CN113465696B - Method and system for measuring liquid level of melt in container - Google Patents
Method and system for measuring liquid level of melt in container Download PDFInfo
- Publication number
- CN113465696B CN113465696B CN202110684954.9A CN202110684954A CN113465696B CN 113465696 B CN113465696 B CN 113465696B CN 202110684954 A CN202110684954 A CN 202110684954A CN 113465696 B CN113465696 B CN 113465696B
- Authority
- CN
- China
- Prior art keywords
- point
- angle
- distance
- container
- determining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000010438 heat treatment Methods 0.000 claims abstract description 44
- 239000000155 melt Substances 0.000 claims abstract description 32
- 230000000007 visual effect Effects 0.000 claims abstract description 12
- 238000005259 measurement Methods 0.000 claims description 15
- 238000000691 measurement method Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 3
- 239000000463 material Substances 0.000 description 25
- 238000004017 vitrification Methods 0.000 description 12
- 239000011521 glass Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000006698 induction Effects 0.000 description 8
- 239000002699 waste material Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000005672 electromagnetic field Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 239000000941 radioactive substance Substances 0.000 description 3
- 239000002901 radioactive waste Substances 0.000 description 3
- 239000002910 solid waste Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 239000002927 high level radioactive waste Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005290 field theory Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Images
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
技术领域technical field
本申请涉及容器技术领域,具体涉及一种容器内熔体液位的测量方法及系统。The present application relates to the technical field of containers, in particular to a method and system for measuring the liquid level of a melt in a container.
背景技术Background technique
相关技术中的液位计可以用来测量部分容器的液位,但相关技术中的这种液位计的应用非常局限,例如,无法对冷坩埚玻璃固化技术中使用的冷坩埚的液位进行测量。The liquid level gauge in the related art can be used to measure the liquid level of some containers, but the application of the liquid level gauge in the related art is very limited. Measurement.
冷坩埚玻璃固化技术具有工作温度高、处理范围广、使用寿命长、熔体均一、设备体积小、退役容易等特点。冷坩埚玻璃固化技术不仅可用于核电站产生的固体废物、树脂、浓缩物等低、中水平放射性废物;还可用于高水平放射性废液及其它一些腐蚀性较强的难处理废物。因此,该技术的研究进展受到广泛关注。在核电运行中,势必产生大量放射性废物。其中,乏燃料后处理及其产生的高水平放射性废液,由于具有放射性比活度高、释热率高、并含有一些半衰期长、生物毒性高的核素等特点,其处理处置成为制约核电及核燃料循环工业可持续发展的关键问题之一。冷坩埚玻璃固化技术作为一种新的核废物处理技术,在核电废物和高水平放射性废液处理方面,有其独特的优势。The cold crucible glass solidification technology has the characteristics of high working temperature, wide processing range, long service life, uniform melt, small equipment size, and easy decommissioning. Cold crucible vitrification technology can not only be used for low and medium level radioactive wastes such as solid wastes, resins, and concentrates produced by nuclear power plants; Therefore, the research progress of this technology has received extensive attention. In the operation of nuclear power, a large amount of radioactive waste is bound to be produced. Among them, the reprocessing of spent fuel and the high-level radioactive waste liquid produced by it has the characteristics of high specific activity, high heat release rate, and contains some nuclides with long half-life and high biological toxicity. and one of the key issues for the sustainable development of the nuclear fuel cycle industry. As a new nuclear waste treatment technology, cold crucible vitrification technology has its unique advantages in the treatment of nuclear power waste and high-level radioactive waste liquid.
冷坩埚是由数个弧形块或管组成的圆形或椭圆形容器,弧形块或管内通入冷却水以保持冷壁,各个弧形块或管间缝隙充填绝缘物质,通过电磁场对其内部物料进行加热,冷坩埚外有由铜管绕制而成的水冷线圈。由于冷坩埚采用水冷结构,因而在靠近冷却管温度低的区域会形成一层固态玻璃壳层,避免了熔融物对冷坩埚的腐蚀。冷坩埚玻璃固化系统主要包括:冷坩埚、进料子系统、玻璃出料子系统、烟气净化子系统及仪表控制系统等。冷坩埚玻璃固化工艺主要有三种形式,分别为:两步法玻璃固化工艺、一步法玻璃固化工艺和一步法焚烧玻璃固化工艺。两步法玻璃固化工艺是先将废液在锻烧炉内煅烧后与玻璃基料混合,送人冷坩埚;一步法玻璃固化工艺是废液与玻璃基料直接送入冷坩埚;一步法焚烧玻璃固化工艺是将可燃固体废物与玻璃基料混合后,送入冷坩埚。前两种工艺主要用于处理废液,后一种工艺主要用于处理固体废物。The cold crucible is a circular or elliptical container composed of several arc-shaped blocks or tubes. Cooling water is passed into the arc-shaped blocks or tubes to maintain the cold wall. The gaps between the arc-shaped blocks or tubes are filled with insulating substances, and the The internal material is heated, and there is a water-cooled coil made of copper tube outside the cold crucible. Since the cold crucible adopts a water-cooled structure, a solid glass shell layer will be formed in the area with low temperature near the cooling pipe, which avoids the corrosion of the cold crucible by the molten material. The cold crucible glass solidification system mainly includes: cold crucible, feeding subsystem, glass discharging subsystem, flue gas purification subsystem and instrument control system. There are three main forms of cold crucible vitrification process, namely: two-step vitrification process, one-step vitrification process and one-step incineration vitrification process. The two-step vitrification process is that the waste liquid is first calcined in a calcining furnace and then mixed with the glass base material and sent to a cold crucible; the one-step vitrification process is that the waste liquid and the glass base material are directly sent to the cold crucible; one-step incineration In the vitrification process, combustible solid waste is mixed with glass base material and sent to a cold crucible. The first two processes are mainly used to treat waste liquid, and the latter process is mainly used to treat solid waste.
根据使用方式不同,可以把电磁冷坩埚分为间歇式和连续铸造式2种,但是基本原理一样,主要由水冷坩埚、电源和其它辅助设施组成。坩埚外绕有螺旋式感应线圈,感应线圈与电源相连,以产生交变电磁场。当线圈通入交变电流时,在线圈内部和周围产生1个交变电磁场。由于冷坩埚的每根金属管之间彼此绝缘,所以每根管内都产生感应电流。当感应线圈的瞬问电流为逆时针方向时,则在每根管的截面内同时产生顺时针方向的感生电流,相邻两管的截面上电流方向则相反,彼此在管问建立的磁场方向相同,向外表现为磁场增强效应。因此冷坩埚的每一缝隙处都是1个强磁场,冷坩埚如同强流器一样,将磁力线聚集到坩埚内的物料上,坩埚内的物料就被这个交变磁场的磁力线所切割。根据电磁场理论,坩埚内的物料中就产生感应电动势,由于感应电动势的存在,物料的熔体表面薄层内将形成封闭的电流回路。冷坩埚正是利用涡流对物料加热的。According to the different ways of use, electromagnetic cold crucibles can be divided into two types: batch type and continuous casting type, but the basic principle is the same, mainly composed of water-cooled crucible, power supply and other auxiliary facilities. A spiral induction coil is wound around the crucible, and the induction coil is connected with a power source to generate an alternating electromagnetic field. When an alternating current is passed through the coil, an alternating electromagnetic field is generated in and around the coil. Since each metal tube of the cold crucible is insulated from each other, an induced current is generated in each tube. When the instantaneous current of the induction coil is counterclockwise, a clockwise induced current is simultaneously generated in the cross-section of each tube, and the current directions on the cross-sections of two adjacent tubes are opposite. The direction is the same, and the outward shows a magnetic field enhancement effect. Therefore, each gap of the cold crucible is a strong magnetic field. The cold crucible is like a strong current device, which gathers the magnetic lines of force on the materials in the crucible, and the materials in the crucible are cut by the magnetic lines of the alternating magnetic field. According to the electromagnetic field theory, an induced electromotive force is generated in the material in the crucible. Due to the existence of the induced electromotive force, a closed current loop will be formed in the thin layer of the melt surface of the material. The cold crucible uses the eddy current to heat the material.
冷坩埚可以将物料加热成熔体,在冷坩埚的运行过程中,熔体的液位的测量对冷坩埚的运行状态等具有重大影响。同时,针对部分特殊领域,如放射性废物的玻璃固化,要求相应的测量设备减少与放射性物质的接触并避免放射性物质逃逸。然而,相关技术中并不能有效地对冷坩埚内的熔体的液位进行测量。The cold crucible can heat the material into a melt. During the operation of the cold crucible, the measurement of the liquid level of the melt has a great influence on the operation state of the cold crucible. At the same time, for some special fields, such as vitrification of radioactive waste, corresponding measuring equipment is required to reduce the contact with radioactive substances and avoid the escape of radioactive substances. However, the related art cannot effectively measure the liquid level of the melt in the cold crucible.
发明内容SUMMARY OF THE INVENTION
根据本申请的第一个方面,提供了一种容器内熔体的液位的测量方法,所述容器限定出加热腔,所述容器开设有透光孔,所述加热腔内设置有刻度装置,所述方法包括:确定观测点与所述加热腔底面上第一点间的第一距离,所述观测点具有经过所述透光孔观测到所述第一点的第一视角方向,以及经过所述透光孔观测到所述容器内熔体的液面上第二点的第二视角方向,所述第一点与所述第二点沿竖直方向分布;根据所述刻度装置确定所述第一视角方向对应的第一角度以及所述第二视角方向对应的第二角度;根据所述第一距离、所述第一角度以及所述第二角度确定所述液位。According to a first aspect of the present application, a method for measuring the liquid level of a melt in a container is provided, the container defines a heating chamber, the container is provided with a light-transmitting hole, and a scale device is provided in the heating chamber , the method includes: determining a first distance between an observation point and a first point on the bottom surface of the heating cavity, the observation point having a first viewing angle direction from which the first point is observed through the light-transmitting hole, and The second viewing angle direction of the second point on the liquid surface of the melt in the container is observed through the light-transmitting hole, and the first point and the second point are distributed along the vertical direction; determined according to the scale device The first angle corresponding to the first viewing angle direction and the second angle corresponding to the second viewing angle direction; the liquid level is determined according to the first distance, the first angle and the second angle.
可选地,根据所述刻度装置确定所述第一视角方向对应的第一角度,包括:确定所述刻度装置与所述观测点的高度差;确定所述观测点沿所述第一视角方向在所述刻度装置上的第一投影点,与,所述观测点间的水平距离;根据所述水平距离以及所述高度差确定所述第一角度。Optionally, determining the first angle corresponding to the first viewing angle direction according to the calibration device includes: determining a height difference between the calibration device and the observation point; determining that the observation point is along the first viewing angle direction The horizontal distance between the first projection point on the scale device and the observation point; the first angle is determined according to the horizontal distance and the height difference.
可选地,根据所述刻度装置确定所述第二视角方向对应的第二角度,包括:确定所述观测点沿所述第二视角方向在所述刻度装置上的第二投影点,与,所述第一投影点间的第二距离;根据所述第二距离、所述水平距离以及所述高度差确定所述第二角度。Optionally, determining the second angle corresponding to the second viewing angle direction according to the calibration device includes: determining a second projection point of the observation point on the calibration device along the second viewing angle direction, and, the second distance between the first projection points; the second angle is determined according to the second distance, the horizontal distance and the height difference.
可选地,所述容器包括:腔体,限定出所述加热腔,所述加热腔具有开口;盖体,用于开闭所述开口,所述盖体开设有所述透光孔。Optionally, the container includes: a cavity defining the heating cavity, the heating cavity having an opening; a cover for opening and closing the opening, and the cover is provided with the light-transmitting hole.
可选地,所述腔体包括:底壁;至少一个侧壁,所述至少一个侧壁由所述底壁的周缘向上延伸,以形成所述加热腔;所述第一点与所述第二点均位于所述侧壁。Optionally, the cavity body includes: a bottom wall; at least one side wall, the at least one side wall extending upward from a periphery of the bottom wall to form the heating cavity; the first point and the first point Both points are located on the side wall.
可选地,所述刻度装置为刻度尺或各色块长度已知的光带尺。Optionally, the scale device is a scale ruler or a light tape ruler with a known length of each color block.
可选地,所述根据所述第一距离、所述第一角度以及所述第二角度确定所述液位,包括:根据下列公式确定所述液位:Optionally, the determining the liquid level according to the first distance, the first angle and the second angle includes: determining the liquid level according to the following formula:
式中,L1为所述第一距离,β为所述第二角度,α为所述第一角度,Y为所述液位。In the formula, L1 is the first distance, β is the second angle, α is the first angle, and Y is the liquid level.
可选地,所述刻度装置封闭所述透光孔。Optionally, the scale device closes the light-transmitting hole.
根据本申请的第二个方面,提供了一种容器内熔体的液位的测量系统,其中,包括:所述容器,其限定出加热腔,所述容器开设有透光孔,所述加热腔内设置有刻度装置;所述刻度装置用于确定第一视角方向对应的第一角度以及第二视角方向对应的第二角度,所述第一角度以及所述第二角度用于与第一距离共同确定所述液位,所述第一距离为观测点与所述加热腔底面上第一点间的距离,所述观测点具有经过所述透光孔观测到所述第一点的第一视角方向,以及经过所述透光孔观测到所述容器内熔体的液面上第二点的第二视角方向,所述第一点与所述第二点沿竖直方向分布。According to a second aspect of the present application, there is provided a liquid level measurement system of a melt in a container, comprising: the container, which defines a heating chamber, the container is provided with a light-transmitting hole, and the heating A scale device is arranged in the cavity; the scale device is used to determine a first angle corresponding to the first viewing angle direction and a second angle corresponding to the second viewing angle direction, and the first angle and the second angle are used to match the first angle The liquid level is determined jointly by the distance, the first distance is the distance between the observation point and the first point on the bottom surface of the heating chamber, and the observation point has the first point from which the first point is observed through the light-transmitting hole. A viewing angle direction, and a second viewing angle direction in which a second point on the liquid surface of the melt in the container is observed through the light-transmitting hole, and the first point and the second point are distributed in a vertical direction.
可选地,所述第一角度由水平距离以及高度差确定,所述高度差为所述刻度装置与所述观测点的高度差,所述水平距离为第一投影点与所述观测点间的水平距离,所述第一投影点为所述观测点沿所述第一视角方向在所述刻度装置上的投影点。Optionally, the first angle is determined by a horizontal distance and a height difference, the height difference is the height difference between the scale device and the observation point, and the horizontal distance is the distance between the first projection point and the observation point. The first projection point is the projection point of the observation point on the scale device along the first viewing angle direction.
可选地,所述第二角度由所述第二距离、所述水平距离以及所述高度差确定,所述第二距离为第二投影点与所述第一投影点间的距离,所述第二投影点为所述观测点沿所述第二视角方向在所述刻度装置上的投影点。Optionally, the second angle is determined by the second distance, the horizontal distance and the height difference, the second distance is the distance between the second projection point and the first projection point, the The second projection point is the projection point of the observation point on the scale device along the second viewing angle direction.
可选地,所述容器包括:腔体,限定出所述加热腔,所述加热腔具有开口;盖体,用于开闭所述开口,所述盖体开设有所述透光孔。Optionally, the container includes: a cavity defining the heating cavity, the heating cavity having an opening; a cover for opening and closing the opening, and the cover is provided with the light-transmitting hole.
可选地,所述腔体包括:底壁;至少一个侧壁,所述至少一个侧壁由所述底壁的周缘向上延伸,以形成所述加热腔;所述第一点与所述第二点均位于所述侧壁。Optionally, the cavity body includes: a bottom wall; at least one side wall, the at least one side wall extending upward from a periphery of the bottom wall to form the heating cavity; the first point and the first point Both points are located on the side wall.
可选地,所述刻度装置为刻度尺或各色块长度已知的光带尺。Optionally, the scale device is a scale ruler or a light tape ruler with a known length of each color block.
可选地,测量系统还包括:处理器,配置成根据下列公式确定所述液位:Optionally, the measurement system further includes a processor configured to determine the liquid level according to the following formula:
式中,L1为所述第一距离,β为所述第二角度,α为所述第一角度,Y为所述液位。In the formula, L1 is the first distance, β is the second angle, α is the first angle, and Y is the liquid level.
可选地,所述刻度装置封闭所述透光孔。Optionally, the scale device closes the light-transmitting hole.
附图说明Description of drawings
通过下文中参照附图对本申请所作的描述,本申请的其它目的和优点将显而易见,并可帮助对本申请有全面的理解。Other objects and advantages of the present application will be apparent from the following description of the present application with reference to the accompanying drawings, and may assist in a comprehensive understanding of the present application.
图1是根据本申请一个实施例的容器的结构示意图;1 is a schematic structural diagram of a container according to an embodiment of the present application;
图2是根据本申请一个实施例的容器内熔体的液位的测量方法的应用示意图;2 is an application schematic diagram of a method for measuring the liquid level of a melt in a container according to an embodiment of the present application;
图3是根据本申请另一个实施例的容器内熔体的液位的测量方法的应用示意图;3 is an application schematic diagram of a method for measuring the liquid level of a melt in a container according to another embodiment of the present application;
图4是图3中区域A的示意性放大图;Fig. 4 is a schematic enlarged view of area A in Fig. 3;
图5是图3中区域B的示意性放大图;Fig. 5 is a schematic enlarged view of region B in Fig. 3;
图6是根据本申请一个实施例的容器的光带尺的结构示意图。FIG. 6 is a schematic structural diagram of an optical tape ruler of a container according to an embodiment of the present application.
需要说明的是,附图并不一定按比例来绘制,而是仅以不影响读者理解的示意性方式示出。It should be noted that the accompanying drawings are not necessarily drawn to scale, but are only shown in a schematic manner that does not affect the reader's understanding.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一个实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the present application clearer, the technical solutions of the present application will be described clearly and completely below with reference to the accompanying drawings of the embodiments of the present application. Obviously, the described embodiment is one embodiment of the present application, but not all embodiments. Based on the described embodiments of the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.
除非另外定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。Unless otherwise defined, technical or scientific terms used in this application shall have the ordinary meaning as understood by those of ordinary skill in the art to which this application belongs.
本申请的实施例首先提供了一种容器10内熔体的液位的测量方法,所述容器10限定出加热腔110。图1是根据本申请一个实施例的容器10的结构示意图;图2是根据本申请一个实施例的容器10内熔体的液位的测量方法的应用示意图;图3是根据本申请另一个实施例的容器10内熔体的液位的测量方法的应用示意图;图4是图3中区域A的示意性放大图;图5是图3中区域B的示意性放大图。Embodiments of the present application first provide a method for measuring the liquid level of a melt in a
可以理解地,容器10可以为冷坩埚,冷坩埚是利用电源产生高频电流,再通过感应线圈(可以为高频感应线圈)转换成电磁流透入待加热物料内部形成涡流产生热量,实现物料的直接加热熔融。冷坩埚的腔体是由通冷却水的金属弧形块或管组成的容器,容器形状主要有圆形或椭圆形,冷坩埚工作时金属管内连续通冷却水,冷坩埚内熔融物的温度较高,但腔体的壁面仍保持较低温度(一般小于200℃),使其在运行过程中物料在其内壁面形成低温区域形成一层固态的壳。冷坩埚不需要耐火材料,不用电极加热,形成的固态的壳可以减少物料对冷坩埚的腐蚀作用,延长冷坩埚的使用寿命,使得冷坩埚可以对腐蚀性物料进行处理,其中,冷坩埚的卸料口可以位于加热腔110的底部。It can be understood that the
冷坩埚工作时,感应线圈通入交变电流,在感应线圈内部和周围产生一个交变电磁场。由于冷坩埚的每根金属管之间彼此绝缘,所以每根管内都产生感应电流,相邻两管的截面上电流方向则相反,彼此在管间建立的磁场方向相同,向外表现为磁场增强效应。因此冷坩埚的每一缝隙处都是一个强磁场,冷坩埚如同强流器一样,将磁力线聚集到冷坩埚内的物料上,冷坩埚内的物料就被这个交变的磁场的磁力线所切割,冷坩埚内的物料中就产生感应电动势,由于感应电动势的存在,物料的熔体表面薄层内将形成封闭的电流回路,由于涡流回路产生大量的热,从而使物料熔化。When the cold crucible is working, an alternating current is passed through the induction coil, and an alternating electromagnetic field is generated in and around the induction coil. Since each metal tube of the cold crucible is insulated from each other, an induced current is generated in each tube, and the current directions on the cross-sections of two adjacent tubes are opposite, and the magnetic fields established between the tubes are in the same direction, and outwardly appear as magnetic fields Enhancement effect. Therefore, each gap of the cold crucible is a strong magnetic field. The cold crucible is like a strong current device, which gathers the magnetic lines of force on the materials in the cold crucible, and the materials in the cold crucible are cut by the magnetic lines of the alternating magnetic field. An induced electromotive force is generated in the material in the cold crucible. Due to the existence of the induced electromotive force, a closed current loop will be formed in the thin layer of the melt surface of the material, and the material will be melted due to the large amount of heat generated by the eddy current loop.
其中,冷坩埚可以用于两步法玻璃固化工艺,两步法玻璃固化工艺中,先使放射性待处理物料在回转煅烧炉中经过预处理,由液态转化为泥浆或者固体粉末状态,然后将预处理后物料与玻璃基料一起加入冷坩埚,并在冷坩埚内熔融成玻璃,由此,可以避免放射性物质对环境的危害。Among them, the cold crucible can be used in the two-step vitrification process. In the two-step vitrification process, the radioactive material to be treated is first pretreated in a rotary calciner, and converted from a liquid state to a slurry or solid powder state, and then the pretreated material is pretreated in a rotary calciner. The processed materials are added to the cold crucible together with the glass base material, and are melted into glass in the cold crucible, thereby avoiding the harm of radioactive substances to the environment.
容器10内熔体的液位直接影响容器10的运行状态,例如,当液面过低时,容易出现加热资源浪费的现象,当液面过高时,还容易降低加热的效果,从而导致较多熔体凝固,难以卸料。当容器10为冷坩埚时,液面过低还会使得熔体偏离感应线圈的主功率区,导致冷坩埚对能量的利用率下降,使熔体温度下降、熔制速度降低、熔制活性降低,当冷坩埚中液位过低时,还容易出现熔体无法利用磁场能量的情况,使得冷坩埚“死机”,只能等待冷却后重新加料进行重启动。当冷坩埚内液面过高时,高温熔融的区域远离冷坩埚的埚底,造成熔体底部温度偏低,使得卸料极为困难,乃至造成无法出料的情况。因此冷坩埚在运行中需实时监测埚内液位高度,并将液位保持在适宜的高度区间内,即使冷坩埚保持在较高的熔制活性,又不能使热区过于远离埚底而影响冷坩埚的卸料。The liquid level of the melt in the
由于,容器10的加热腔110内特殊的高温的环境,且容器10处理的物料可能为具有放射性的腐蚀性的物料,因此,难以在加热腔110内设置一些检测液位装置来测量液位,而本申请实施例提供的这种测量方法可以适用于容器10。Due to the special high temperature environment in the
所述容器10开设有透光孔210,所述加热腔110内设置有刻度装置300。在一些实施例中,刻度装置300可以为刻度尺,从而这种刻度装置300易于实现,在另一些实施例中,刻度装置300可以为或各色块长度已知的光带尺。The
图6是根据本申请一个实施例的容器的光带尺的结构示意图,光带尺的尺身上没有具体刻度,其尺身有至少两种颜色的透明带,以3色光带尺为例,例如其可以具有依次排列的多个区域,每个区域具有依次排列的红、黄、蓝三种颜色的色块(图6中r表示红色色块,y表示黄色色块,b表示蓝色色块),每个色块的长度是已知的,例如,第i个色块的长度是li,在已知每一个色块长度的前提下,可以利用色块确定相应的距离,可以起到与刻度尺类似的作用,也可以用来确定液位,可以理解地,各个色块可以是不等大小、长度的;并且还可以多条色带组合在一起,可以更加准确的获得熔炉液面高度。例如第一条色带的每个色块为1cm,第二条色带的每个色块为3mm,二者组合读数,可以更加精确。具体的颜色配置、组合方式以及长度选择可以根据实际情况确定,本申请实施例对此并不加以限制。6 is a schematic structural diagram of a light-tape ruler of a container according to an embodiment of the present application. There is no specific scale on the ruler of the light-tape ruler, and the ruler body has transparent bands of at least two colors. Taking a 3-color light-tape ruler as an example, for example It can have multiple areas arranged in sequence, and each area has color blocks of red, yellow and blue arranged in sequence (in Figure 6, r represents the red color block, y represents the yellow color block, and b represents the blue color block) , the length of each color block is known. For example, the length of the i-th color block is li. Under the premise of knowing the length of each color block, the corresponding distance can be determined by using the color block, which can be used to match the scale. Similar to the function of the ruler, it can also be used to determine the liquid level. It is understood that each color block can be of unequal size and length; and multiple color ribbons can be combined together to obtain the furnace liquid level more accurately. For example, each color block of the first ribbon is 1cm, and each color block of the second ribbon is 3mm. The combined reading of the two can be more accurate. The specific color configuration, combination manner, and length selection can be determined according to the actual situation, which is not limited in this embodiment of the present application.
所述方法包括:确定观测点20与所述加热腔110底面上第一点30间的第一距离L1,所述观测点20具有经过所述透光孔210观测到所述第一点30的第一视角方向,以及经过所述透光孔210观测到所述容器10内熔体的液面上第二点40的第二视角方向,所述第一点30与所述第二点40沿竖直方向分布;根据所述刻度装置300确定所述第一视角方向对应的第一角度(可以由所述第一视角方向与竖直方向的夹角α表示,在其他实施例中,也可以由所述第一视角方向与水平方向的夹角表示等)以及所述第二视角方向对应的第二角度(可以由所述第二视角方向与竖直方向的夹角β表示,在其他实施例中,也可以由所述第二视角方向与水平方向的夹角表示等);根据所述第一距离L1、所述第一角度以及所述第二角度确定所述液位。The method includes: determining a first distance L1 between an
此时,液面高度 At this time, the liquid level
可以理解地,有时直接获取夹角α和夹角β较为困难,可以依据其它方法获得夹角α和夹角β的数值。例如,可以点30或点40到L1的距离L2;根据所述刻度装置300确定夹角α和夹角β在所述刻度装置300上的影点50、影点60,与,所述L1的距离分别为S1、S2;S1或S2与所述观测点的高度差为H1。则tanα=L2/L1,或tanα=S1/H1,tanβ=S2/H1。Understandably, it is sometimes difficult to directly obtain the included angle α and the included angle β, and the values of the included angle α and the included angle β can be obtained according to other methods. For example, the distance L2 from
可以理解地,夹角α和夹角β的求解方法多种多样,本申请实施例对此并不加以限制。It can be understood that there are various methods for solving the included angle α and the included angle β, which are not limited in the embodiments of the present application.
可以理解地,各投影点在刻度装置300上的位置的确定方式可以通过摄像头、激光甚至用户目视预估等各种方式来确定,本申请实施例对此并不加以限制。It is understandable that the manner of determining the position of each projection point on the
所述容器10可以包括腔体100和盖体200,腔体100限定出所述加热腔110,所述加热腔110具有开口111;盖体200用于开闭所述开口111,所述盖体200开设有所述透光孔210。这种容器10结构简单,且能保证加热效果。The
所述腔体100可以包括底壁120、至少一个侧壁130。所述至少一个侧壁130由所述底壁120的周缘向上延伸,以形成所述加热腔110;所述第一点30与所述第二点40均位于所述侧壁130,从而便于观测及确定相关数据。The
刻度装置300还可以封闭透光孔,具体地,可将刻度装置300以石英刻度片等形式安装在透光孔上,可以起到防止尾气外泄的作用,并降低了刻度装置300的安装难度,同时可以方便更换、清洁刻度装置300等。The
本申请的实施例还提供了一种容器10内熔体的液位的测量系统,测量系统包括所述容器10。The embodiment of the present application also provides a system for measuring the liquid level of the melt in the
所述容器10限定出加热腔110,所述容器10开设有透光孔210,所述加热腔110内设置有刻度装置300;所述刻度装置300用于确定第一视角方向对应的第一角度以及第二视角方向对应的第二角度,所述第一角度以及所述第二角度用于与第一距离共同确定所述液位,所述第一距离为观测点20与所述加热腔110底面上第一点30间的距离,所述观测点20具有经过所述透光孔210观测到所述第一点30的第一视角方向,以及经过所述透光孔210观测到所述容器10内熔体的液面上第二点40的第二视角方向,所述第一点30与所述第二点40沿竖直方向分布。The
在一些实施例中,所述第一角度由水平距离以及高度差确定,所述高度差为所述刻度装置300与所述观测点20的高度差,所述水平距离为第一投影点50与所述观测点20间的水平距离,所述第一投影点50为所述观测点20沿所述第一视角方向在所述刻度装置300上的投影点。In some embodiments, the first angle is determined by a horizontal distance and a height difference, the height difference being the height difference between the
在一些实施例中,所述第二角度由所述第二距离、所述水平距离以及所述高度差确定,所述第二距离为第二投影点60与所述第一投影点50间的距离,所述第二投影点60为所述观测点20沿所述第二视角方向在所述刻度装置300上的投影点。In some embodiments, the second angle is determined by the second distance, the horizontal distance and the height difference, and the second distance is the distance between the
在一些实施例中,所述容器10包括:腔体100,限定出所述加热腔110,所述加热腔110具有开口111;盖体200,用于开闭所述开口111,所述盖体200开设有所述透光孔210。In some embodiments, the
在一些实施例中,所述腔体100包括:底壁120;至少一个侧壁130,所述至少一个侧壁130由所述底壁120的周缘向上延伸,以形成所述加热腔110;所述第一点30与所述第二点40均位于所述侧壁130。In some embodiments, the
在一些实施例中,所述刻度装置300为刻度尺或各色块长度已知的光带尺。In some embodiments, the
在一些实施例中,测量系统还包括:处理器,配置成根据下列公式确定所述液位:In some embodiments, the measurement system further includes a processor configured to determine the liquid level according to the following formula:
式中,L1为所述第一距离,β为所述第二角度,α为所述第一角度,Y为所述液位。In the formula, L1 is the first distance, β is the second angle, α is the first angle, and Y is the liquid level.
在一些实施例中,所述刻度装置300封闭所述透光孔。In some embodiments, the
本申请的实施例中提供的这种测量系统的容器10以及具体测量的过程可以参照前述实施例,此处不再赘述。本申请的实施例提供的这种测量系统可以简单有效地测量出容器10内熔体的液位,提升了用户体验,并且,这种本申请的实施例提供的这种测量系统可以在容器10运行时进行测量。For the
对于本申请的实施例,还需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合以得到新的实施例。For the embodiments of the present application, it should also be noted that, in the case of no conflict, the embodiments of the present application and the features in the embodiments may be combined with each other to obtain new embodiments.
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited thereto, and the protection scope of the present application should be subject to the protection scope of the claims.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110684954.9A CN113465696B (en) | 2021-06-21 | 2021-06-21 | Method and system for measuring liquid level of melt in container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110684954.9A CN113465696B (en) | 2021-06-21 | 2021-06-21 | Method and system for measuring liquid level of melt in container |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113465696A CN113465696A (en) | 2021-10-01 |
CN113465696B true CN113465696B (en) | 2022-07-01 |
Family
ID=77868796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110684954.9A Active CN113465696B (en) | 2021-06-21 | 2021-06-21 | Method and system for measuring liquid level of melt in container |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113465696B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101019042B (en) * | 2004-03-01 | 2010-05-12 | 瓦润医药系统公司 | Object examination by dual energy radiation scanning and delayed neutron detection |
JP2006030041A (en) * | 2004-07-20 | 2006-02-02 | Fuji Electric Systems Co Ltd | Clamp-on type Doppler ultrasonic flow velocity distribution meter |
DE102010004876A1 (en) * | 2009-12-14 | 2011-06-16 | Continental Automotive Gmbh | Level indicator for use in fuel tank of motor vehicle, has reading unit arranged outside flange and connected with transponder that is provided with level sensor in operative connection, where reading unit includes antenna |
CN101709989B (en) * | 2009-12-14 | 2012-02-29 | 西安定华电子有限公司 | System and method for measuring liquid level in container |
DE102010045652B4 (en) * | 2010-09-17 | 2016-09-15 | Universität Zu Lübeck | Artificial bladder and method for level determination |
CN109655126A (en) * | 2019-01-15 | 2019-04-19 | 广州极飞科技有限公司 | For determining the method and apparatus of amount of liquid and plant protection equipment in container |
CN110108335A (en) * | 2019-03-22 | 2019-08-09 | 深圳绿米联创科技有限公司 | Level measuring method, liquid level emasuring device, liquid level detector and storage medium |
-
2021
- 2021-06-21 CN CN202110684954.9A patent/CN113465696B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113465696A (en) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104567401B (en) | Fused mass Medium frequency induction high-temperature heating equipment | |
CN106874648A (en) | A kind of blast furnace high thermal load regions operate type of furnace computational methods | |
CN113465696B (en) | Method and system for measuring liquid level of melt in container | |
CN108707712A (en) | A kind of judgment method of the residual thickness of blast furnace crucibe side wall | |
US20120247566A1 (en) | Tubular pipe for transporting liquid sodium | |
WO2023109001A1 (en) | Heat recycling system and method for lithium battery rotary kiln, and medium | |
CN113460859B (en) | Lifting components | |
CN113421682B (en) | Reaction system for radioactive substance treatment | |
CN113429115B (en) | Crucible, induction coil for cavity of crucible and material processing equipment | |
WO2022268000A1 (en) | Temperature acquisition method | |
IT201800007563A1 (en) | SYSTEM AND METHOD OF DETECTION OF THE CONDITION OF MELTING OF METALLIC MATERIALS WITHIN AN OVEN, SYSTEM AND METHOD OF DETECTION OF THE CONDITION OF MELTING OF METALLIC MATERIALS AND ELECTROMAGNETIC AGITATION, AND OVEN EQUIPPED WITH SUCH SYSTEMS | |
CN113267261B (en) | Protection structure and temperature measurement component of temperature measurement device | |
Li et al. | Experimental study of the interaction between molten corium and new sacrificial material for ex-vessel melt retention | |
CN113465704A (en) | Method and system for measuring melt level in container | |
Liu et al. | Inner wall temperature distribution measurement of the ladle based on cavity effective emissivity correction | |
CN104575624A (en) | Small-scale lithium liquid drop and coolant interaction experimental device | |
CN102534747A (en) | Hydrothermal crystal growth furnace capable of accommodating multiple hydrothermal kettles | |
CN211451822U (en) | Crucible and groove type molten metal treatment furnace | |
PL123243B1 (en) | Apparatus for detection of leakages of liquid coolant in blast-furnace tuyeres | |
CN209589202U (en) | Laser sensor high temperature protection device | |
KR101517377B1 (en) | High temperature measurement instrument in molten material with long-term durability | |
CN113432422B (en) | Crucible connection device and material handling equipment and system | |
Rinaldi et al. | A simple technique for casting glass disks for X-ray fluorescence analysis | |
CN111879429A (en) | Device and method for multipoint temperature measurement of rotary calcining furnace for radioactive waste liquid treatment | |
CN207066108U (en) | A kind of vacuum levitation melting stove bell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |