示着陆点坐标系到相机坐标系的转换矩阵,Lx满足Lx=[Lx Ly Lz]T,由于着陆区域近似为平面,则Lz=0。
式(39)可以改写为式(41)所示。
M=KC(q)T (42)
当σ=1,陨石坑曲线特征在图像坐标系中表达为
其中,E表示曲线特征的二次型矩阵。
根据式(38),式(41),和式(44),可以计算得到任意曲线特征的观测模型为
E=M-TΘM-1 (45)
以特征曲线的中心点、长短轴、倾角作为观测量,可以表示为:
其中,Ucj表示特征曲线中心点;ucj,vcj表示中心点坐标;Cxcj,Cycj,Czcj分别表示在相机坐标系下特征曲线中心点的三轴分量;aj,bj分别表示特征曲线的长半轴和短半轴;(umj vmj)和(unj vnj)分别表示陨石坑像曲线特征的长短轴与像曲线特征的交点坐标;θj表示特征曲线长轴倾角。
特征曲线的观测模型可以表示为:
对图3中三个相机拍摄的图像的特征曲线进行计算,得到特征曲线的观测模型。
步骤二:在同帧下,利用包含信息多的特征曲线构建节点间相对位姿方程,通过解算所述节点间相对位姿方程得到更准确的单应矩阵。
观测特征点p在不同相机本体系下的相对几何关系由式描述。
式中,H31=H32H21,Hij表示单应矩阵,满足
式中,表示相机1和相机2的相对位置,矩阵表示相机1到相机2相机坐标系转换的方向余弦矩阵,表示相机1与相机2的相对姿态;表示小天体表面在相机1本体系下的方位法向量;表示小天体表面距离探相机1本体系原点的垂直距离。
光学相机模型采用小孔成像模型。特征点p在三个相机中图像坐标系下的相对几何关系如式(53)表示。
陨石坑Qk(k=1,2,3,.....)像曲线在相机1和相机2中图像坐标系满足关系如式(54)表示。
式中,Ak,Bk,Ck∈R3×3,为非奇异对称矩阵,表示陨石坑像的边缘曲线。
结合式(53)和式(54),可以得到:
结合式(54)和式(55),得到式(56)
其中,ξi,ξj表示非零常数。
由于,矩阵Ak,Bk,Ck,H21,H31均为非奇异矩阵,所以将式(56)变换为式
对于不同陨石坑、岩石等,结合式(57)可以得到:
式中,ξ12,ξ13表示非零常数。
结合式(58),3个相机在同一时刻获得3幅图像中任意两对成功匹配的陨石坑等特征建立相机本体系下相对位姿约束方程:
根据式(59)和式(51)得到式(60)
其中,i,j为正整数且1≤i<j≤n;矩阵Ai,Aj分别表示相机1中两个陨石坑像边缘曲线;矩阵Bi,Bj分别表示相机2中两个陨石坑像边缘曲线;矩阵Ci,Cj分别表示相机3中两个陨石坑像边缘曲线。
结合式(59),利用Kronecker积建立节点间相对位姿的线性方程:
其中,h21,h31分别表示单应矩阵H21,H31向量化形式,矩阵J,Q满足:
其中,
其中,I为3×3的单位矩阵。
根据成功匹配陨石坑或者岩石等边缘曲线方程,通过计算相对位姿方程得到单应矩阵H21,H31,H32。
根据步骤二中得到的观测模型及像曲线,建立相对位姿方程得到更精确的单应矩阵。
步骤三:归一化单应矩阵,并对归一化后的单应矩阵进行奇异值分解,通过先验信息筛选得到节点间相对位姿,即利用包含信息多的特征曲线提高小天体柔性附着多节点间相对位姿估计精度。
为降低噪声灵敏度,对步骤二得到的节点间单应矩阵进行归一化,得到标准化矩阵为:
其中,
其中,对于曲线匹配的导航方案,(ui,vi)表示曲线图像中心点;对于特征点匹配的导航方案,(ui,vi)表示特征点的像点坐标。
结合式得到归一化后像曲线A′i,A′j,B′i,B′j,Ci',Cj',满足关系如下:
式中,L1,L2,L3分别表示相机1,2,3中图像特征根据式(64)求得的标准化矩阵。
图像特征标准化后,单应矩阵可以通过反标准化得到,即
利用奇异值分解得到式(68),
结合节点1安装的激光测距仪输出的高度信息,可以得到节点间相对位姿如式:
其中,ω为比例因子,u1,u3为矩阵U的列向量,R'表示为式(70)。
式中,α,β,η,δ表示为式(71)。
得到相对位姿如表2,表3所示。
表2相机1,2相对位姿4种情况
表3相机1,3相对位姿4种情况
通过分解得到多个相对位姿结果,根据先验信息进行筛选得到正确相对位姿结果如表4,表5所示。
表4相机1,2正确相对位姿结果
表5相机1,3正确相对位姿结果
至此,实现利用包含信息多的特征曲线提高小天体柔性附着多节点间相对位姿估计精度。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (5)
1.小天体柔性附着多节点相对位姿估计方法,其特征在于:包括如下步骤,
步骤一:建立小天体柔性附着多节点相对位姿估计的特征曲线光学导航观测模型;
步骤二:在同帧下,利用包含信息多的特征曲线构建节点间相对位姿方程,通过解算所述节点间相对位姿方程得到更准确的单应矩阵;
步骤三:归一化单应矩阵,并对归一化后的单应矩阵进行奇异值分解,通过先验信息筛选得到节点间相对位姿,即利用包含信息多的特征曲线提高小天体柔性附着多节点间相对位姿估计精度。
2.如权利要求1所述的小天体柔性附着多节点相对位姿估计方法,其特征在于:步骤一实现方法为,
由于小天体表面具有能产生曲线特征的地貌特征,通过图像处理后获得特征点及曲线信息;所述能产生曲线特征的地貌特征包括陨石坑、岩石地貌特征;
特征点是最常见的观测特征,包括SIFT点、角点、陨石坑中心点三类;导航相机模型采用小孔成像模型,小天体表面上任一特征点p在i个相机中测量量为
式中,ui,vi表示在第i个相机图像坐标,Cxi,Cyi,Czi表示在第i个相机坐标系下特征点P的三轴分量;
其中,Ci(q)表示着陆坐标系分别到第i个相机坐标系的转换矩阵;Lp表示着陆点p在着陆点坐标系的位置矢量;
着陆区域为平面,且具有能产生曲线特征的地貌特征均位于该平面上;地貌特征边缘椭圆曲线特征在着陆点坐标系下表示为:
结合式(1)和式(2)得地貌曲线特征上任一点Lx的观测模型为
其中,σ表示非零常数因子;C(q)表示着陆点坐标系到相机坐标系的转换矩阵;Lx满足Lx=[Lx Ly Lz]T;由于着陆区域近似为平面,则Lz=0;
将式(4)改写为式(6)所示的齐次形式;
M=KC(q)T (7)
当σ=1,地貌曲线特征在图像坐标系中表达为
其中,E表示曲线特征的二次型矩阵;
根据式(3)、式(6)、和式(9),计算得到任意曲线特征的观测模型为
E=M-TΘM-1 (10)
以特征曲线的中心点、长短轴、倾角作为观测量,表示为:
其中,Ucj表示特征曲线中心点;ucj,vcj表示中心点坐标;Cxcj,Cycj,Czcj分别表示在相机坐标系下特征曲线中心点的三轴分量;aj,bj分别表示特征曲线的长半轴和短半轴;(umj,vmj)和(unj,vnj)分别表示像曲线特征的长短轴与像曲线特征的交点坐标;θj表示特征曲线长轴倾角;
特征曲线的光学导航观测模型表示为:
式(15)为小天体柔性附着多节点相对位姿估计的特征曲线光学导航观测模型。
3.如权利要求2所述的小天体柔性附着多节点相对位姿估计方法,其特征在于:步骤二实现方法为,
观测特征点p在不同相机本体系下的相对几何关系由式(16)描述;
pj=Hjipi (16)
式中,pi,pj表示在第i,j相机本体下观测特征点,Hji表示单应矩阵,满足
式中,表示相机i和相机j的相对位置,矩阵表示相机i到相机j相机坐标系转换的方向余弦矩阵,表示相机i与相机j的相对姿态;表示小天体表面在相机i本体系下的方位法向量;表示小天体表面距离探相机i本体系原点的垂直距离;
光学相机模型采用小孔成像模型;特征点p在第i和第j相机中图像坐标系下的相对几何关系如式(18)表示;
具有曲线特征的地貌特征Qk(k=1,2,3,.....)像曲线在相机i和相机j中图像坐标系满足关系如式(19)表示;
式中,Ak,Bk∈R3×3,为非奇异对称矩阵,表示地貌特征像的边缘曲线;
结合式(18)和式(19),得到:
结合式(19)和式(20),得到式(21)
Hji TBkHji=ξiAk (21)
其中,ξij表示非零常数;
由于,矩阵Ak,Bk,Hji均为非奇异矩阵,所以将式(21)变换为式
Hji T=ξiAkHji -1Bk -1 (22)
对于不同地貌特征,结合式(22)得到:
式中,ξ12表示非零常数;
结合式(23),各相机在同一时刻获得图像中任意两对成功匹配的地貌特征特征建立相机本体系下相对位姿约束方程:
其中,i,j为正整数且1≤i<j≤n;矩阵Ai,Aj分别表示相机i中两个地貌特征像边缘曲线;矩阵Bi,Bj分别表示相机j中两个具有曲线特征像的边缘曲线;
相对位姿约束方程式(24)即为在同帧下,利用包含信息多的特征曲线构建的节点间相对位姿方程;
结合式(24),利用Kronecker积建立节点间相对位姿的线性方程:
Jhji=0 (25)
其中,hji表示单应矩阵Hji向量化形式,即hji=(h1,…,h9)T,矩阵J满足:
其中,
其中,I为3×3的单位矩阵;
根据成功匹配具有曲线特征的地貌特征边缘曲线方程,通过计算相对位姿方程得到单应矩阵Hji;所述单应矩阵Hji相对于根据特征点计算得到的单应矩阵更精确。
4.如权利要求3所述的小天体柔性附着多节点相对位姿估计方法,其特征在于:步骤三实现方法为,
为降低噪声灵敏度,对步骤二得到的节点间单应矩阵进行归一化,得到标准化矩阵为:
其中,
其中,对于曲线匹配的导航方案,(ui,vi)表示曲线图像中心点;对于特征点匹配的导航方案,(ui,vi)表示特征点的像点坐标;
结合式(28)得到归一化后像曲线A′i,A′j,B′i,B′j,满足关系如下:
式中,Li,Lj表示相机i,j中图像特征根据式(28)求得的标准化矩阵;
图像特征标准化后,单应矩阵通过反标准化得到,即
利用奇异值分解得到式(31),
Hji=UjiSjiVji T (32)
结合任一节点安装的激光测距仪输出的高度信息,得到节点间相对位姿如式(33):
其中,ω为比例因子,u1,u3为矩阵U的列向量,R'表示为式(34);
式中,α,β,η,δ表示为式(35);
通过分解得到多个相对位姿结果,根据先验信息筛选得到正确相对位姿,即利用包含信息多的特征曲线提高小天体柔性附着多节点间相对位姿估计精度。
5.如权利要求1、2、3或4所述的小天体柔性附着多节点相对位姿估计方法,其特征在于:引入同帧曲线特征信息对帧间信息进行补充,为后续修正帧间信息提供支撑。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110757010.XA CN113483748B (zh) | 2021-07-05 | 2021-07-05 | 小天体柔性附着多节点相对位姿估计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110757010.XA CN113483748B (zh) | 2021-07-05 | 2021-07-05 | 小天体柔性附着多节点相对位姿估计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113483748A true CN113483748A (zh) | 2021-10-08 |
CN113483748B CN113483748B (zh) | 2023-12-12 |
Family
ID=77940795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110757010.XA Active CN113483748B (zh) | 2021-07-05 | 2021-07-05 | 小天体柔性附着多节点相对位姿估计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113483748B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114111782A (zh) * | 2021-10-11 | 2022-03-01 | 北京理工大学 | 柔性着陆器状态表征与估计方法 |
CN114218675A (zh) * | 2021-12-16 | 2022-03-22 | 北京理工大学 | 小天体多节点柔性附着协同规划目标状态评估方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107144278A (zh) * | 2017-04-24 | 2017-09-08 | 北京理工大学 | 一种基于多源特征的着陆器视觉导航方法 |
KR101798041B1 (ko) * | 2016-06-29 | 2017-11-17 | 성균관대학교산학협력단 | 3차원 물체 인식 및 자세 추정 장치 및 그 방법 |
CN110702122A (zh) * | 2019-10-22 | 2020-01-17 | 北京理工大学 | 地外天体着陆自主光学导航特征综合优化方法 |
CN113022898A (zh) * | 2021-02-18 | 2021-06-25 | 北京理工大学 | 弱引力环境柔性附着系统状态估计方法 |
-
2021
- 2021-07-05 CN CN202110757010.XA patent/CN113483748B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101798041B1 (ko) * | 2016-06-29 | 2017-11-17 | 성균관대학교산학협력단 | 3차원 물체 인식 및 자세 추정 장치 및 그 방법 |
CN107144278A (zh) * | 2017-04-24 | 2017-09-08 | 北京理工大学 | 一种基于多源特征的着陆器视觉导航方法 |
CN110702122A (zh) * | 2019-10-22 | 2020-01-17 | 北京理工大学 | 地外天体着陆自主光学导航特征综合优化方法 |
CN113022898A (zh) * | 2021-02-18 | 2021-06-25 | 北京理工大学 | 弱引力环境柔性附着系统状态估计方法 |
Non-Patent Citations (2)
Title |
---|
PINGYUAN CUI等: "Visual navigation based on curve matching for planetary landing in unknown environments", ACTA ASTRONAUTICA, vol. 170, pages 261 - 274, XP086124748, DOI: 10.1016/j.actaastro.2020.01.023 * |
邵巍等: "基于不规则曲线匹配的小天体着陆器 视觉导航算法", 中国科学: 物理学 力学 天文学, vol. 52, no. 1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114111782A (zh) * | 2021-10-11 | 2022-03-01 | 北京理工大学 | 柔性着陆器状态表征与估计方法 |
CN114111782B (zh) * | 2021-10-11 | 2023-11-10 | 北京理工大学 | 柔性着陆器状态表征与估计方法 |
CN114218675A (zh) * | 2021-12-16 | 2022-03-22 | 北京理工大学 | 小天体多节点柔性附着协同规划目标状态评估方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113483748B (zh) | 2023-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bayard et al. | Vision-based navigation for the NASA mars helicopter | |
CN113483748A (zh) | 小天体柔性附着多节点相对位姿估计方法 | |
CN102607526A (zh) | 双介质下基于双目视觉的目标姿态测量方法 | |
CN107728182B (zh) | 基于相机辅助的柔性多基线测量方法和装置 | |
Li et al. | Autonomous navigation and guidance for landing on asteroids | |
CN106017463A (zh) | 一种基于定位传感装置的飞行器定位方法 | |
CN109269512B (zh) | 行星着陆图像与测距融合的相对导航方法 | |
CN113432609B (zh) | 柔性附着状态协同估计方法 | |
CN115574816B (zh) | 仿生视觉多源信息智能感知无人平台 | |
CN109612438B (zh) | 一种虚拟共面条件约束下的空间目标初轨确定方法 | |
CN113295171B (zh) | 一种基于单目视觉的旋转刚体航天器姿态估计方法 | |
CN114608554B (zh) | 一种手持slam设备以及机器人即时定位与建图方法 | |
CN111982089A (zh) | 一种磁罗盘全罗差实时校准与补偿方法 | |
CN113408623B (zh) | 非合作目标柔性附着多节点融合估计方法 | |
CN113029132B (zh) | 一种结合地面影像与恒星光行差测量的航天器导航方法 | |
CN113129377A (zh) | 一种三维激光雷达快速鲁棒slam方法和装置 | |
CN114234967A (zh) | 一种基于多传感器融合的六足机器人定位方法 | |
CN113022898B (zh) | 弱引力环境柔性附着系统状态估计方法 | |
CN110686684A (zh) | 一种小天体环绕探测器光学协同定轨方法 | |
CN108981691B (zh) | 一种天空偏振光组合导航在线滤波与平滑方法 | |
CN109341685A (zh) | 一种基于单应变换的固定翼飞机视觉辅助着陆导航方法 | |
CN111553954A (zh) | 一种基于直接法单目slam的在线光度标定方法 | |
CN111899303A (zh) | 一种新的考虑空间逆投影约束的特征匹配与相对定位方法 | |
CN106871909A (zh) | 一种多航天器系统下基于Fisher信息矩阵的脉冲星选星方法 | |
CN113375626B (zh) | 一种基于惯性装置的空间矢量相对平行度测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |