CN113462628B - Gene engineering bacterium for producing heme as well as construction method and application thereof - Google Patents

Gene engineering bacterium for producing heme as well as construction method and application thereof Download PDF

Info

Publication number
CN113462628B
CN113462628B CN202110752387.6A CN202110752387A CN113462628B CN 113462628 B CN113462628 B CN 113462628B CN 202110752387 A CN202110752387 A CN 202110752387A CN 113462628 B CN113462628 B CN 113462628B
Authority
CN
China
Prior art keywords
heme
genes
bacillus amyloliquefaciens
hemf
hemd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110752387.6A
Other languages
Chinese (zh)
Other versions
CN113462628A (en
Inventor
罗正山
潘斐
徐虹
严一凡
朱逸凡
高红霞
徐铮
李莎
王瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202110752387.6A priority Critical patent/CN113462628B/en
Publication of CN113462628A publication Critical patent/CN113462628A/en
Application granted granted Critical
Publication of CN113462628B publication Critical patent/CN113462628B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin

Abstract

The invention discloses a genetically engineered bacterium for producing heme as well as a construction method and application thereof, belonging to the technical field of molecular biology and microbial fermentation. According to the invention, a polycistron expression vector is constructed to express hemE pathway genes gltX, hemA, hemmL, hemB, hemC, hemD, hemE, hemF, hemG and hemH, and key genes of a main byproduct synthesis pathway are knocked out by using a CRISPR-Cas9 technology, so that the synthesis capacity of Bacillus amyloliquefaciens hemE is improved, the strain produces hemE by using cheap biomass resource-Jerusalem artichoke crude extract as a fermentation raw material, and the production cost is greatly reduced.

Description

Gene engineering bacterium for producing heme as well as construction method and application thereof
Technical Field
The invention relates to a genetically engineered bacterium for producing heme and a construction method and application thereof, belonging to the technical field of molecular biology and microbial fermentation.
Background
Heme (Heme), an important iron-containing porphyrin compound present in organisms. Because the heme porphyrin ring center contains ferrous ions, the heme porphyrin ring center has the capacity of combining oxygen and becomes an important component of related proteins in respiration and electron transfer chains. The research shows that the heme can regulate the expression of genes to different degrees in the aspects of transcription, translation, protein modification and the like. Based on the important functions, the compound has huge potential application value in the fields of biology, food, medicine and the like. For example, heme can be used as a food additive to replace traditional chemical pigments. In addition, the iron ions in the heme are easy to be absorbed by human bodies, and can be developed into a medicament for treating iron deficiency anemia. With the continuous expansion of market demand, heme obtained by chemical synthesis, animal and plant extraction and other methods cannot meet the increasing application demand. In recent years, the rapid development of synthetic biology provides new opportunities for microorganisms to synthesize heme by using renewable resources, so as to make up for the defects of traditional chemical synthesis and animal and plant extraction methods. In order to solve the problems, related researches utilize escherichia coli as a chassis microorganism to heterologously express a heme synthesis pathway gene, and heme with corresponding yield is directly obtained by a microbial fermentation technology, but the yield of a current heme synthesis cell factory is low, the cost is high, and the market demand cannot be met.
Disclosure of Invention
The invention provides a construction method and application of a gene engineering bacterium for synthesizing heme, aiming at the problems of high raw material cost, extremely low yield, poor genetic stability and the like in the conventional heme synthesis technology. The invention obtains the genetic engineering strain for producing the heme by constructing a polycistronic expression vector and then introducing a host bacterium Bacillus amyloliquefaciens NX-2S. Meanwhile, the metabolic engineering technology is utilized to optimize the whole metabolic network, the CRISPR-Cas9 technology is utilized to knock out key genes of the main byproduct synthetic pathway so as to concentrate metabolic flow in the heme synthetic pathway to the maximum extent, so that the strain utilizes cheap biomass resource-Jerusalem artichoke crude extract as fermentation raw material to produce heme, and the production cost is greatly reduced.
The first purpose of the invention is to provide a recombinant bacillus amyloliquefaciens for synthesizing hemE, which takes bacillus amyloliquefaciens capable of synthesizing polyglutamic acid as a host and expresses hemE pathway genes gltX, hemA, hemL, hemB, hemC, hemD, hemE, hemF, hemG and hemH.
In one embodiment, the gltX, hemA, hemL, hemB, hemC genes are expressed on a pMA5 vector.
In one embodiment, the hemD, hemE, hemF, hemG, and hemH genes are expressed on a pHY300PLK vector.
In one embodiment, the Gene IDs of the gltX, hemA, hemL, hemB, hemC genes are 946906, 945777, 946892, 945017, 947759, respectively; the Gene IDs of the hemD, hemE, hemF, hemG, and hemH genes were 948587, 948497, 946908, 948331, 947532, respectively.
In one embodiment, the bacillus amyloliquefaciens NX-2S further expresses the Gene cluster of heme extracellular transporters, ccmABC, consisting of genes ccmA, ccmB, and ccmC with Gene IDs 946714, 946692, 946703, respectively.
In one embodiment, the bacillus amyloliquefaciens knocks out a byproduct pathway key gene.
In one embodiment, the byproduct pathway key genes include pgsBCA, prob, ldh, nas, and pta genes.
In one embodiment, the byproduct pathway key genes are knocked out using CRISPR-Cas9 technology.
In one embodiment, the Bacillus amyloliquefaciens is Bacillus amyloliquefaciens (Bacillus amyloliquefaciens) NX-2S, and the polyglutamic acid (gamma-PGA) can be efficiently synthesized by directly using the inulin crude extract without adding glutamic acid; the strain is preserved in China center for type culture Collection, and the preservation number is CCTCC NO: M2016346, which is disclosed in the patent document with the publication number CN 106047780B. Bacillus amyloliquefaciens (Bacillus amyloliquefaciens) NX-2S can produce gamma-PGA in a culture medium without glutamic acid, has high glutamic acid synthesis and tolerance capacity, and simultaneously, the glutamic acid is used as an important precursor substance of heme and has the potential of efficiently synthesizing the heme.
The invention also provides a construction method of the recombinant bacillus amyloliquefaciens, which comprises the steps of connecting the gltX, hemA, hemmL and hemB genes to a pMA5 plasmid, connecting the hemC, hemD, hemE, hemF, hemG and hemH genes to a pHY plasmid, and transforming the two recombinant plasmids into a bacillus amyloliquefaciens host cell; the pMA5 plasmid and the pHY300PLK plasmid have good stability and a constitutive strong promoter pHpa II, and the promoter has high transcription efficiency in bacillus amyloliquefaciens and can effectively improve the expression level of corresponding genes.
In one embodiment, a Ribosome Binding Site (RBS) with a nucleotide sequence of AAAGGAGCGATTTACATATG is introduced between adjacent genes by using a primer, and the binding site can effectively improve the recognition and binding capacity of ribosome and mRNA, and greatly improve the translation efficiency of the related genes.
In one embodiment, the method comprises the steps of:
(1) Amplifying pathway genes for heme synthesis;
(2) Different gene fragments were ligated using overlap PCR, and a Ribosome Binding Site (RBS) was added between the genes, which has the nucleotide sequence AAAAGGAGCGATTTACATATG.
(3) Carrying out double enzyme digestion linearization on pMA5 plasmid by utilizing Nde I and BamH I restriction enzymes to obtain a linearized vector; the pHY plasmid is subjected to double digestion linearization by using Xho I and SalI restriction enzymes to obtain a linearized vector.
(4) The multiple gene fragments are assembled with a linearization vector by one-step cloning, and the recombinant plasmid which is verified to be correct is transformed into escherichia coli GM2163 for demethylation and then is introduced into bacillus amyloliquefaciens by electrotransformation.
In one embodiment, the method further knocks out key genes that are known to be associated with byproduct synthesis in bacillus amyloliquefaciens, including pgsBCA, prob, nas, ldh, and pta.
In one embodiment, the knockout employs CRISPR-Cas9 technology; the CRISPR-Cas9 technology adopts a double-plasmid system which is respectively a pDR plasmid and a pHT01 plasmid; pDR as a temperature sensitive plasmid can be subjected to traceless knockout; pHT01 plasmid is used as an inducible plasmid, an inducer is IPTG, and induction is carried out in a specific period of cell growth, which is beneficial to improving the success rate of knockout.
In one embodiment, the gltX, hemA, hemL, hemB, hemC, hemD, hemE, hemF, hemG, and hemH genes are amplified from the genome of E.coli MG1655, and then the gltX, hemA, hemL, hemB, and hemC genes are ligated into gene fragments using overlap PCR, while the hemD, hemE, hemF, hemG, and hemH genes are also ligated into gene fragments using overlap PCR.
In one embodiment, to increase the ability of said strain to synthesize heme, the heme extracellular transporter gene cluster ccmABC is also obtained from E.coli MG1655 and integrated onto a recombinant pHY300PLK plasmid.
The invention also provides application of the strain in heme production, which is to ferment the recombinant bacillus amyloliquefaciens in a culture medium containing the jerusalem artichoke crude extract for at least 36 hours.
In one embodiment, the fermentation medium contains crude extract of Jerusalem artichoke 70-90g/L, (NH) 4 ) 2 SO 4 17-24g/L,KH 2 PO 4 3-5g/L,Na 2 HPO 4 ·12H 2 O 13-18g/L,MgSO 4 ·7H 2 O 1-3g/L,MnSO 4 ·7H 2 O 0.02-0.1g/L。
In one embodiment, the fermentation is to streak 3 μ L of the recombinant Bacillus amyloliquefaciens from a glycerol tube onto a plate containing kanamycin sulfate and chloramphenicol, culture at 37 ℃ for 12h, select a single colony to inoculate into 5mL of liquid LB containing kanamycin sulfate and chloramphenicol, culture at 37 ℃ and 200rpm for 12h to obtain a seed solution, inoculate the seed solution into a fermentation medium according to the inoculation amount of 1%, and ferment at 37 ℃ and 200 rpm.
The invention also provides application of the recombinant bacillus amyloliquefaciens in production of heme-containing products.
Compared with the prior art, the invention has the following beneficial effects:
(1) The engineering strain for producing heme can utilize cheap biomass resource-jerusalem artichoke as a substrate, obviously reduces the production cost compared with the prior frontal fermentation method taking glucose as a carbon source, and the strain for fermentation has no pathogenicity, and the heme yield can reach 254.6mg/L.
(2) The construction of the strain has the advantages of simple and convenient operation, low cost, good stability and the like, and is easy to realize industrialization.
(3) The bacterial strain of the invention uses metabolic engineering to knock out key genes for synthesizing byproducts in the bacterial strain, reduces the concentration of the byproducts and effectively improves the yield of heme.
(4) The strain of the invention promotes the discharge of heme, improves the yield of heme and simplifies the downstream extraction process by expressing heme extracellular transport protein.
Drawings
FIG. 1 shows the colony morphology of NX-2S on LB plates;
FIG. 2 shows a schematic of plasmid construction;
FIG. 3 shows a picture of fermentation of a strain of the invention;
FIG. 4 shows the yield of heme from strain ZSL-3 of the invention.
Detailed Description
The materials and methods used in the implementation process of the invention are as follows:
1. primers and sequences:
all primers were synthesized by general biosystems, inc.
All plasmid and DNA sequencing work was performed by general biosystems, inc.
The plasmid extraction kit provided by Nanjing Nuojingzhan Biotechnology GmbH is selected for plasmid extraction.
The DNA fragment was recovered by using a product purification kit provided by Nanjing NuoZan Biotechnology GmbH.
The bacterial gene extraction adopts a genome extraction kit provided by Nanjing NuoZan Biotechnology GmbH.
The DNA fragment PCR was amplified by PCR using 2X Phanta Max Master Mix supplied by Nanjing Novozam Biotechnology Ltd.
The vector and the gene fragment are connected by one-step cloning ligase provided by Nanjing NuoZan Biotechnology GmbH.
The restriction enzyme is provided by Takara corporation.
DH 5. Alpha. Was purchased from general biosystems, inc.
The pDR plasmid, as a shuttle plasmid for Escherichia coli and Bacillus amyloliquefaciens, possesses two sets of replicons, and the screening marker in Escherichia coli is ampicillin and the screening marker in Bacillus amyloliquefaciens is spectinomycin hydrochloride. The promoter of the pDR vector is a constitutive promoter, and the enzyme cutting sites of the vector backbone are SalI and XhoI.
The pHT01 plasmid is used as a shuttle plasmid of escherichia coli and bacillus amyloliquefaciens, and is provided with two sets of replicons, wherein the selection marker in the escherichia coli is ampicillin, and the selection marker in the bacillus amyloliquefaciens is chloramphenicol. The promoter of pHT01 vector is inductive promoter, and its inducer is IPTG.
The pMA5 plasmid, as a shuttle plasmid between Escherichia coli and Bacillus amyloliquefaciens, has two sets of replicons, and the selection marker in Escherichia coli is ampicillin and the selection marker in Bacillus amyloliquefaciens is kanamycin sulfate. The promoter of the pMA5 vector is a constitutive strong promoter, and the enzyme cutting sites of the vector framework are Nde I and BamH I.
The pHY plasmid is used as a shuttle plasmid of escherichia coli and bacillus amyloliquefaciens, and has two sets of replicons, wherein the selection marker in the escherichia coli is ampicillin, and the selection marker in the bacillus amyloliquefaciens is chloramphenicol. The promoter of pHY vector is a constitutive strong promoter, and the enzyme cutting sites of vector skeleton are XhoI and SalI.
2. Culture medium:
the jerusalem artichoke crude extract: washing, slicing and drying fresh Jerusalem artichoke tubers in an electrothermal constant-temperature drying oven at 80 deg.C for 7h. Pulverizing into powder, and sieving with 40 mesh sieve to obtain coarse inulin. The crude inulin is prepared according to the following steps of 1:5, putting the mixture into water, stirring the mixture completely, putting the mixture into a water bath at the temperature of 75 ℃ for heating and leaching for 3 hours, and filtering the filtrate through gauze to obtain the inulin coarse extract. When the culture medium is prepared, the culture medium can be used as a carbon source of the culture medium after being sterilized for 20min at 115 ℃.
LB culture medium: 5g/L yeast powder, 10g/L peptone, 10g/L sodium chloride, 121 ℃,20min.
Solid LB medium: 5g/L yeast powder, 10g/L peptone, 10g/L sodium chloride, 20g/L agar powder, 121 ℃ and 20min.
Fermentation medium: 70-90g/L (NH) of jerusalem artichoke crude extract 4 ) 2 SO 4 17-24g/L,KH 2 PO 4 3-5g/L,Na 2 HPO 4 ·12H 2 O 13-18g/L,MgSO 4 ·7H 2 O 1-3g/L,MnSO 4 ·7H 2 O0.02-0.1 g/L. The jerusalem artichoke coarse extraction liquid is at 115 ℃ for 25min. Except for this, all components were at 120 ℃ for 20min.
When antibiotics were used for the medium, the final concentration of ampicillin was 100. Mu.g/mL. Kanamycin sulfate was added to a final concentration of 50. Mu.g/mL. The final concentration of chloramphenicol was 30. Mu.g/mL. The final concentration of spectinomycin was 100. Mu.g/mL.
Competent preparation of the medium: 10g/L of peptone, 5g/L of yeast powder, 10g/L of NaCl, 0.5M of sorbitol, 121 ℃ and 20min.
Recovering the culture medium: 10g/L of peptone, 5g/L of yeast powder, 10g/L of NaCl, 0.5M of sorbitol, 0.38M of mannitol, 121 ℃, and 20min.
And (3) electric shock buffer solution: sorbitol 0.5M, mannitol 0.5M, glycerol 10%,121 ℃,20min.
Competent cell suspension: sorbitol 0.5M, mannitol 0.5M, glycerol 10%, PEG-6000, 121 deg.C, 20min.
3. Coli GM2163 competent preparation:
(1) mu.L of the broth was streaked onto LB from the glycerol tube and left overnight at 37 ℃.
(2) A single colony was picked up in 10mL of LB medium (50 mL shake flask) and cultured overnight at 37 ℃ at 200 rpm.
(3) Inoculating to LB medium at 1%, and culturing to OD 600 =0.6, and dispensed into pre-cooled 50mL centrifuge tubes and ice-cooled for 20min.
(4) Centrifuge at 4000rpm for 10min at 4 ℃ and discard the supernatant.
(5) 4mL of 0.1M CaCl was added 2 Mix gently, ice-cool for 30min.
(6) Centrifuge at 4000rpm for 10min at 4 ℃ and discard the supernatant.
(7) 1mL of precooled 0.1M Ca was addedCl 2 And 1mL of pre-cooled 40% glycerol, subpackaged and stored at-80 ℃.
4. Preparation of bacillus amyloliquefaciens NX-2S competence:
(1) mu.L of the broth was streaked onto LB from the glycerol tube and allowed to stand overnight at 32 ℃.
(2) Colonies were picked into 10mL of competent preparation medium (50 mL shake flask), cultured overnight at 32 ℃ and 200 rpm.
(3) Inoculating to a competent preparation medium at an inoculum size of 1%, and culturing to OD 600 =0.6, and dispensed into pre-cooled 50mL centrifuge tubes and ice-cooled for 20min.
(4) Centrifuge at 8000rpm for 10min at 4 deg.C, and discard the supernatant.
(5) Adding 20mL of electrotransfer buffer, mixing gently, centrifuging at 4 ℃ and 8000rpm for 10min, and discarding the supernatant.
(6) Repeat step 5 twice
(7) Adding about 1.5ml suspension buffer, suspending the bacterial sludge gently, packaging 100 μ L, and preserving at-80 deg.C.
5. And (3) electrically transforming the bacillus amyloliquefaciens:
(1) mu.L of plasmid was added to 100. Mu.L of competence and mixed gently. Transfer to a pre-cooled cuvette.
(2) 2.9kv 4ms electric shock, adding 1mL of recovery culture medium immediately after electric shock, and recovering for 2h at 32 ℃ and 200 rpm.
(3) Transferring all the bacteria liquid after the recovery to 4mL of liquid LB, adding corresponding resistance, and culturing at 32 ℃ and 200rpm for 12h for enrichment.
(4) If bacteria grow in the shake flask, sucking a small amount of bacteria colony to streak on a plate with corresponding resistance, and picking a single bacterial colony for colony PCR verification.
6. Primer:
the names and nucleotide sequences of primers related to construction of the heme pathway are shown in the following table
Primers and nucleotide sequences required for the pathway construction of Table 1
Figure GDA0003850965200000061
Figure GDA0003850965200000071
The primer names and nucleotide sequences required for knocking out the byproduct pathway key genes by using the CRISPR-Cas9 technology are shown in a table 2:
TABLE 2 primers and nucleotide sequences for Gene knockout
Figure GDA0003850965200000072
Figure GDA0003850965200000081
Figure GDA0003850965200000091
7. The PCR reaction system of the invention is as follows: 2 × Phanta Max Master Mix Hi Fidelity 25 μ L, F2 μ L, R2 μ L, template 2 μ L, ddH 2 O 19μL。
8. The overlapping PCR reaction system of the invention is as follows: 2 × Phanta Max Master Mix Hi Fidelity enzyme 25 μ L, F2 μ L, R2 μ L, template 12 μ L, template 2 μ L, ddH 2 O 17μL。
9. The method for detecting the heme comprises the following steps: the method for detecting the concentration of the heme adopts high performance liquid chromatography, the instrument selects Agilent Infinitylab LC Series1260 Infinity II Quaternary System, and the chromatographic column selects Hypers11ODS 250X 4.6mm 5 μm liquid chromatographic column of Saimer Federation.
The HPLC detection conditions are as follows: wavelength: 400nm, temperature: 30 ℃, mobile phase a:100% methanol plus 0.1% trifluoroacetic acid. And (3) mobile phase B:100% pure water plus 0.1% trifluoroacetic acid. A/B50%/50%, flow rate: 0.4mL/min.
10. The double-enzyme cleavage conditions of the invention are as follows: 50 μ L system, restriction enzyme 1 μ L, restriction enzyme 2 μ L,10 XBuffer 5 μ L, plasmid 41 μ L.
Example 1 construction of heme Synthesis Strain ZSL-1
To construct the complete pathway for hemE synthesis in Bacillus amyloliquefaciens NX-2S, relevant literature was consulted and genes required for the hemE synthesis pathway from glutamate to hemE in E.coli MG1655 were obtained in NCBI, including the gltX, hemA, hemL, hemB, hemC, hemD, hemE, hemF, hemG, and hemH genes (nucleotide sequences shown in SEQ ID NO. 1-SEQ ID NO.10, respectively). The corresponding primers in Table 1 were used to insert nucleotide sequence AAAGGAGCGATTTACATATG of ribosome binding site between adjacent genes by primers to improve translation efficiency, and PCR was used to obtain corresponding gene fragments, and then different gene fragments were assembled by overlap PCR to obtain gltX-hemA-hemL-hemB-hemC and hemD-hemE-hemF-hemG-hemH polygene fragments. Then, the pMA5 plasmid and pHY300PLK plasmid were linearized by double digestion with restriction enzymes Nde I and BamH I, and Xho I and Sal I, respectively, to obtain linearized vectors. Next, the gltX-hemA-hemB-hemC gene fragment was ligated to the pMA5 linearized vector by one-step cloning, the gene fragment hemD-hemE-hemF-hemG-hemH was ligated to the pHY300PLK linearized vector, and both ligated vectors were transformed into DH5 α, respectively, for validation. Since the plasmid needs to be demethylated to allow normal expression in Bacillus amyloliquefaciens, after the polycistronic recombinant plasmid is obtained, the plasmid needs to be transformed into E.coli GM2163 for demethylation. pMA5-gltX-hemA-hemL-hemB-hemC and pHY-hemD-hemE-hemF-hemG-hemH were then introduced into the host strain Bacillus amyloliquefaciens NX-2S by electroporation. Obtaining gene engineering strain ZSL-1 for producing heme. Primer nucleotide sequences, double-enzymatic cleavage conditions, one-step cloning conditions, and PCR conditions were as described above.
Example 2 construction of heme Synthesis Strain ZSL-2
In order to reduce byproducts and concentrate metabolic flux to improve the production of heme, relevant documents are consulted and the genome sequence of the strain of the invention is analyzed, and the nucleotide sequence of the corresponding genes pgsBCA, prob, nas, ldh and pta is obtained in the genome, wherein the nucleotide sequence of pgsBCA is shown in SEQ ID NO.15, the nucleotide sequence of prob is shown in SEQ ID NO.14, the nucleotide sequence of nas is shown in SEQ ID NO.11, the nucleotide sequence of ldh is shown in SEQ ID NO.12, and the nucleotide sequence of pta is shown in SEQ ID NO. 13. Sgrnas required for corresponding knockouts were designed using CRISPR-Cas9 technology, and primers required for knockouts are shown in table 2. And obtaining a gene fragment of the sgRNA by using PCR, and then carrying out double-enzyme digestion linearization on the pDR plasmid by using SalI and Xho I to obtain a linearized vector. Similarly, different sgRNAs were ligated to the linearized pDR vector by the one-step cloning method and transformed into DH5 α, wherein the nucleotide sequence of sgpgsBCA is shown in SEQ ID No.16, the nucleotide sequence of sgprob is shown in SEQ ID No.17, the nucleotide sequence of sgldh is shown in SEQ ID No.18, the nucleotide sequence of sgnas is shown in SEQ ID No.19, and the nucleotide sequence of sgpta is shown in SEQ ID No. 20. Since the plasmid needs to be demethylated to be normally expressed in bacillus amyloliquefaciens, after obtaining recombinant plasmid containing sgRNA, the plasmid needs to be transformed into escherichia coli GM2163 for demethylation, and finally pDR-sgRNA and pHT01-Cas9 plasmids are introduced into the starting strain NX-2S of the present invention by electric transfer. After the double plasmids of the CRISPR-Cas9 system are transferred into a strain, the strain is inoculated into 5mL of liquid LB culture medium, cultured for 3h at 37 ℃ and 200rpm, added with IPTG for induction knockout, and finally the knockout result of the gene is verified through PCR.
After successful gene knockout, different sgrnas need to be replaced to specifically knock out different genes, so that different pDR plasmids need to be introduced into the host. Because pDR is a temperature-sensitive plasmid, the structure is unstable and easy to lose at high temperature, so that the loss of the pDR plasmid is accelerated by the strain at 42 ℃ and only adding chloramphenicol resistance after gene knockout. After 24h incubation the plasmid loss was verified by PCR. And knocking out pgsBCA, prob, nas, ldh and pta genes in sequence, and losing all plasmids to obtain NX-2S delta pgsBCA delta prob delta nas delta ldh delta pta. After all byproduct key genes are knocked out in a superposition mode, pMA 5-gltX-hemA-hemmL-hemB-hemC and pHY-hemD-hemE-hemF-hemG-hemH are introduced into NX-2S delta pgsBCA delta prob delta nas delta ldh delta pta through electric transfer, and a gene engineering strain ZSL-2 for producing hemE is obtained.
Example 3 construction of heme Synthesis Strain ZSL-3
Through analyzing the heme synthesis pathway, the existence of extracellular transport protein in heme is found, and the heme can be transported to the outside of cells in time, so that the metabolic pressure of the heme on the cells is reduced, and the yield is improved. And (3) taking the genome of the Escherichia coli MG1655 as a template, and obtaining the Escherichia coli heme transporter gene cluster ccmABC through PCR amplification. And (3) integrating the gene fragment into a hemH gene on a pHY-hemD-hemE-hemF-hemG-hemH plasmid, adding a ribosome binding site before ccmABC, and designing pHY-liner-F and pHY-liner-R to carry out PCR linearization on the plasmid because the inserted gene sequence contains a restriction site and can not carry out double restriction linearization. The gene fragment was then ligated to the vector using one-step cloning and the demethylated plasmid pHY- -hemD-hemE-hemF-hemG-hemH-ccmABC was obtained as described above. The pMA5-gltX-hemA-hemL-hemB-hemC and pHY-hemD-hemE-hemF-hemG-hemH-ccmABC are transferred into the NX-2S delta pgsBCA delta prob delta nas delta ldh delta pta constructed in the example 2 through electrotransformation, and the ZSL-3 is obtained.
Example 4 fermentation of genetically engineered Strain
Seed culture medium: LB culture medium;
fermentation medium: 70-90g/L (NH) of jerusalem artichoke crude extract 4 ) 2 SO 4 17-24g/L,KH 2 PO 4 3-5g/L,Na 2 HPO 4 ·12H 2 O 13-18g/L,MgSO 4 ·7H 2 O 1-3g/L,MnSO 4 ·7H 2 O 0.02-0.1g/L。
Single colonies of genetically engineered bacteria ZSL-1, ZSL-2 and ZSL-3 were picked from the plates, respectively, and inoculated into 10mL of liquid LB containing both 50. Mu.g/mL kanamycin sulfate and 30. Mu.g/mL chloramphenicol, respectively, and cultured at 200rpm at 37 ℃ for 12 hours. The cells were inoculated to 200mL of a fermentation medium at an inoculum size of 1%, and cultured at 200rpm in the dark at 37 ℃. 1mL was sampled at each time point at 0h, 12h, 24h, 36h, 48h, 60h and 72h and stored at-80 ℃ protected from light. After fermentation, all samples were centrifuged and the supernatants were assayed for extracellular heme production, and cells were resuspended in 1M NaOH at the same volume and sonicated to detect intracellular heme production by high performance liquid chromatography. As shown in figure 4, after fermentation for 60 hours, the extracellular heme yield of the recombinant strain ZSL-3 reaches 180.5mg/L, the intracellular heme yield is 126.2mg/L, and the total heme yield reaches 294.9mg/L. The extracellular heme yield is 180.5mg/L after 72 hours of fermentation, the intracellular heme is 74.1mg/L, and the total heme yield is 254.6mg/L.
The yield of ZSL-1 is the highest after fermentation for 60 hours, the yield of extracellular heme is 5.1mg/L, the yield of intracellular heme is 35.2mg/L, and the total yield of heme is 40.3mg/L. The yield of extracellular heme reaches 20.6mg/L, the yield of intracellular heme reaches 87.8mg/L and the total yield of heme reaches 108.4mg/L after ZSL-2 fermentation for 60 hours.
Although the present invention has been described with reference to the preferred embodiments, it should be understood that various changes and modifications can be made therein by those skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.
SEQUENCE LISTING
<110> Nanjing university of industry
<120> genetically engineered bacterium for producing heme as well as construction method and application thereof
<160> 20
<170> PatentIn version 3.3
<210> 1
<211> 1416
<212> DNA
<213> Escherichia coli
<400> 1
atgaaaatca aaactcgctt cgcgccaagc ccaacaggct atctgcacgt tggcggcgcg 60
cgtactgctc tttactcctg gctttttgca cgtaaccacg gcggtgagtt cgtgctgcgt 120
attgaagaca ccgatcttga gcgttccacg ccggaagcta tcgaagccat tatggatggc 180
atgaactggc tgagcctgga gtgggatgaa ggtccgtact accagaccaa acgttttgat 240
cgctacaacg cggtgatcga tcagatgctg gaagagggca ctgcttataa atgctattgc 300
tctaaagagc gcctggaagc gctgcgcgaa gagcaaatgg cgaaaggtga gaagccgcgt 360
tatgacggtc gctgccgcca cagccatgag catcatgctg atgatgaacc gtgtgttgta 420
cgttttgcta acccgcagga aggttctgtt gtttttgacg atcagatccg tggtccgatc 480
gagttcagca accaggaact ggacgatctt attatccgcc gtaccgatgg ttccccaacc 540
tataacttct gtgtggttgt cgatgactgg gatatggaaa tcacccacgt tatccgtggc 600
gaagaccata tcaacaacac gccacgccag atcaacattc ttaaggccct gaaagcgccg 660
gtgccggttt acgcgcacgt ttctatgatc aatggcgatg acggtaaaaa actgtccaaa 720
cgtcacgggg cagtcagcgt aatgcagtat cgtgatgacg gttatttgcc agaagcactg 780
ctgaactatc tggtgcgtct gggctggtcc cacggcgatc aggaaatctt cactcgtgaa 840
gagatgatca aatacttcac tttgaatgcc gtcagcaaat ctgccagtgc gttcaacacc 900
gacaagctgc tgtggctgaa ccatcactac attaacgcgc tgccgccgga gtatgttgct 960
actcacttac agtggcacat tgagcaggaa aatatcgata cccgtaacgg cccgcagctg 1020
gctgatctgg tgaaactgct gggcgaacgc tgcaagacgc tgaaagagat ggcacagagc 1080
tgccgttatt tctacgaaga ttttgctgag ttcgatgccg acgccgcgaa aaaacatctg 1140
cgtccggtag cgcgtcagcc gctggaagtg gttcgtgaca aactggccgc gattactgac 1200
tggaccgctg aaaacgttca tcacgctatt caggcgacgg cggatgagct ggaagtgggt 1260
atgggtaaag ttggtatgcc gctgcgtgtc gccgtaaccg gtgcggggca gtctccagca 1320
ctggatgtta ccgttcacgc aattggtaag acccgcagta tcgagcgtat caacaaagcg 1380
ctggatttta ttgctgaacg cgaaaatcag cagtaa 1416
<210> 2
<211> 1257
<212> DNA
<213> Escherichia coli
<400> 2
atgacccttt tagcactcgg tatcaaccat aaaacggcac ctgtatcgct gcgagaacgt 60
gtatcgtttt cgccggataa gctcgatcag gcgcttgaca gcctgcttgc gcagccgatg 120
gtgcagggcg gcgtggtgct gtcgacgtgc aaccgcacgg aactttatct tagcgttgaa 180
gagcaggaca acctgcaaga ggcgttaatc cgctggcttt gcgattatca caatcttaat 240
gaagaagatc tgcgtaaaag cctctactgg catcaggata acgacgcggt tagccattta 300
atgcgtgttg ccagcggcct ggattcactg gttctggggg agccgcagat cctcggtcag 360
gttaaaaaag cgtttgccga ttcgcaaaaa ggtcatatga aggccagcga actggaacgc 420
atgttccaga aatctttctc tgtcgcgaaa cgcgttcgca ctgaaacaga tatcggtgcc 480
agcgctgtgt ctgtcgcttt tgcggcttgt acgctggcgc ggcagatctt tgaatcgctc 540
tctacggtca cagtgttgct ggtaggcgcg ggcgaaacta tcgagctggt ggcgcgtcat 600
ctgcgcgaac acaaagtaca gaagatgatt atcgccaacc gcactcgcga acgtgcccaa 660
attctggcag atgaagtcgg cgcggaagtg attgccctga gtgatatcga cgaacgtctg 720
cgcgaagccg atatcatcat cagttccacc gccagcccgt taccgattat cgggaaaggc 780
atggtggagc gcgcattaaa aagccgtcgc aaccaaccaa tgctgttggt ggatattgcc 840
gttccgcgcg atgttgagcc ggaagttggc aaactggcga atgcttatct ttatagcgtt 900
gatgatctgc aaagcatcat ttcgcacaac ctggcgcagc gtaaagccgc agcggttgag 960
gcggaaacta ttgtcgctca ggaaaccagc gaatttatgg cgtggctgcg agcacaaagc 1020
gccagcgaaa ccattcgcga gtatcgcagc caggcagagc aagttcgcga tgagttaacc 1080
gccaaagcgt tagcggccct tgagcagggc ggcgacgcgc aagccattat gcaggatctg 1140
gcatggaaac tgactaaccg cttgatccat gcgccaacga aatcacttca acaggccgcc 1200
cgtgacgggg ataacgaacg cctgaatatt ctgcgcgaca gcctcgggct ggagtag 1257
<210> 3
<211> 1281
<212> DNA
<213> Escherichia coli
<400> 3
atgagtaagt ctgaaaatct ttacagcgca gcgcgcgagc tgatccctgg cggtgtgaac 60
tcccctgttc gcgcctttac tggcgtgggc ggcactccac tgtttatcga aaaagcggac 120
ggcgcttatc tgtacgatgt tgatggcaaa gcctatatcg attatgtcgg ttcctggggg 180
ccgatggtgc tgggccataa ccatccggca atccgcaatg ccgtgattga agccgccgag 240
cgtggtttaa gctttggtgc accaaccgaa atggaagtga aaatggcgca actggtgacc 300
gaactggtcc cgaccatgga tatggtgcgc atggtgaact ccggcactga agcgaccatg 360
agcgccatcc gcctggcccg tggttttacc ggtcgcgaca aaattattaa atttgaaggg 420
tgttaccatg gtcacgctga ctgcctgctg gtgaaagccg gttctggcgc actcacgtta 480
ggccagccaa actcgccggg cgttccggca gatttcgcca aatatacctt aacctgtact 540
tataatgatc tggcttctgt acgcgccgca tttgagcaat acccgcaaga gattgcctgt 600
attatcgtcg agccggtggc aggcaatatg aactgtgttc cgccgctgcc agagttcctg 660
ccaggtctgc gcgcgctgtg cgacgaattt ggcgcgttgc tgatcatcga tgaagtgatg 720
accggtttcc gcgtagcgct agctggcgca caggattatt acggcgtagt gccagattta 780
acctgcctcg gcaaaatcat cggcggtgga atgccggtag gcgcattcgg tggtcgtcgt 840
gatgtaatgg atgcgctggc cccgacgggt ccggtctatc aggcgggtac gctttccggt 900
aacccgattg cgatggcagc gggtttcgcc tgtctgaatg aagtcgcgca gccgggcgtt 960
cacgaaacgc tggatgagct gacaacacgt ctggcagaag gtctgctgga agcggcagaa 1020
gaagccggaa ttccgctggt cgttaaccac gttggcggca tgttcggtat tttctttacc 1080
gacgccgagt ccgtgacgtg ctatcaggat gtgatggcct gtgacgtgga acgctttaag 1140
cgtttcttcc atatgatgct ggacgaaggt gtttacctgg caccgtcagc gtttgaagcg 1200
ggctttatgt ccgtggcgca cagcatggaa gatatcaata acaccatcga tgctgcacgt 1260
cgggtgtttg cgaagttgtg a 1281
<210> 4
<211> 975
<212> DNA
<213> Escherichia coli
<400> 4
atgacagact taatccaacg ccctcgtcgc ctgcgcaaat ctcctgcgct gcgcgctatg 60
tttgaagaga caacacttag ccttaacgac ctggtgttgc cgatctttgt tgaagaagaa 120
attgacgact acaaagccgt tgaagccatg ccaggcgtga tgcgcattcc agagaaacat 180
ctggcacgcg aaattgaacg catcgccaac gccggtattc gttccgtgat gacttttggc 240
atctctcacc ataccgatga aaccggcagc gatgcctggc gggaagatgg actggtggcg 300
cgtatgtcgc gcatctgcaa gcagaccgtg ccagaaatga tcgttatgtc agacacctgc 360
ttctgtgaat acacttctca cggtcactgc ggtgtgctgt gcgagcatgg cgtcgacaac 420
gacgcgactc tggaaaattt aggcaagcaa gccgtggttg cagctgctgc aggtgcagac 480
ttcatcgccc cttccgccgc gatggacggc caggtacagg cgattcgtca ggcgctggac 540
gctgcgggat ttaaagatac ggcgattatg tcgtattcga ccaagttcgc ctcctccttt 600
tatggcccgt tccgtgaagc tgccggaagc gcattaaaag gcgaccgcaa aagctatcag 660
atgaacccaa tgaaccgtcg tgaggcgatt cgtgaatcac tgctggatga agcccagggc 720
gcagactgcc tgatggttaa acctgctgga gcgtacctcg acatcgtgcg tgagctgcgt 780
gaacgtactg aattgccgat tggcgcgtat caggtgagcg gtgagtatgc gatgattaag 840
ttcgccgcgc tggcgggtgc tatagatgaa gagaaagtcg tgctcgaaag cttaggttcg 900
attaagcgtg cgggtgcgga tctgattttc agctactttg cgctggattt ggctgagaag 960
aagattctgc gttaa 975
<210> 5
<211> 942
<212> DNA
<213> Escherichia coli
<400> 5
atgttagaca atgttttaag aattgccaca cgccaaagcc cacttgcact ctggcaggca 60
cactatgtca aagacaagtt gatggcgagc catccgggcc tggtcgttga actggtaccg 120
atggtgacgc gcggcgatgt gattcttgat acgccgctgg cgaaagtagg cggaaaaggc 180
ttatttgtaa aagagctgga agtcgcgctc ctcgaaaatc gcgccgatat cgccgtacac 240
tcaatgaaag atgtgccggt tgaattcccg caaggtctgg gactggtcac tatttgtgag 300
cgtgaagatc ctcgcgatgc ctttgtgtcc aataactatg acagtctgga tgcgttaccg 360
gcaggcagta tcgtcgggac gtccagttta cgtcgccagt gccaactggc tgaacgccgt 420
ccggatctga ttatccgctc cctgcgcggc aacgtcggca ctcgcctgag caaactggat 480
aacggcgaat acgatgccat cattcttgcc gtagccggac taaaacgttt aggtctggag 540
tcacgtattc gcgccgcgtt gccacccgag atttctcttc cggcggtagg acaaggtgcg 600
gtgggtattg aatgccgcct tgatgattca cgcactcgcg agctgcttgc cgcgctgaat 660
caccacgaaa ctgcactgcg cgttaccgca gaacgcgcca tgaatacccg tctcgaaggc 720
ggatgtcagg tgccaattgg tagctacgcc gagcttattg atggcgaaat ctggctgcgt 780
gcgctggtcg gcgcgccgga cggttcgcag attattcgcg gtgaacgccg cggtgcgccg 840
caagatgccg aacaaatggg gatttcgctg gcagaagagc tactgaataa cggcgcgcgc 900
gagatcctcg ctgaagtcta taacggagac gccccggcat ga 942
<210> 6
<211> 741
<212> DNA
<213> Escherichia coli
<400> 6
atgagtatcc ttgtcacccg cccgtctccc gctggagaag agttagtgag ccgtctgcgc 60
acactggggc aggtggcctg gcattttccg ctgattgagt tttctccggg tcaacaatta 120
ccgcaacttg ctgatcaact ggcagcgctg ggggagagcg atctgttgtt tgccctctcg 180
caacacgcgg ttgcttttgc ccaatcacag ctgcatcagc aagatcgtaa atggccccga 240
ctacctgatt atttcgccat tggacgcacc accgcactgg cactacatac cgtaagtgga 300
cagaagattc tctacccgca ggatcgggaa atcagcgaag tcttgctaca attacctgaa 360
ttacaaaata ttgcgggcaa acgtgcgctg atattacgtg gcaatggtgg tcgtgagcta 420
attggggata ccctgacggc gcgcggtgct gaggtcactt tttgtgaatg ttatcaacga 480
tgcgcaatcc attacgatgg tgcagaagaa gcgatgcgct ggcaagcccg cgaggtgacg 540
atggtcgttg ttaccagcgg tgaaatgttg cagcaactct ggtcgctgat cccacaatgg 600
tatcgtgagc actggttact acactgtcga ctattggtcg tcagtgagcg tttggcgaaa 660
ctcgcccggg aactgggctg gcaagacatt aaggtcgccg ataacgctga caacgatgcg 720
cttttacggg cattacaata a 741
<210> 7
<211> 1065
<212> DNA
<213> Escherichia coli
<400> 7
atgaccgaac ttaaaaacga tcgttatctg cgggcgctgc tgcgccagcc cgttgatgtc 60
actccagtat ggatgatgcg ccaggcgggt cgctatctac cggaatataa agccacgcgc 120
gcccaggcag gcgattttat gtcgctgtgc aaaaacgccg agctggcgtg cgaagtgact 180
ttgcaaccgc tgcgtcgcta cccgctggat gcggcgatcc tcttttccga tatcctcacc 240
gtgccggacg cgatggggtt agggctctat tttgaagccg gagaaggtcc gcgttttacc 300
tcgccagtca cctgcaaagc tgacgtcgat aaactgccaa ttccggaccc ggaagatgaa 360
ctgggttacg tgatgaacgc ggtgcgtacc attcgtcgcg aactgaaagg cgaagtgccg 420
ctgattggtt tttccggcag cccgtggacg ctggcgacct acatggtgga aggcggcagc 480
agcaaagcct tcaccgtgat caaaaaaatg atgtatgccg atccgcaggc gctgcacgct 540
ctgctcgata aactggcgaa aagcgtcact ttgtatctga atgcgcagat taaagccggt 600
gctcaggcag tgatgatttt cgacacctgg ggcggcgtgc ttaccgggcg cgattatcaa 660
cagttctcgc tctattacat gcataaaatt gttgatggtt tactgcgtga aaacgacggt 720
cgccgcgtac cggtcacgct gtttaccaaa ggcggcggac agtggctgga agccatggca 780
gaaaccggtt gcgatgcgct gggcctcgac tggacaacgg acatcgccga tgcgcgccgc 840
cgtgtgggca ataaagtcgc gttgcagggt aatatggatc cgtcgatgct gtacgcgccg 900
cctgcccgca ttgaagaaga agtagcgact atacttgcag gtttcggtca cggcgaaggt 960
catgtcttta accttggtca cggcattcat caggatgtgc cgccagaaca tgctggcgtg 1020
ttcgtggagg cagtgcatcg actgtctgaa cagtatcacc gctaa 1065
<210> 8
<211> 900
<212> DNA
<213> Escherichia coli
<400> 8
atgaaacccg acgcacacca ggttaaacag tttctgctca accttcagga tacgatttgt 60
cagcagctga ccgccgtcga tggcgcagaa tttgtcgaag atagttggca gcgcgaagct 120
ggcggcggcg ggcgtagtcg ggtgttgcgt aatggtggtg ttttcgaaca ggcaggcgtc 180
aacttttcgc atgtccacgg tgaggcgatg cctgcttccg ccaccgctca tcgcccggaa 240
cttgccgggc gcagtttcga ggcgatgggc gtttcactgg tagtgcatcc gcataacccg 300
tatgttccca ccagccacgc gaatgtgcgg ttttttattg ccgaaaaacc gggtgccgat 360
cccgtctggt ggtttggcgg tggcttcgac ttaaccccat tctatggttt tgaagaagat 420
gctattcact ggcatcgcac cgcccgtgac ctgtgcctgc catttggcga agacgtttat 480
ccccgttaca aaaagtggtg cgacgaatac ttctacctca aacatcgcaa cgaacagcgc 540
ggtattggcg ggctgttctt tgatgacctg aacacgccag atttcgaccg ctgttttgcc 600
tttatgcagg cggtaggcaa aggctacacc gacgcttatt taccaattgt cgagcgacgg 660
aaagcgatgg cctacggcga gcgcgagcgc aatttccagt tatatcgtcg cggtcgttat 720
gtcgagttca atctggtctg ggatcgcggc acgctgtttg gcctgcaaac tggcgggcgc 780
accgagtcta tcctgatgtc aatgccgcca ctggtacgct gggaatatga ttatcagcca 840
aaagatggca gcccagaagc ggcgttaagt gagtttatta aggtcaggga ttgggtgtaa 900
<210> 9
<211> 546
<212> DNA
<213> Escherichia coli
<400> 9
gtgaaaacat taattctttt ctcaacaagg gacggacaaa cgcgcgagat tgcctcctac 60
ctggcttcgg aactgaaaga actggggatc caggcggatg tcgccaatgt gcaccgcatt 120
gaagaaccac agtgggaaaa ctatgaccgt gtggtcattg gtgcttctat tcgctatggt 180
cactaccatt cagcgttcca ggaatttgtc aaaaaacatg cgacgcggct gaattcgatg 240
ccgagcgcct tttactccgt gaatctggtg gcgcgcaaac cggagaagcg tactccacag 300
accaacagct acgcgcgcaa gtttctgatg aactcgcaat ggcgtcccga tcgctgcgcg 360
gtcattgccg gggcgctgcg ttacccacgt tatcgctggt acgaccgttt tatgatcaag 420
ctgattatga agatgtcagg cggtgaaacg gatacgcgca aagaagttgt ctataccgat 480
tgggagcagg tggcgaattt cgcccgagaa atcgcccatt taaccgacaa accgacgctg 540
aaataa 546
<210> 10
<211> 963
<212> DNA
<213> Escherichia coli
<400> 10
atgcgtcaga ctaaaaccgg tatcctgctg gcaaacctgg gtacgcccga tgcccccaca 60
cctgaagcgg taaaacgcta tctgaaacaa tttttaagcg acagacgcgt ggttgatacc 120
tcacggttgt tatggtggcc attgctgcgc ggcgtgattt tgccgctgcg ctcgccgcgt 180
gtggcgaagc tgtatgcctc tgtctggatg gaaggtggct cgccgctgat ggtttacagc 240
cgccagcaac agcaggcgct ggcacaacgt ttaccggaga tgcccgtagc gctgggaatg 300
agctacggct cgccatcact ggaaagcgcc gtagatgaac tcctggcaga gcatgtagat 360
catattgtgg tgctgccgct ttatccgcaa ttctcctgtt ctacggtcgg tgcggtatgg 420
gatgaactgg cacgcattct ggcgcgcaaa cgtagcattc cggggatatc gtttatacgt 480
gattacgccg ataaccacga ttacattaat gcactggcga acagcgtacg cgcttctttt 540
gccaaacatg gcgaaccgga tctgctactg ctctcttatc atggcattcc ccagcgttat 600
gcagatgaag gcgatgatta cccgcaacgt tgccgcacaa cgactcgtga actggcttcc 660
gcattgggga tggcaccgga aaaagtgatg atgacctttc agtcgcgctt tggtcgggaa 720
ccctggctga tgccttatac cgacgaaacg ctgaaaatgc tcggagaaaa aggcgtaggt 780
catattcagg tgatgtgccc gggctttgct gcggattgtc tggagacgct ggaagagatt 840
gccgagcaaa accgtgaggt cttcctcggt gccggcggga aaaaatatga atatattccg 900
gcgcttaatg ccacgccgga acatatcgaa atgatggcta atcttgttgc cgcgtatcgc 960
taa 963
<210> 11
<211> 1218
<212> DNA
<213> Bacillus amyloliquefaciens
<400> 11
atgattcagc tgagtgagga aatcacgaaa ataaaaggcg gcgtatcctc gccgaaaggg 60
tttgaggcaa agggtgtcca ctgcgggctg cgctattcaa aaaaagatct cggagcgatt 120
atcagcgagg cgccggcagt cagtgcagcg gtatatacgc agagccattt tcaggcagcg 180
ccgctgaaag tgacgcaaga cagcttgaaa aaagaagctg tgcttcaggc ggtaattgtc 240
aacagcgcga ttgccaacgc ctgtacggga gaccaaggct taaaggacgc ctatcaaatg 300
cgggacagct tcgcaagcca gctcggtatt gaaccagagc ttgtggcggt ttcgtcaacc 360
ggggtgattg gtgagctttt agacatgaaa aaaattcaag cgggtattga acagctcggt 420
caagcgccgt cattgtccgg agcatttgaa gaagccattt tgacgacgga tacggtgacg 480
aaacagacgt gttatgaact ggtgatcggc ggagacatca tcacgatcgg cggagcggcg 540
aaaggctcag gcatgatcca ccccaacatg gcgacaatgc tcggctttgt cacaacggac 600
gcggccgtgg aagaacagtc gctcaaaaac gcgctcaggg agatcacgga tgtttcattt 660
aatcaaatca ccgttgacgg agaaacatcg acgaatgata tggtgctcgt aatggcgaac 720
ggctgcgcgg ggaatgatcg tctgacggag cagcatcccg actggccggc ttttaaaaag 780
gggttaaagc ttgtgtgcga agaccttgcc aaagaaattg ccagagacgg tgaaggagcg 840
acgaaattaa ttgaagccaa agtcgaaggt gcgaaaaata atcttgaagc gaatattatc 900
gccaaaaaaa tcgtcggctc aagccttgtg aaaaccgccg tttacggcac ggacgccaat 960
tgggggcgca tcatcggcgc aatcgggcac agtgcggcaa gcgtaacggc cgaacaagtg 1020
gaagttttcc tcggcggaca gtgtctgttt aaaaacaacg aacctcagcc gttttcagaa 1080
accgatgcca aggagtactt atcatgtgat gaaattacga tcgcagtccg cctgaacgaa 1140
ggctccggca gcggccgggc atggggctgt gacttaacct atgattatat caaaatcaat 1200
gcgagctatc gcacataa 1218
<210> 12
<211> 954
<212> DNA
<213> Bacillus amyloliquefaciens
<400> 12
atgatgaacg aacgagtgaa caaagtagca ttaatcggag caggttttgt tggaagcagt 60
tatgcatttg cgttaattaa ccaagggatc acagatgagc ttgtgatcat tgatgtaaat 120
agagaaaaag ccatgggcga tgtcatggat ttaaatcacg gaaaggcatt tgcacctcat 180
ccggtgaaaa cgtcttacgg aacatatgaa gattgcaagg atgccgatat cgtatgcatc 240
tgtgccggag ccaatcaaaa accgggcgaa acgagacttg agctggtcga aaaaaatctc 300
gccattttta aaagcattgt cggtgaagta atggcaagcg gatttgacgg catcttcctc 360
gttgccacaa acccggtcga cattctcact tatgcgacat ggacattcag cggtctgccg 420
aaagaacgcg tcatcggcag cggcacgaca ctggattctg cgcgattccg ttatatgctg 480
agtgaatatt tcggagccgc tccgcaaaac gtacacgccc acattatcgg cgagcacggc 540
gataccgagc ttcctgtatg gagtcacgcc aatatcggcg gagtgccggt gcagcagttg 600
ctggagaaaa atgcagctta caaacaggac gagctggatc agatcgtgga cgatgtgaaa 660
aacgccgcct atcatattat tgagaaaaaa ggcgcgacat attacggagt ggcgatgagc 720
ctcgcccgca tcacaaaagc gattttgcgt aatgaaaaca gtattttaac cgtcagcaca 780
tatctggacg ggcaatacgg tgtaaacgac gtctttatcg gcattccggc tgtcgtcaat 840
cggaacggca tcgccggtgt gacggaactt gagctgaatg aaacagaaca gcgtcaattc 900
aaccatagcg caaacgtgct gaaagacatt ctcgctccgc atttcgcgga gtaa 954
<210> 13
<211> 972
<212> DNA
<213> Bacillus amyloliquefaciens
<400> 13
gtggcagatt tatttacaaa agtacaagaa aaagtagcag gaaaagatgt aaaaatcgta 60
tttcctgaag gaatggacga acgtatcctg gttgcggtca acaacttggc gggcaacaag 120
gtattaaagc cgatcgtagt cggcaataaa gaagacattc aagcaaaagc gaaagaatta 180
aatcttacgc ttgacggcgt tgacattttt gacccgaata catatgaagg catggaagaa 240
ctcgttcagg ctttcgtaga acgccgcaaa ggcaaagcga cggaagaaca ggcccgcaaa 300
gccttattgg acgaaaacta tttcggcaca atgcttgtgt acaaaggtct cgcggacgga 360
cttgtcagcg gagctgcaca ttctactgcc gatacggttc gacctgcact gcaaatcatt 420
aaaacaaaag aaggcgtgaa aaaaacatct ggtgtcttca tcatggctcg cggtgacgag 480
caatatgtat tcgctgattg cgcgatcaac attgctcctg acagccagga ccttgccgaa 540
atcgccattg aaagcgccaa tacggctcaa atgtttgata ttgacccgcg cgttgccatg 600
ctcagcttct ctacaaaagg atcggcgaaa tcagacgaga cggaaaaagt ggccgaagcg 660
gtgaaaattg cgaaggaaaa agcgcctgaa cttacgcttg acggcgaatt ccaatttgat 720
gctgcatttg tgccgtctgt tgcggagaag aaagcgccgg actccgaaat taaaggagac 780
gcgaatgtat ttgtattccc aagccttgaa gcaggaaaca tcggctacaa aatcgctcag 840
cgcttaggcg gatttgaagc ggttggaccg attctgcaag gattaaatat gcctgtaaac 900
gatctttcca gaggatgtaa tgcggaagac gtctacaatc ttgcgttaat tacggcggct 960
caagcgctgt aa 972
<210> 14
<211> 1113
<212> DNA
<213> Bacillus amyloliquefaciens
<400> 14
atgaaaaagc agagaattgt tgtgaaaatc gggagcagct cgctcacaaa cagtaacgga 60
agtattgatg aagccaaaat caaggagcat acggaagcca tttcattatt aaaagaaaac 120
gggcatgaag taatccttat tacctcaggc gcggtggcag cgggtttttc cgctctcggc 180
tatccgtcgc gccccgttac aataaaagga aagcaggcag ccgccgcggt cggccagacg 240
cttttaatgc agcaatatat ggaccattta aaaagatacg gtctgacgcc ggcgcaaatt 300
ttattaacaa gaaatgattt ctcaaaaaga gagcggtaca gaaatgcgta tgccacggta 360
atggaattgc tggagcgggg agtcgtgccg attattaatg agaatgattc cacatcagtc 420
gaagagctga cgttcggaga taatgacatg ctgtcggcgc ttgtgagcgg cctgattcat 480
gcagaccaat taatgattct cacagacatt aacggcctgt acgatgccaa tccgaatgaa 540
aatcctgacg caaagcggtt tgattatttg actgacatta cacctgaatt gctcgggtat 600
gccggttcag caggctcgaa agtcggcacc ggaggcatga agtcaaaact tctcgctgcc 660
cagaccgcgt tgtcgctcgg agttaaggtg tttatcggga ccggtgccgg acgggaaaaa 720
ctgaagctga ttttagatgg taaaggcgac ggtacatata tcggtgataa agagctgtcc 780
tccgttaata atacacggca atggatcatg tttcattctc cgatatcagg ggaaatcatc 840
attgatgggg gagcggagca ggcgatgatc cataacggct caagtctcct tccggccggt 900
gtcgccgatg tctgcggcag ttttccgaaa ggggccgtag tggaagtcag aggtcccggc 960
ggcatcatcg gcaaagggca gacgcattac tcatccgatg agattttgga agccaaaggg 1020
aagcggagcg atcagcttcc gggcgcgaag caggtggaag tgattcacag aaatgattgg 1080
gtgaatttat ttgacgaggg ggaaaacaaa tga 1113
<210> 15
<211> 2813
<212> DNA
<213> Bacillus amyloliquefaciens
<400> 15
atgtggttac tcattatagc ctgtgctgcc gtactaatca tcggaatcat tgaaaaaagg 60
cggcatcaga agaatatcga tgctctgcca gtacgcgtca atattaatgg tatccgcggc 120
aagtcaaccg taacgaggct gacgaccgga atactgatgg aggcgggcta caaaacagtc 180
ggaaaaacga cgggaacaga tgcaaggatg atctattggg atacacctga ggagaaaccg 240
atcaaacgga aaccgcaggg cccgaatatc ggcgagcaaa aagaggtaat gaaggaaacc 300
gtagagcggg gcgccaatgc cattgtcagt gaatgtatgg cggtaaaccc ggattatcag 360
attatctttc aggaagaact gcttcaagcc aacatcggcg tcatcgtgaa tgtgcttgaa 420
gaccatatgg acgttatggg gccgacgctt gatgaaattg ctgaagcatt taccgcgacg 480
attccatata acggccatct tgtgattaca gacagtgaat acacagattt ctttaaagaa 540
aaagccgcag agcggaatac cgaagttatt attgcggata actctaaaat tactgatgaa 600
tacctgcgga aattcgaata tatggtcttt cctgataacg cttcccttgc gctcggtgtt 660
gcccaagctc ttggtataga tgaagaaaca gcgtttaaag gaatgctgaa tgcgccgcct 720
gatcctggcg ccatgagaat tctcccgctg ctcagcacga aggagcccgg tcatttcgta 780
aacggctttg ccgcaaatga tgcatcttct actttaaata tatggaaacg tgtaaaggaa 840
atcggctacc cgacagatga accgattgtt atcatgaact gccgtgccga ccgcgtggac 900
agaacgattc agtttgccaa cgacgtgctt ccgtacatta aaacgaagga actcattctc 960
atcggcgaga caacagaacc gatcgtcaga gcttatgaag aaggcaagat tcctgctgat 1020
acactgcacg atctggaata taaatcaaca gacgaaatca tggacgtgct gaaaacaaga 1080
atgcaaaacc gtgtcatata tggcgtcggc aatatccacg gttcagcgga accattaatt 1140
gaaaaaatcc aagagtataa ggtgaaacag ctcgttagct aggaggaaaa ggataaatgt 1200
tcggatcaga tttatatatc tcacttattt taggcgtgtt aatcagttta atttttgcgg 1260
aaaaaacagg tatcgtacct gccggtttag tcgtaccggg ttatttagga ctcgttttta 1320
accagccggt ctttatttta ctcgtgctgt tagtgagtct tcttacatac gtcatcgtca 1380
aatacggttt atccagattt atgattttgt acggacgcag aaaattcgca gcaatgctga 1440
ttacgggaat ctgcttaaaa atcgcacttg attttcttta cccgatcgta ccgtttgaga 1500
tatcagaatt ccgcggaatc ggtatcattg taccgggtct gatcgccaac accattcaga 1560
aacagggatt aacgattaca tttgccagca cgctgttctt aagcggcgca acttttgcca 1620
ttatgtttgc ttactactta atctaatgta aggtgtgtca aacgatgaaa aaacaattaa 1680
cctttcaaga aaaactgctg aagctgacca aacagcagaa aaagaagact aatcttcacg 1740
tttttatcgc actgccgatc gtcttttgcc tgatgttcgt ctgcatcctg acagggaagg 1800
cggagacgcc gagtgtgaaa agaaatgccg atgaccttgt gtcagcctca ttcgtcggag 1860
atattatgat gggccggaat gtggagaaag tgacaaagca taacggaacg gaaagcgtct 1920
tccgctacgc aaagccattc ttcgaagcat ccgattatgt gtcggggaac tttgaaaacc 1980
cggtaacata taaaaagaac tacaaagaag cagaaaaaaa tatccacctt cagtcaaaca 2040
aagatgccgt aaaagtattg aaggacatga atttcaccgt tttgacggca gccaacaacc 2100
atgcgatgga ttacggccct caaggaatgc gggatacggt tgaagaattt tcaaagcaga 2160
accttgaact tgtcggtgca ggcctgacgc ttaaagaagc cgaggagaac atttcatatc 2220
aagatgtaaa cggagtcaaa atcgcaacgt taggattcac agatgtttcc ggaaaaggct 2280
ttgcagctaa acggaatgcg ccgggtgtgc ttccggccga tcctgagctg tttattccaa 2340
tgatctctaa agccaaaaag aatgcagacc tcgtcattgt tcaaacacac tggggacagg 2400
aatacgataa tgatccgaat gacagacagc gccaattggc aagagcaatg tcagatgccg 2460
gagcggatat tatcgtcgga caccatccgc acgtgcttga accgatcgaa atgtaccacg 2520
gcaccgttat tttctacagc ctgggcaact tcgtatttga ccagggatgg acaagaacga 2580
gagacacggc gcttgttcaa tatcaccttc agaaaaacgg cacgggacgc tttgaagtca 2640
caccgatgaa cattcacgaa gcaacgcctg cgccggttaa aaaaggcagc attaaccata 2700
aaacaatcat acgtgaactg acgaaagaat cgaatttcaa gtggagcgtc aaggacggaa 2760
agttaacgtt tgatgtggat cacagcgata ttttaaaaaa gaaagcggag tga 2813
<210> 16
<211> 1701
<212> DNA
<213> Artificial sequence
<400> 16
tctcccgctg ctcagcacga gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt tttttcgtac agccgattca 120
aaatcaccgg gaagccgttt gttttgtata tccgcagaca tcagaccgcc tcctttccgc 180
gttatctgta gttttcagcg gctattcctt ttttatgcat tttataaaat agaggaattt 240
attgatgatg cttgatgttt taccaagaac ttcacaaata tggatgaaca tttcttgaac 300
gaatataaag atttattaaa attatttcaa aagagtgata aatgtcctgt atacggaaca 360
aaagcaaata gactttccgc atataaattg tgtatttcct gtaaacactc cggacccgtc 420
tgtttctgtc atgtgcaagt cattccgata gttattttgg aataggactg acagcaggat 480
atgggggaaa atgaatgact ttatgacctt atccttaaca aaaaaggcag tctgcatcca 540
gcggacggag agtcccgaat cgtatgcgca gtgcggaaaa tgttgatata acgggctatg 600
aaaagatgga ttatgattgc atctttttct tccggaacgc aaatagtcca tttagtccaa 660
acgaatatcc gtaggaaaat gtaaacgcat tcatttttct ttaaaaaaat taaagtaagt 720
tcgaagtcct gcctattccc aaaaaaagca attcgataat aggaagaata gcgccgctaa 780
tagagaagtt tggcttagtg caggcgagga gattatgtta cataatgccg attgagaatt 840
catagtgaag ctatatactg atgaatgaat ttatcaatac agaaggagat gtcaaaaatc 900
acggatcttt tgtaatccgc tttgcgccaa gatataaatt catccaataa ttgctttttt 960
gaaagcttgt gacggttacg ccttctgacg gagaactgtg tatcatctct ccatttccga 1020
tataaaggcc gtcttggacg ggcgcggttt gtaatgaatc cgactttttg aaaaaaacaa 1080
tatcccccgg taaaagctca ttttctttga cggcagctcc gactttccat tgatcactga 1140
ccgttctcgg cagatggatg ttctgcctgc tgaaaagata ctgtatcaat ccggacggat 1200
caaaaccgtc cttaggctcg tcgcctccgt aaacatattt atttccgaca agtttttgcg 1260
cgtctgaaac catcagggca gaaacttgag aatccgcttc agcaatttcc gttctcgtta 1320
ctgcaggtgc cacaagacaa atcataaggc cggcaaggat gtacttcctc cagcttgtga 1380
gcatgttttc tgttcactct ccttattttt actagttctt acatcggtaa ctttaagtaa 1440
atgtttagga gagcataaaa aaagaatgcc cgatacgggc attctttact ggattcggta 1500
caaaaaatat gccggcaagc ggaagcatgc gcttattttg cgcccgctgt gtcctcctgc 1560
tgaatttttt gcatttctgt gtcaattttt tgtttttcct gatctgtgag ctgatcattg 1620
aatttaaaag ctgacataaa cataaatacc ataatgatag cggcaaacgg ccatcctgct 1680
ttaatgattt tcatttgttt t 1701
<210> 17
<211> 1702
<212> DNA
<213> Artificial sequence
<400> 17
atgattctca cagacattaa gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt ttgaaggcta acaaagacat 120
ccgcgcggaa gttgagcggc gccagcttga gcttctggag cagtatgaga ttgatgtgat 180
cgttcttgcc cgctacatgc agattttgac gtctgacttt gtatccgcac acccgaatcg 240
gattattaac atccaccatt cattcctgcc ggcctttatc ggagctaatc cgtataaacg 300
ggcttatgag cgcggagtaa aattaatcgg cgcgacatct cactatgtga cggacgacct 360
tgacgaaggc ccgattattg aacaggatat tgaacgcgtc gatcacagag atcacgcaga 420
ggatctgaag aatatcggca gaaccattga gcgcagcgta ttggcaagag ccgtaaaatg 480
gcacttggaa gatcgcgtca tcgttcacga aaacaaaacg atcgtattta attaatagcg 540
gtccgccggg gaggcgggcc gttttttatg gatgaaaatg tcttgacaag aactcgtttt 600
ctttgcataa tataaaaaaa tcattgagcg ttgaagagga tcagtacgca gaactttctg 660
tgacagagag caaaatggcc cgctgaaaca ttttgccgca tgaaacctgc cgaacctgcc 720
ttggagtcct gaggggaaaa ctcaggcgcg ataacctggc gttacaggaa agcgggacgc 780
gtgcaaaacg cgttcaaaca aggtggtacc acggaaagcc catttcgtcc ttatttttca 840
ggatggaatg ggctttttta tttgatgagc cggtttggat tgattgccac ggaggagaaa 900
ctgtgaagta ttgcaaaaag ctgccttggc aaaagaagcg gctgccgaaa tggtcatgaa 960
aacgaccgct gaaaaaaacg aagcgctcca atgtattgca gacgggctca gaaatgaacg 1020
ccagctgatt ttaacagaga atcagaaaga tattgaagcg ggacagaaaa gaggactgac 1080
gcctgacatt attgacaggc tgactcttga cgaaaaacgc ctgctcgata tcgcggatgc 1140
tgtagaacta ttaatcggtc tgaaagatcc cgtcggcgaa tctttggaga ccattcaaaa 1200
agagaatgga ttatccattg aaaaaatccg cgtgcccctc ggagtagtgg gcatgatcta 1260
tgaagccaga ccgaatgtta cagtagatgc tgccacactt tgcctgaaaa ccggaaacgc 1320
ggttgtgctc agaggaagtt cgtcagctat ccacagcaac aaagcacttg tcagtgtgat 1380
gaaacgcgca ctgggactgt caaagcttcc gattgatgcc gttcagctca tagaagatac 1440
aagcaaagaa accgcgaaac agctcttcac attaaatgac gggctggatg tattgatccc 1500
gcgcggcggc aaaaatttga ttgatctggt ggtcagggaa tcaaccgtac ccgtgttaga 1560
aaccggagcg ggcaattgcc acgtgtacat agatgagtca gcagatcctg atatggccag 1620
agatgtcgtc atcaacgcca aaacacagcg gccttccgtc tgcaatgcga ttgaatctct 1680
tttgatccat gaaaaatggg cg 1702
<210> 18
<211> 1620
<212> DNA
<213> Artificial sequence
<400> 18
atattcttac ttatgcgacg gatatagagg atgactgata caatgataat cacatctaac 60
aggacagccg gaatgcgata atagaacttt ccggcatcgg gaagcggttc ggatgactgg 120
acatccggtg atttcctgag aactgcggtg ccggccgcca tatcgtgaac tgcctgcgct 180
ttttctgtaa agtgcaccgt aataaacggc agaacagaga gaaagtgaag aagggaaaca 240
aaaaatctgc cgacagcctg cccgaatgaa attctgctcc catcatgcgc ttttaccacc 300
ttcagtttaa agaggtaagc gccgatcgtt ccttcaagcg gagtaagcgg catcaaaata 360
tagcaaagca caatcaagcc ggtaaaaatg aagaaaaaag aagtgctcag cggtctcccg 420
gcatataagg tgattggcac aagcagaatg aataggtaca tgagcagaag gtcaaccaaa 480
aaagccgcca tccgttcacc tatatttgca taattcatga ttcattattc tcctttcgta 540
cagtaaaaag acaacaaatc acattttata gtcagatttc cttttttaga ataggtattt 600
attccttatt ttctcttaaa tgacattaca actattcatt tattcctttc agttggaaag 660
aataaaaaaa taaaattttt ctcttgcaaa agtttgtgaa gtattgcaca atataaatgt 720
gaaatacttc acaatataaa aacagacacc acgaaacact ggaggatgag catacatgat 780
gaacgaacga gtgaacaaag tagcattaat cggagcaggt gcaaacgtgc tgaaagatat 840
tctcgctccg cattttgcag agtaaacaca aaaaagcagt acatgacaaa cgccatgtac 900
tgcttttttt aattcgcttt tttcgccatt tcctgagagg ttttcactct cgcttttccc 960
atgaacaaaa cggtaacggc tgcaatgacg atcggcacca gagcaagagt aaatacatat 1020
gtgatgcttt gagacattgc gtcaataatt ttatccagaa tctgcggcgg aatatgagcg 1080
cgcgtgccgg cctggaagat ttcctgagga tttccgatgt tctgcatcgc gccgcccgct 1140
cctttcatgc cgctgaaaga atctgtaagc ttgttggtaa atacattcgt ctggatggtt 1200
ccgaaaatcg tcacaccgag cgtcatgccg aatgatctta agaacgagtt tgttgagttg 1260
gcgcttccgc ggtagcgcgg ctcaaggtca ttcatggacg ctgccggcag caatgagaag 1320
ttgaagccga cgccgaatcc ggagatcagc atgaatactg tcagcatcgt acgcgccgta 1380
tccggagtca tattcgaaag cagcagcatt ccgataaaga aagcgaccac ggaaatcagc 1440
attaaattac ggaaccgcac tttcgtttgg aaaatcccgc cgatcatact tccgataaca 1500
gaaccgatca tcatcggcgt caaaataaag cccgcgcttg tcgcggtgct tccgtacaca 1560
gcctgaacga aaatcgggat aaacaccgcc aaaatcacaa atgtggctcc gtaaaggaaa 1620
<210> 19
<211> 1702
<212> DNA
<213> Artificial sequence
<400> 19
agacatgaaa aaaattcaag gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt ttgattcata acccggccgt 120
gtatgaaaag tggtataagc ggaaggctgc ccctgaagga acgattcaaa acgcggttta 180
cggtttagcg gaactgcaaa aagaagagat tcagactgca aagctgattg ctaatccggg 240
ctgttttccg acggctgtac tgctcggtct cgccccgctg gcaaaaaata agcttttaca 300
agattcattt ctgattgttg atgcgaagac cggcgtatct ggcgcgggcc gaaaagcatc 360
catgggcact cattattctg agctgaatga taatttcaaa atttataagg tcaatgagca 420
tcagcatacc cccgaaattg aacagcaatt ggcggcatgg cagccgggca caggtccgat 480
tacgttttcc gctcatttgg cgccgatgac aagggggatt atggcgacga tgtatactga 540
cgcccctccg ggaatgtctt ctgcacagat aagagaaatg tattgcgaat tttacaaaga 600
ttcatatttt gtcagaatca ggccggaggg tgaatacccg gcgacaaaag aagtatacgg 660
cagcaatttt tgcgatatca gtgtcactgt ggacgaaaga acaaaccgcg cgaccatcgt 720
ttctgtcata gataatctga tgaaaggcgc cgccgggcag gcggtgcaaa atttaaatat 780
catgaatggc tggcaggaag aaacgggact cacgatgacg ccagtctatc catagaacga 840
aagagggatt cagaatatga ttcagctgag tgaggaaatc acgaaaataa aaggcggcgt 900
atttaaccta tgattatatc aaaatcaatg cgagctatcg cacataacaa aggagagcgg 960
catgaggaaa accattgttt ttaagtgcgg cggcagcgtg atccgcgagt tatccgccgc 1020
tttttttcaa aatgtaaaag agcttatgca atcgggctgg aacattgccg tcgtgcatgg 1080
gggcggcccg gaaatttcac aaatgctgaa aacattgcag atagaaacgg aatttgtcga 1140
tgggcagcgg aaaacgacca aaccggtgct tgagacagcg gaaatggttt tgtcagggtc 1200
ggtcaataaa tttttcgtgg ccgaactggc gaaaaacggg ctgaaagcag cgggaatctc 1260
aggaaaggac ggcggactcc ttcaagcatc ctatcttgat caagataaat acggagaagt 1320
gggcgaaatc aaaaaaaccg atccggccat tattaaagca ttaatgaaag aaggcatcat 1380
tcccgttatc gctccgcttt ccatgacaag tgatttcaaa acgctgaacg taaatgcaga 1440
cgccgcggct tcggccgtcg cttccgcctt acacgccgat aaacttttat ttgtcacgga 1500
tgtcgaagga attatggacg gagagaaccg gctggatact ctgacgccgc aagagattca 1560
agccctcatc gatgacggcg tcattgcggg agggatgatt ccgaaggtga agtcggcatt 1620
atcggcactg agtgaagatg tggcggaagt gatgattgtg aacggaaaag gagcgttttt 1680
cactgatcaa gcctttcaag ga 1702
<210> 20
<211> 1702
<212> DNA
<213> Artificial sequence
<400> 20
tgcacattct actgccgata gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt tttagaaagc atgtaccagt 120
tgtcatttcc gtttcttctt ttatccatcg gatagaagca gacgtatttc gcttccggca 180
gctcaggata caggcgtgcg cggacatgcg gattttcata cggatcgcct tctccgctag 240
ccaggtagtt gctcagctcc accacggaca cgtaagaata agccgggatt gtaaattcag 300
caagctttga tttattaaat tcaagctcaa tttcgttcag ctcttccatt gtcgggcgaa 360
gaatcattag cataaaatcg gctttctgtc cgacgatgct gtagatggtt tgcgagcctt 420
tgccttcttt ttgggcgacg ccccattttt caagcagtcc cgtaaattcg tgaataatcg 480
acaggcgctc atcgctggat aacagcttcc atgacgtcca gtccattgtg cggaaatcgt 540
gatgcgcgta ccagccgtca agcgtttggg cggcttcgtt cgttttttgc tgctcactca 600
tgtatcttca ctcctatatc ttttcattga tgccttcact atatcacagt ttaaccgttt 660
cagctgtgga gaaaccttga ataatccata gccttgtgtc agaaactaag ccgtgaacaa 720
accgtcagtt aaattagtta gaaaaataag atttttcttt gaaagcgcta taatgaaagt 780
tggttatttg aatttaacag gaagaagagt atgctgtaaa agtaagcgtt ttttgtcaac 840
atagaggagg gtatatcgtg gcagatttat ttacaaaagt acaagaaaaa gtagcaggaa 900
aagacgtcta caatcttgcg ttaattacgg cggctcaagc gctgtaatcc ggaaaatgcc 960
ggcctttacg aaggccggca tttttttata gaaagaaagt cactgccgcc cagccgaaca 1020
gggataaaca gagagaaccg atcaaaccag ccgcgagcgc ccgccagccg ttctgacgaa 1080
acgccgatat atggactttt aaaccgagcc ccgccatcgc catgccgatt aaaacataag 1140
acacttgcac aagaaacgcg gaatgcgtgg cagaaatgac gcctgatgtg tggatggcgc 1200
tcattccgag aaatccgaag ataaaccaag ggatgggcag cgaagcggca gaaactgtct 1260
ctgacttacc gctgcggcgg gcccgcatgc caagcatgaa tgcggccgga acgagcagcg 1320
cgacccgggt cagcttgacg atcaccgcca tctcgacggc tgtttttcct ccggcgctgc 1380
cggccgccgc cacatgcgcc acctcatgaa gcgttgcccc gcaaaaggcc ccgtaagccg 1440
cgggcgaaaa gcccaataca tgataagaaa gagaatacac aacagtaaaa acggttccta 1500
ataatgaaac ggcggctgca ctgatggctg ctgcattttc atttgatctg atctgcggcg 1560
cgatcgcggc aatggcagcc gccccgcaga tcgctgtgcc gcaggccgtt aatatgctga 1620
ttgtctgatc catacgaaac agccgggaca gtccgtatac aacagcgccc gcaaacatca 1680
tacagcagac ggcaattgca aa 1702

Claims (6)

1. A recombinant Bacillus amyloliquefaciens for synthesizing hemE is characterized in that Bacillus amyloliquefaciens (Bacillus amyloliquefaciens) NX-2S capable of synthesizing polyglutamic acid is taken as a host, hemE pathway genes gltX, hemA, hemmL, hemB, hemC, hemD, hemE, hemF, hemG and hemH are expressed, nucleotide sequences of the gltX, hemA, hemB, hemC, hemD, hemE, hemF, hemG and hemH genes are respectively shown as SEQ ID No. 1-SEQ ID No.10, and the gltX, hemA, hemmL, hemB and hemC genes are expressed on a pMA5 vector; the hemD, hemE, hemF, hemG and hemH genes are expressed on pHY300PLK vector; a Gene cluster ccmABC of the heme extracellular transporter is also expressed, and the Gene cluster ccmABC consists of genes ccmA, ccmB and ccmC with the Gene IDs of 946714, 946692 and 946703 respectively; the byproduct pathway key genes nas, ldh, pta, prob and pgsBCA of the host are deleted or knocked out, and the nucleotide sequences of the nas, ldh, pta, prob and pgsBCA are respectively shown in SEQ ID NO. 11-SEQ ID NO. 15.
2. The recombinant bacillus amyloliquefaciens according to claim 1, wherein a ribosome binding site is arranged between adjacent expressed genes, and the nucleotide sequence of the ribosome binding site is AAAGGAGCGATTTACATATG.
3. Method for constructing a recombinant bacillus amyloliquefaciens according to claim 1 or 2, characterized in that the gltX, hemA, hemL, hemB genes are ligated to a pMA5 vector and the hemC, hemD, hemE, hemF, hemG and hemH genes are ligated to a ph 300PLK vector, both recombinant vectors are transformed into bacillus amyloliquefaciens NX-2S and the CRISPR-Cas9 pg technique is used to knock out the key genes nas, ldh, pta, prob and sbca associated with the by-product synthesis.
4. A method for producing heme comprising fermenting the recombinant Bacillus amyloliquefaciens strain of claim 1 or 2 in a medium comprising a crude extract of Jerusalem artichoke for at least 36 hours.
5. The method according to claim 4, wherein the fermentation is carried out at 30-40 ℃ for 36-72 h.
6. Use of the recombinant bacillus amyloliquefaciens according to claim 1 or 2 for producing heme or a heme-containing product, wherein the recombinant bacillus amyloliquefaciens is fermented in a medium containing a crude extract of jerusalem artichoke for at least 36 hours.
CN202110752387.6A 2021-07-02 2021-07-02 Gene engineering bacterium for producing heme as well as construction method and application thereof Active CN113462628B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110752387.6A CN113462628B (en) 2021-07-02 2021-07-02 Gene engineering bacterium for producing heme as well as construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110752387.6A CN113462628B (en) 2021-07-02 2021-07-02 Gene engineering bacterium for producing heme as well as construction method and application thereof

Publications (2)

Publication Number Publication Date
CN113462628A CN113462628A (en) 2021-10-01
CN113462628B true CN113462628B (en) 2022-11-08

Family

ID=77877772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110752387.6A Active CN113462628B (en) 2021-07-02 2021-07-02 Gene engineering bacterium for producing heme as well as construction method and application thereof

Country Status (1)

Country Link
CN (1) CN113462628B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606172B (en) * 2022-03-30 2023-09-22 华中农业大学 Bacillus amyloliquefaciens engineering bacteria for improving heme yield and construction method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106047780A (en) * 2016-08-22 2016-10-26 南京工业大学 Bacillus amyloliquefaciens and applications of Bacillus amyloliquefaciens in co-production of bacterial cellulose and gamma-polyglutamic acid
CN106434509A (en) * 2016-10-12 2017-02-22 江南大学 Method for increasing heme synthesized from escherichia coli
CN112301049A (en) * 2020-11-02 2021-02-02 中国科学技术大学 Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106047780A (en) * 2016-08-22 2016-10-26 南京工业大学 Bacillus amyloliquefaciens and applications of Bacillus amyloliquefaciens in co-production of bacterial cellulose and gamma-polyglutamic acid
CN106434509A (en) * 2016-10-12 2017-02-22 江南大学 Method for increasing heme synthesized from escherichia coli
CN112301049A (en) * 2020-11-02 2021-02-02 中国科学技术大学 Recombinant plasmid and genetic engineering strain for high yield of heme, construction method thereof and method for high yield of heme

Also Published As

Publication number Publication date
CN113462628A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
CN110157654B (en) Bacillus natto recombinant strain and construction method and application thereof
CN102181470B (en) Method for improving yield of Streptomyces antibiotics and plasmid thereof
CN104762247A (en) A genetic engineering strain for increasing the yield of ascomycin and a constructing method
CN113462628B (en) Gene engineering bacterium for producing heme as well as construction method and application thereof
CN102703495A (en) Method for improving yield of streptomycete antibiotic and plasmid thereof
CN114410561B (en) Genetically engineered strain for producing thymidine and construction method and application thereof
CN102719388A (en) Method for improving yield of streptomyces antibiotics and plasmids thereof
CN111549045B (en) Vitamin K improvement by utilizing recombinant bacillus natto 2 Method for producing yield
CN109055417B (en) Recombinant microorganism, preparation method thereof and application thereof in production of coenzyme Q10
CN110257312B (en) Recombinant gene engineering bacterium and application thereof in producing vanillin by fermentation
CN111041020B (en) Isocitrate lyase mutant, mutant gene and application thereof in preparation of vitamin B12In (1)
CN110904079B (en) β -fructofuranosidase mutant, mutant gene and application thereof in preparation of vitamin B12In (1)
CN110577921B (en) Recombinant streptomyces tuberculatus for producing amphotericin B and application thereof
CN110343650B (en) Recombinant streptomyces tuberculatus for producing amphotericin B and application thereof
CN114672525A (en) Biosynthesis method and application of N-acetyl-5-methoxytryptamine
CN116286575B (en) Method for efficiently expressing raw starch alpha-amylase by using bacillus subtilis
CN113969258B (en) Construction method of bacillus subtilis artificial strain for converting arabinose into Feng Yuan element
CN115125179B (en) Genetic engineering bacteria for producing rapamycin and application thereof
CN114606170B (en) CRISPR-Cas 9-based ergothioneine biosynthesis method and application
CN113717914B (en) Efficient homologous recombination amycolatopsis engineered strain, construction method and application thereof
FI129574B (en) Variant bacterial strains and processes for protein or biomass production
CN107083375A (en) A kind of middle temperature alpha amylase and its gene and application
CN110819615B (en) Uroporphyrinogen III synthetase mutant, mutant gene and application of mutant gene in preparation of vitamin B12
CN108265069B (en) Demethylated aureomycin biosynthesis gene cluster and application thereof
CN116716233A (en) Genetically engineered bacterium for producing staurosporine and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant