CN113481007B - 一种基于双l型超表面结构增强二硫化钼荧光的方法 - Google Patents

一种基于双l型超表面结构增强二硫化钼荧光的方法 Download PDF

Info

Publication number
CN113481007B
CN113481007B CN202110812451.5A CN202110812451A CN113481007B CN 113481007 B CN113481007 B CN 113481007B CN 202110812451 A CN202110812451 A CN 202110812451A CN 113481007 B CN113481007 B CN 113481007B
Authority
CN
China
Prior art keywords
molybdenum disulfide
double
surface structure
super
enhancing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110812451.5A
Other languages
English (en)
Other versions
CN113481007A (zh
Inventor
胡国华
王均耀
林霖霞
黄磊
恽斌峰
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110812451.5A priority Critical patent/CN113481007B/zh
Publication of CN113481007A publication Critical patent/CN113481007A/zh
Application granted granted Critical
Publication of CN113481007B publication Critical patent/CN113481007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/681Chalcogenides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于双L型超表面结构增强二硫化钼荧光的方法,通过激发表面等离激元双共振增强二硫化钼的光致发光强度;其中,选用单层二硫化钼作为发光材料,利用基于双L型超表面结构激发表面等离激元共振,在激发波段和发射波段产生的双共振来增强二硫化钼的光吸收效率。本发明基于超表面手性结构,能够增强二硫化钼光致发光,并可以进一步探索谷自旋物理机制,调控荧光偏振态,同时本发明可应用于高性能低维材料器件,光电子器件等。

Description

一种基于双L型超表面结构增强二硫化钼荧光的方法
技术领域
本发明涉及纳米光子学技术领域,尤其涉及一种基于双L型超表面结构增强二硫化钼荧光的方法。
背景技术
二硫化钼作为一单原子层的薄膜材料,是一种新型的二维材料,因其具有高的载流子迁移率、卓越的调谐能力与非线性效应,已被广泛的应用于各种功能化的光电子器件设计当中。通常,不同层数二硫化钼的禁带宽度不一样。多层二硫化钼是间接带隙半导体,随着层数的降低,会产生量子限域效应和边界效应,导致其禁带宽度变宽,单层二硫化钼就变成了直接带隙半导体。因此,与层状结构相反,单层二硫化钼是一种具有巨大激子束缚能的直隙半导体,这使得高稳定性和高开关比场效应晶体管的实现成为可能。此外,单层结构具有更强的光致发光发射强度,这使其成为制作发光器件的良好候选材料。
二硫化钼具有以上所述的这些优势,但是单层MoS2的超薄厚度和有限的光谱调制限制了其光物质的相互作用,其吸收效率和量子发射效率较低。不仅如此,受到制备方法的制约以及衬底的限制与影响,得到的MoS2具有较多的晶格缺陷,这些原因导致其发光效率很低。
目前,在提高MoS2光致发光强度方面已有较多的研究。近几年人们提高MoS2发光性能的主要技术方法可以分为两大类。一种是化学方法,通过控制载流子浓度的简单易行的技术。但对于单层的二硫化钼,化学掺杂的难度过高,掺杂能改变的载流子浓度有限,对光致发光增强作用不大。另一种方法是利用等离子共振。等离子体共振效应是利用金属纳米粒子在谐振波段展现出很强的光谱吸收,从而获得表面等离子体共振光谱,该光谱峰值处的吸收波长取决于该材料的微观结构特性,例如形状、结构、尺寸等。控制表面等离激元共振波段匹配激子发射峰可获得更大效率的激子辐射效率。以Au、Ag为代表的贵金属等离子体纳米结构作为一种提高二维材料光致发光性能的有效方法,近些年得到了较多的关注。本发明基于第二种方法提出。
发明内容
针对存在的二硫化钼材料在光致发光强度不足的问题,本发明利用了表面等离激元共振增强,提出了一种基于双L型超表面结构增强二硫化钼荧光的方法。
为实现上述目的,本发明采用的技术方案为:
一种基于双L型超表面结构增强二硫化钼荧光的方法,通过激发表面等离激元双共振增强二硫化钼的光致发光强度;其中,选用单层二硫化钼作为发光材料,利用基于双L型超表面结构激发表面等离激元共振,在激发波段和发射波段产生的双共振来增强二硫化钼的光吸收效率。
所述超表面结构为双L手性结构,固定于金属槽内,金属槽内不设置填充物,单层二硫化钼悬浮于所述超表面结构之上且仅与所述超表面结构单面接触,金属槽底部采用氧化硅作为衬底。
所述超表面结构由若干个双L手性结构的阵列构成。
所述超表面结构的材质为金、银、铝、铜的一种。
所述激发波段为532nm,发射波段为660nm-680nm。
通过改变超表面结构的金属层厚度和双L手性结构的尺寸参数,调控二硫化钼的吸收效率,调控二硫化钼光致发光的强度。
一种用于增强二硫化钼荧光的基于双L型超表面结构的制备方法,包括以下步骤:
(1)在氧化硅衬底上镀一层60nm厚的金属层;
(2)对金属层进行刻蚀操作,通过离子束刻蚀构造出双L手性的超表面结构;
(3)将单层二硫化钼通过湿法转移到步骤(2)得到的超表面结构的上表面。
所述步骤(1)中,镀金属层时采用的镀膜方法为电子束蒸镀法EBE、化学气相沉积法CVD、磁控溅射法和热蒸发法中的一种。
所述步骤(2)中,对金属层进行刻蚀的方法为电子束光刻技术EBL或聚焦离子束刻蚀FIB。
所述步骤(3)中,湿法转移的步骤为:以硅片上成膜的二硫化钼为例,第一步,将成膜的单层二硫化钼放入浓度为1mol/L的氢氧化钠溶液中,并使其悬浮在液体表面上,待二硫化钼与硅片分离;第二步,将二硫化钼放至去离子水中清洗三次,随后将二硫化钼放至丙酮中去除表面旋涂的聚甲基丙烯酸甲酯,并转移至超表面结构上表面;第三步,通过加热台加热至140°并维持10分钟,冷却后取出即转移完成。
本发明的基于双L型超表面结构增强二硫化钼荧光的方法可在光学调制器、光电探测器和发光器件,以及场效应晶体管中获得应用。
有益效果:本发明使用了超表面手性结构上悬浮二硫化钼的设计,能够避免衬底对二硫化钼光致发光的影响,手性纳米结构能够进一步增强光致发光的强度。本发明中涉及到的超表面的金属层可替换,及其厚度可以调节,对于不同波长的激光都可以调节结构的共振波长以匹配。
本发明使用的加工工艺流程很少,工艺简单且操作性高,可重复性高,可大面积操作应用于二维材料器件与光电子器件中。
附图说明
图1为本发明基于超表面手性结构增强单层二硫化钼光致发光的结构示意图;
图2为本发明的超表面手性结构阵列结构尺寸图;
图3为本发明的耦合等离子体几何阵列结构工艺制备图;
图4为本发明的超表面手性结构反射谱。
具体实施方式
下面结合附图和具体实施例对本发明作更进一步的说明。
实施例1:如图1所示,超表面结构为双L手性结构,固定于金属槽内,金属槽内不设置填充物,单层二硫化钼悬浮于所述超表面结构之上且仅与所述超表面结构单面接触,金属槽底部采用氧化硅作为衬底。超表面结构由若干个双L手性结构的阵列构成。
其中,阵列周期为0.4μm,超表面结构的金属厚度为60nm,金属槽材质选用银这种本征损耗较小的金属。
在本实施例中,发光材料单层二硫化钼仅与金属槽的单边接触,进而可保证所激发的表面等离子共振具有较小的本征损耗。其次悬空二硫化钼的设计避免了衬底对光致发光的影响,从而避免激子受到衬底缺陷的影响,提高激子辐射复合的概率,增强光致发光的强度。
实施例2:如图2,银纳米阵列由两个类L形槽构成,尺寸大小如图所示。两个L型结构彼此尺寸参数相同,中心对称,构成手性结构,两个L型距离间隙为40nm,长边140nm,宽为85nm和65nm。
实施例3:如图3是选用的基于双L型超表面结构的具体制备流程图;
第1步:在氧化硅衬底上镀一层银金属薄膜;
第2步:对金属层进行刻蚀操作,通过聚焦离子束刻蚀构造出中心对称双L形超表面手性结构;
第3步:将单层二硫化钼通过湿法转移到经后处理的样品的金属槽上表面;
步骤1中,镀膜方法为电子束蒸镀法EBE、化学气相沉积法CVD、磁控溅射法和热蒸发法中的一种。
步骤2中,蚀刻方法为电子束光刻技术EBL和聚焦离子束刻蚀FIB中的一种。
步骤3中,二硫化钼转移至超表面结构的湿法转移方法如下:以硅片上成膜的二硫化钼为例,第一步,将成膜的单层二硫化钼放入1mol/L的氢氧化钠溶液中,并使其悬浮在液体表面上,经一段时间后,二硫化钼与硅片分离;第二步,将二硫化钼放至去离子水中清洗三次,随后将二硫化钼放至丙酮中去除表面旋涂的PMMA,并转移至加工出的超表面结构;第三步,通过加热台加热至140°并维持10分钟。冷却后取出即转移完成。
实施例4:手性结构阵列的存在影响了电场的分布,电场最强处在金属槽处。图4展示了以银为例的超表面结构的反射谱。可以在图中看到反射谱存在两个反射谷,证明了这种特定的结构能够激发表面等离激元双共振模式。一个共振出现在激发波段,另一个出线在发射波段,这分别对应着激光的波长和二硫化钼的光致发光波长。激光照射在银超表面上,银吸收光子的能量,在与介质的交界面上产生了表面等离子,表面等离激元共振导致电场得到显著增强,使得二硫化钼的激子产生效率增加,更多的激子产生导致更高的光致发光强度。另外在680nm的光致发光波长附近的共振,由于珀塞尔效应的存在,使得二硫化钼中激子转化为光子辐射的效率得到提高,光致发光因此得到加强。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种基于双L型超表面结构增强二硫化钼荧光的方法,其特征在于:通过激发表面等离激元双共振增强二硫化钼的光致发光强度;其中,选用单层二硫化钼作为发光材料,利用基于双L型超表面结构激发表面等离激元共振,在激发波段和发射波段产生的双共振来增强二硫化钼的光吸收效率。
2.根据权利要求1所述的基于双L型超表面结构增强二硫化钼荧光的方法,其特征在于:所述超表面结构为双L手性结构,固定于金属槽内,金属槽内不设置填充物,单层二硫化钼悬浮于所述超表面结构之上且仅与所述超表面结构单面接触,金属槽底部采用氧化硅作为衬底。
3.根据权利要求2所述的基于双L型超表面结构增强二硫化钼荧光的方法,其特征在于:所述超表面结构由若干个双L手性结构的阵列构成。
4.根据权利要求1-3任一所述的基于双L型超表面结构增强二硫化钼荧光的方法,其特征在于:所述超表面结构的材质为金、银、铝、铜的一种。
5.根据权利要求1所述的基于双L型超表面结构增强二硫化钼荧光的方法,其特征在于:所述激发波段为532nm,发射波段为660nm-680nm。
6.根据权利要求2所述的基于双L型超表面结构增强二硫化钼荧光的方法,其特征在于:通过改变超表面结构的金属层厚度和双L手性结构的尺寸参数,调控二硫化钼的吸收效率,调控二硫化钼光致发光的强度。
7.一种用于增强二硫化钼荧光的基于双L型超表面结构的制备方法,其特征在于:包括以下步骤:
(1)在氧化硅衬底上镀一层60nm厚的金属层;
(2)对金属层进行刻蚀操作,通过离子束刻蚀构造出双L手性的超表面结构;
(3)将单层二硫化钼通过湿法转移到步骤(2)得到的超表面结构的上表面。
8.根据权利要求7所述的用于增强二硫化钼荧光的基于双L型超表面结构的制备方法,其特征在于:所述步骤(1)中,镀金属层时采用的镀膜方法为电子束蒸镀法EBE、化学气相沉积法CVD、磁控溅射法和热蒸发法中的一种。
9.根据权利要求7所述的用于增强二硫化钼荧光的基于双L型超表面结构的制备方法,其特征在于:所述步骤(2)中,对金属层进行刻蚀的方法为电子束光刻技术EBL或聚焦离子束刻蚀FIB。
10.根据权利要求7所述的用于增强二硫化钼荧光的基于双L型超表面结构的制备方法,其特征在于:所述步骤(3)中,湿法转移的步骤为:第一步,将成膜的单层二硫化钼放入浓度为1mol/L的氢氧化钠溶液中,并使其悬浮在液体表面上,待二硫化钼与硅片分离;第二步,将二硫化钼放至去离子水中清洗三次,随后将二硫化钼放至丙酮中去除表面旋涂的聚甲基丙烯酸甲酯,并转移至超表面结构上表面;第三步,通过加热台加热至140°并维持10分钟,冷却后取出即转移完成。
CN202110812451.5A 2021-07-19 2021-07-19 一种基于双l型超表面结构增强二硫化钼荧光的方法 Active CN113481007B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110812451.5A CN113481007B (zh) 2021-07-19 2021-07-19 一种基于双l型超表面结构增强二硫化钼荧光的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110812451.5A CN113481007B (zh) 2021-07-19 2021-07-19 一种基于双l型超表面结构增强二硫化钼荧光的方法

Publications (2)

Publication Number Publication Date
CN113481007A CN113481007A (zh) 2021-10-08
CN113481007B true CN113481007B (zh) 2022-06-21

Family

ID=77941176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110812451.5A Active CN113481007B (zh) 2021-07-19 2021-07-19 一种基于双l型超表面结构增强二硫化钼荧光的方法

Country Status (1)

Country Link
CN (1) CN113481007B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866863B (zh) * 2021-10-28 2023-12-29 觉芯电子(无锡)有限公司 一种手性光学元件及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Enhancing functionalities of atomically thin semiconductors with plasmonic nanostructures;Michele Cotrufo et al.;《Nanophotonics》;20191231;第8卷(第4期);第577–598页 *
Enhancing light-matter interaction in 2D materials by optical micro/nano architectures for high-performance optoelectronic devices;Li Tao et al.;《InfoMat.》;20201231;第1–25页 *
Plasmonic Modulation of Valleytronic Emission in Two-Dimensional Transition Metal Dichalcogenides;Miaoyi Deng et al.;《Adv. Funct. Mater.》;20210303;第2010234页 *
Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array;Liuyang Sun et al.;《Nature Photonics》;20190211;第13卷;第180-184页 *
The buckling behavior of single-layer MoS2 sheets on silica substrates;Yao Li et al.;《Journal of Applied Physics》;20210104;第129卷;第014302页 *

Also Published As

Publication number Publication date
CN113481007A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
US20050285128A1 (en) Surface plasmon light emitter structure and method of manufacture
JPWO2007142203A1 (ja) 量子ドット発光型無機el素子
Ji et al. Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer
CN113481007B (zh) 一种基于双l型超表面结构增强二硫化钼荧光的方法
US9112116B2 (en) Contacts for an N-type gallium and nitrogen substrate for optical devices
KR101011108B1 (ko) 선택적 표면 플라즈몬 결합을 이용한 발광소자 및 그 제조방법
Zeng et al. Synergetic photoluminescence enhancement of monolayer MoS 2 via surface plasmon resonance and defect repair
Shyam et al. Rapid thermal annealing induced engineering of surface and photoluminescence properties of (K, Na) NbO3 thin films for optoelectronic applications
CN110165028B (zh) 基于局域表面等离激元增强的mis结构紫外led及其制备方法
US9293659B2 (en) Method for fabricating microstructure to generate surface plasmon waves
CN110828624A (zh) 一种具有局域等离子体增强效应的led的制备方法
Lu et al. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications
Okamoto Plasmonics for green technologies: Toward high-efficiency LEDs and solar cells
TWI336961B (en) Light emitting diode structure and manufacturing method of the same
Markov et al. A light-emitting diode based on AlInGaN heterostructures grown on SiC/Si substrates and its fabrication technology
CN104576849B (zh) 一种增强ZnO微米线/纳米线紫外发光强度的方法
CN111477524A (zh) 一种衬底-有源层复合纳米光子学结构碱金属化合物光电阴极
CN113528136B (zh) 一种基于悬空氮化硅薄膜增强二硫化钼荧光的方法
Jiang et al. Enhanced fluorescence of CsPbBr3/ZnO heterojunction enabled by titanium nitride nanoparticles
JP6777246B2 (ja) 光変換部材及びその製造方法、太陽電池モジュールと太陽電池
CN116154071A (zh) 一种发光二极管的制作方法
Enns et al. Influence of Dewetting Conditions on the Optical Parameters of the AuNP/GaN Nanostructure
OKAMOTO Plasmonics and Plasmonic Metamaterials Using Random Metal Nanostructures for Highly Efficient Light-Emitting Devices
Okamoto et al. Surface plasmon enhanced InGaN light emitter
CN118016753A (zh) 一种Al局域场增强的β-Ga2O3纳米带光电晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant