CN113452421B - 一种基于低复杂度空时分组码mimo系统信号检测方法 - Google Patents

一种基于低复杂度空时分组码mimo系统信号检测方法 Download PDF

Info

Publication number
CN113452421B
CN113452421B CN202110708781.XA CN202110708781A CN113452421B CN 113452421 B CN113452421 B CN 113452421B CN 202110708781 A CN202110708781 A CN 202110708781A CN 113452421 B CN113452421 B CN 113452421B
Authority
CN
China
Prior art keywords
space
time block
block code
matrix
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110708781.XA
Other languages
English (en)
Other versions
CN113452421A (zh
Inventor
蒋良成
孙成楠
陈明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110708781.XA priority Critical patent/CN113452421B/zh
Publication of CN113452421A publication Critical patent/CN113452421A/zh
Application granted granted Critical
Publication of CN113452421B publication Critical patent/CN113452421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0631Receiver arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明给出了一种基于低复杂度空时分组码MIMO系统信号检测方法。所述方法发射端使用脉冲幅度调制,首先在发射天线数目为二时,基于最大似然译码器,提出一个空时分组码矩阵的改进方法,此方法相比于传统方法降低了接收机的复杂度;然后串行抵消,利用二阶空时分组码矩阵去构造任意阶的空时分组码矩阵。采用本发明,将星座图搬移至非负区间后,符合任意发射信号为非负实数通信系统的要求,接收端与传统方法一样实现独立译码,降低了发射端功耗,并且使用最大似然译码器,大大降低了接收机的复杂度,同时提高了系统的分集增益。

Description

一种基于低复杂度空时分组码MIMO系统信号检测方法
技术领域
本发明涉及一种基于低复杂度空时分组码MIMO系统信号检测方法,属于空时编码通信技术领域。
背景技术
目前关于空时分组码的研究中,均使用满速率发送的空时分组码来发送信号,但是由于非正交的空时分组码在接收端的设计方案会随着发射端输入点数目的增加而变得复杂,空时分组码的设计,本质上是利用其他时隙的发射信号在接收端实现分集,随着发射端输入点数量增多,在其他时隙发送的符号只是第一个时隙信号的线性变换,只是为了在接收端实现独立译码而发送的“冗余信号”,所以每个时隙均满负荷发送时,不仅功耗很大,并且在接收端复杂度也会不断提高。
发明内容
针对现有技术的不足,本发明提出一种基于低复杂度空时分组码MIMO系统信号检测方法,所提方法首先根据现有文献的两输入的通信系统中的非正交空时分组码矩阵在接收端设计复杂度较高的问题,在降低系统复杂度的前提下,确定了两输入的通信系统的低复杂度的空时分组码设计,然后将这种改进的二阶空时分组码矩阵设计应用到任意阶的空时分组码矩阵设计中,设计了一种低功耗的且低复杂度的空时分组码矩阵。
为了解决上述问题,本发明给出一种基于低复杂度空时分组码MIMO系统信号检测方法,包括如下步骤:
步骤A:构建脉冲幅度调制M-PAM的调制星座图如下:
Figure BDA0003132410440000011
其中M是脉冲幅度调制阶数,xi是第i个星座点,A是一个实常数,|A|>1/2,其绝对值的大小与系统的发射功率有关,xi的补信号
Figure BDA0003132410440000012
为:
Figure BDA0003132410440000021
补信号也在此星座图内;
步骤B:设计一个低复杂度的两天线发射的空时分组码矩阵,设计过程如下:
步骤B-1:确定所述系统使用的二阶的空时分组码矩阵;
通信系统使用如下空时分组码STBC技术的矩阵W为:
Figure BDA0003132410440000022
其中xi是第i个天线发射的信号,i=1,2;
不失一般性,接收端只有一个输出,信道矩阵为H=[h1,h2],其中h1和h2是信道增益,矩阵W中行位置代表时隙,列位置代表天线的位置;
步骤B-2:设计二阶的低复杂度空时分组码,其矩阵的形式有如下四种:
Figure BDA0003132410440000023
Figure BDA0003132410440000024
Figure BDA0003132410440000025
Figure BDA0003132410440000026
步骤C:设计任意阶的空时分组码矩阵;
将二阶的空时分组码矩阵Xi,i=1,2,3,4,作为二阶模型,利用此模型构造一个低复杂度的、低功耗的任意阶空时分组码矩阵;假设发射端天线数目为Nt,不失一般性,接收端数目为1,Nt根发射天线上的发射信号为
Figure BDA0003132410440000031
发射信号下标对应天线位置,规定通信系统第一个时隙天线上发射信号为
Figure BDA0003132410440000032
对于第一个时隙内,所有天线上发射的信号,任取第i根和第j根天线上xi和xj,在不同于第一个时隙的某个时隙m内,在第i根和第j根天线上,发送kixj+li和kjxi+lj,在此时隙m内其它天线上的发射信号为零;其中ki、kj、li和lj是参数,取值根据使用的二阶的空时分组码矩阵Xi,i=1,2,3,4来得到;如果使用X1型的二阶空时分组码矩阵去构造任意阶的空时分组码矩阵,则:
Figure BDA0003132410440000033
其中xi和xj是天线i和天线j上的发射信号,hi和hj是天线i和天线j对应的信道增益,任意阶的空时分组码矩阵为:
Figure BDA0003132410440000034
y1是第一个时隙的接收信号,ym、yn和yK代表第m、n和K时隙的接收信号,矩阵中ki、kj、kq、li、lj和lq根据使用的Xi型二阶空时分组码矩阵确定,其中i=1,2,3,4;当发射端的输入点数目大于2时,时隙数目K的值为:
K=Nt(Nt-1)/2+1
使用的最大似然译码器方法如下:
Figure BDA0003132410440000035
其中μ(xi)是欧几里得判决量,Δi1是有关发射信号的二次项前的系数,其中i=1,…,Nt
Figure BDA0003132410440000041
其中Δi2是有关于发射信号一次项前的系数,其中i=1,…,Nt;那么最大似然译码器为
Figure BDA0003132410440000042
根据此式来判决发射信号。
步骤C中所述低功耗,具体是指:
当发射天线数目为Nt时,使用空时分组码技术,满负荷的空时分组码通信系统,发射的总功耗为
Figure BDA0003132410440000043
其中满负荷的含义是,空时分组码矩阵中,发射天线数目与时隙的比值称码率,除了发射天线数目为2,4,8时,空时分组码矩阵的码率为1,其余情况码率最大为3/4,当通信系统的码率最大时,就称此系统为满负荷的空时分组码系统;使用步骤C中的空时分组码矩阵后,时隙数K=Nt(Nt-1)/2+1,那么功耗为
Figure BDA0003132410440000044
所述步骤C中低复杂度的,具体是指:
使用步骤B-2中的空时分组码矩阵,在接收端的利用接收信号和信道增益得到估计的发射信号为:
Figure BDA0003132410440000045
Figure BDA0003132410440000046
其中yi是第i个时隙的接收信号,通信系统使用矩阵W时,利用接收信号和信道增益得到估计的发射信号为:
Figure BDA0003132410440000047
Figure BDA0003132410440000048
少进行了两项2h1h2A和
Figure BDA0003132410440000049
的计算,推广到任意阶通信系统时,有Nt(Nt-1)项无需计算。
有益效果:本发明给出了一种基于低复杂度空时分组码MIMO系统信号检测方法。所述方法发射端使用脉冲幅度调制,首先在发射天线数目为二时,基于最大似然译码器,提出一个空时分组码矩阵的改进方法,此方法相比于传统方法降低了接收机的复杂度;然后串行抵消,利用二阶空时分组码矩阵去构造任意阶的空时分组码矩阵。采用本发明,将星座图搬移至非负区间后,符合任意发射信号为非负实数通信系统的要求,接收端与传统方法一样实现独立译码,降低了发射端功耗,并且使用最大似然译码器,大大降低了接收机的复杂度,同时提高了系统的分集增益。
附图说明
图1是发射端的信号处理过程;
图2是接收机的信号处理过程。
具体实施方式
本发明给出了一种基于低复杂度空时分组码MIMO系统信号检测方法。所述方法发射端使用脉冲幅度调制,首先在发射端输入个数为二时,提出一个空时分组码矩阵的改进方案,此方案相比于传统方法降低了接收机的复杂度,然后利用串行抵消的思想,利用发射端输入个数为二的空时分组码矩阵去构造任意阶的空时分组码矩阵。采用本发明,将星座图搬移至非负区间后,符合任意发射信号为非负实数通信系统的要求,接收端与传统方法一样实现独立译码,降低了发射端功耗的同时,大大降低了接收机的复杂度,同时提高了系统的分集增益。
为了更好的说明本发明方法,下面结合更详细的例子加以说明:
一种基于低复杂度空时分组码MIMO系统信号检测方法,
发射端
发射端信号处理图如图1。
构建脉冲幅度调制M-PAM的调制星座图如下:
Figure BDA0003132410440000051
其中xi是第i个星座点,A是一个实常数,A>1/2,其绝对值的大小与系统的发射功率有关,xi的补信号
Figure BDA0003132410440000052
为:
Figure BDA0003132410440000053
补信号也在此星座图内;
考虑一个发射LED数目为Nt,接收PD(光电二极管)数目为1的可见光通信系统,发射的比特流为d1,d2,…,dk,发射端信号处理框图如图1。
通信系统使用如下空时分组码STBC技术的矩阵W为
Figure BDA0003132410440000061
其中xi是第i根天线发射的信号,i=1,2;使用非正交的空时分组码矩阵W实现空时编码技术的目的是此矩阵在发射信号限制在非负的实数信号时,直接使用并且性能优秀。使用空时分组码矩阵W的通信系统,接收端实现独立译码,最大似然判决器为
Figure BDA0003132410440000062
其中i=1,2,
Figure BDA0003132410440000063
表示使得括号内最小时,集合ω的取值,其中
Figure BDA0003132410440000064
Figure BDA0003132410440000065
与Almouti类的空时分组码相比,矩阵的非正交性导致在接收端需要计算类似于2h1h2A这类关于信道增益的多余项,为了在设计一个任意阶空时分组码矩阵后,接收机复杂度尽量的低,所以需要设计一个低复杂度的二阶空时分组码,实现独立译码的同时降低译码复杂度,构造一个带参数的空时分组码矩阵如下
Figure BDA0003132410440000066
其中k1、k2、l1和l2为待确定的参数,那么接收信号为
y=[y1,y2]T=XHT+N
其中y1和y2是第一个和第二个时隙的接收信号,N为两个时隙的噪声n1和n2组成的向量,这两个时隙是独立的,零均值的高斯白噪声;两个时隙的接收信号的具体表达式如下:
y1=h1x1+h2x2+n1
y2=h1(k1x2+l1)+h2(k2x1+l2)+n2
计算接收端的最大似然ML判决量如下:
|y1-h1x1-h2x2|2+|y2-h1(k1x2+l1)-h2(k2x1+l2)|2
根据多项式定理,得到无关接收信号的,仅关于x1和x2的欧几里得判决量度Δ如下:
Figure BDA0003132410440000071
在接收端实现独立译码需要满足k1k2+1=0,即没有x1x2这一项,在计算接收端最大似然判决量时,判决量中会出现如上表达式,并且随着发射端输入点数目增多,Δ内的项数越来越多进而导致接收端译码复杂度很高,为降低判决量的计算复杂度,令:
Figure BDA0003132410440000072
消除Δ项从而降低两天线发射的系统的译码复杂度;要满足上述等式,有且仅有k1k2=-1时成立,参数l1和l2也由此求得;
为了确定参数值,使用上述空时分组码矩阵X的系统编码增益CGD为:
Figure BDA0003132410440000073
式中
Figure BDA0003132410440000074
表示对集合ω求括号内的最小值,(·)H表示对括号内进行共轭转置操作;其中x1,x2及x′1,x′2为M-PAM星座点,
Figure BDA0003132410440000075
C和
Figure BDA0003132410440000076
是两个不同的码字矩阵,为使得上式取得最优解,需要码字距离矩阵
Figure BDA0003132410440000077
的秩要尽量大,且
Figure BDA0003132410440000078
的行列式尽量小,而
Figure BDA0003132410440000079
是满秩矩阵,那么优化问题为:
Figure BDA0003132410440000081
受限于
k1k2=-1
h1l1+h2l2=0
x1,x2∈β
Figure BDA0003132410440000082
Figure BDA0003132410440000083
式中β为M-PAM星座图,
Figure BDA0003132410440000084
表示发射端功率限制,||·||F为Frobenius范数;由于第一个天线与第二个天线上传输的信号实际上是等价的,所以解上述优化问题得到k1,k2不只一组解,取其中一组解作为最终结果,空时分组码矩阵为
Figure BDA0003132410440000085
假设发射信号经过调制后得到的Nt个发射信号为
Figure BDA0003132410440000086
这Nt个信号在第一个时隙发射,对于第一个时隙内,所有LED上发送的信号,任取第i,j个LED上的发射信号xi和xj,均在某个时隙k内的第i,j个LED上,构造一个kixj+li和kjxi+lj与其对应,其余位置的发送信号为0,其中ki,kj,li和lj的值由矩阵X确定,具体值如下
Figure BDA0003132410440000087
那么发送端的空时分组码矩阵为
Figure BDA0003132410440000091
y1是第一个时隙的接收信号,ym、yn和yK代表第m、n和K时隙的接收信号,矩阵中ki、kj、kq、li、lj和lq均通过二阶空时分组码矩阵的得到对应的值,当发射端LED数目大于2时,时隙数目等于K=Nt(Nt-1)/2+1;
接收端
图2为接收端的处理,其中判决的方法为构造的空时分组码矩阵中的发射信号在接收端的判决量为
Figure BDA0003132410440000092
其中Δi1有关发射信号的平方项前的系数,其中i=1,…,Nt
Figure BDA0003132410440000093
其中Δi2是有关于发射信号项前的系数,其中i=1,…,Nt。根据
Figure BDA0003132410440000094
来判决发射信号。当接收端天线数目大于1时,接收天线上的接收信号,是所有LED上发射信号的线性组合,根据多项式定理,同样可以在接收端独立译码。

Claims (3)

1.一种基于低复杂度空时分组码MIMO系统信号检测方法,其特征在于,包括如下步骤:
步骤A:构建脉冲幅度调制M-PAM的调制星座图如下:
Figure FDA0003132410430000011
其中M是脉冲幅度调制阶数,xi是第i个星座点,A是一个实常数,|A|>1/2,其绝对值的大小与系统的发射功率有关,xi的补信号
Figure FDA0003132410430000012
为:
Figure FDA0003132410430000013
补信号也在此星座图内;
步骤B:设计一个低复杂度的两天线发射的空时分组码矩阵,设计过程如下:
步骤B-1:确定所述系统的二阶空时分组码矩阵;
系统使用如下空时分组码STBC技术的矩阵W为:
Figure FDA0003132410430000014
其中xi是第i个天线发射的信号,i=1,2;
不失一般性,接收端只有一个输出,信道矩阵为H=[h1,h2],其中h1和h2是信道增益,矩阵W中行位置代表时隙,列位置代表天线的位置;
步骤B-2:设计二阶的低复杂度空时分组码,其矩阵的形式有如下四种:
Figure FDA0003132410430000015
Figure FDA0003132410430000016
Figure FDA0003132410430000021
Figure FDA0003132410430000022
步骤C:设计任意阶的空时分组码矩阵;
将二阶的空时分组码矩阵Xi,i=1,2,3,4,作为二阶模型,利用此模型构造一个低复杂度的、低功耗的任意阶空时分组码矩阵;假设发射端天线数目为Nt,不失一般性,接收端数目为1,Nt根发射天线上的发射信号为
Figure FDA0003132410430000023
发射信号下标对应天线位置,规定通信系统第一个时隙天线上发射信号为
Figure FDA0003132410430000024
对于第一个时隙内,所有天线上发射的信号,任取第i根和第j根天线上xi和xj,在不同于第一个时隙的某个时隙m内,在第i根和第j根天线上,发送kixj+li和kjxi+lj,在此时隙m内其它天线上的发射信号为零;其中ki、kj、li和lj是参数,取值根据使用的二阶的空时分组码矩阵Xi,i=1,2,3,4来得到;如果使用X1型的二阶空时分组码矩阵去构造任意阶的空时分组码矩阵,则:
Figure FDA0003132410430000025
Figure FDA0003132410430000026
其中xi和xj是天线i和天线j上的发射信号,hi和hj是天线i和天线j对应的信道增益,任意阶的空时分组码矩阵为:
Figure FDA0003132410430000027
y1是第一个时隙的接收信号,ym、yn和yK代表第m、n和K时隙的接收信号,矩阵中ki、kj、kq、li、lj和lq根据使用的Xi型二阶空时分组码矩阵确定,其中i=1,2,3,4;当发射端的输入点数目大于2时,时隙数目K的值为:
K=Nt(Nt-1)/2+1
使用的最大似然译码器方法如下:
Figure FDA0003132410430000031
其中μ(xi)是欧几里得判决量,Δi1是有关发射信号的二次项前的系数,其中i=1,…,Nt
Figure FDA0003132410430000032
其中Δi2是有关于发射信号一次项前的系数,其中i=1,…,Nt;那么最大似然译码器为
Figure FDA0003132410430000033
根据此式来判决发射信号。
2.根据权利要求1所述的一种基于低复杂度空时分组码MIMO系统信号检测方法,其特征在于,步骤C中所述低功耗,具体是指:
当发射天线数目为Nt时,使用空时分组码技术,满负荷的空时分组码通信系统,发射的总功耗为
Figure FDA0003132410430000034
其中满负荷的含义是,空时分组码矩阵中,发射天线数目与时隙的比值称码率,除了发射天线数目为2,4,8时,空时分组码矩阵的码率为1,其余情况码率最大为3/4,当通信系统的码率最大时,就称此系统为满负荷的空时分组码系统;使用步骤C中的空时分组码矩阵后,时隙数K=Nt(Nt-1)/2+1,那么功耗为
Figure FDA0003132410430000035
3.根据权利要求1所述的一种基于低复杂度空时分组码MIMO系统信号检测方法,其特征在于,所述步骤C中低复杂度的,具体是指:
使用步骤B-2中的空时分组码矩阵,在接收端的利用接收信号和信道增益得到估计的发射信号为:
Figure FDA0003132410430000036
Figure FDA0003132410430000037
其中yi是第i个时隙的接收信号,通信系统使用矩阵W时,利用接收信号和信道增益得到估计的发射信号为:
Figure FDA0003132410430000041
Figure FDA0003132410430000042
少进行了两项2h1h2A和
Figure FDA0003132410430000043
的计算,推广到任意阶通信系统时,有Nt(Nt-1)项无需计算。
CN202110708781.XA 2021-06-25 2021-06-25 一种基于低复杂度空时分组码mimo系统信号检测方法 Active CN113452421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110708781.XA CN113452421B (zh) 2021-06-25 2021-06-25 一种基于低复杂度空时分组码mimo系统信号检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110708781.XA CN113452421B (zh) 2021-06-25 2021-06-25 一种基于低复杂度空时分组码mimo系统信号检测方法

Publications (2)

Publication Number Publication Date
CN113452421A CN113452421A (zh) 2021-09-28
CN113452421B true CN113452421B (zh) 2022-04-29

Family

ID=77812666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110708781.XA Active CN113452421B (zh) 2021-06-25 2021-06-25 一种基于低复杂度空时分组码mimo系统信号检测方法

Country Status (1)

Country Link
CN (1) CN113452421B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150379B (zh) * 2007-09-26 2010-06-02 山东大学 一种准正交空时分组码的低复杂度译码方法
CN101777969B (zh) * 2010-01-12 2013-07-24 浙江大学 一种基于四发射天线准正交空时分组码的编译码方法
CN103326825B (zh) * 2013-06-26 2016-06-01 江南大学 一种准正交空时分组码低复杂度译码方法

Also Published As

Publication number Publication date
CN113452421A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
US8213540B1 (en) System and method of transmit beam selection
CN102624666B (zh) 稀疏信道模型下多路收发的正交多载波水声通信循环译码方法
CN114051701A (zh) 用于机器学习辅助预编码的设备和方法
US11190259B2 (en) Detection method for lattice reduction-aided MIMO system receiver and iterative noise cancellation
CN102630374A (zh) 用于具有全双工中继器的多接入中继器信道系统的用于传送数字信号的方法、以及对应的程序产品和中继器装置
US20080198943A1 (en) Systems and methods for lattice enumeration-aided detection
US8737539B2 (en) Low complexity iterative MIMO receiver based on successive soft interference cancellation and MMSE spatial filtering
KR102076607B1 (ko) 2x2 mimo 시스템의 연판정 검출방법 및 장치
EP2064825B1 (en) Multiple-input-multiple-output transmission using non-binary ldpc coding
US20060045201A1 (en) Apparatus and method for full-diversity, full-rate space-time block coding for two transmit antennas
CN113452421B (zh) 一种基于低复杂度空时分组码mimo系统信号检测方法
US8275076B2 (en) Receiver and method for detecting signal in multiple antenna system
Zimmermann Complexity Aspects in Near Capacity MIMO Detection Decoding
US8223874B2 (en) Full diversity high-rate coded transmit beamforming techniques using partial-algebraic precoding, and associated near-optimal low-complexity receivers
US7782981B2 (en) Signal processing apparatus and method
CN113225114A (zh) 基于预编码联合优化的无线通信信号发送和接收方法
CN101272363B (zh) 一种基于预编码的低复杂度的turbo均衡方法
CN106899388B (zh) Ldpc码在mimo信道下的联合检测与解码方法
CN101540659B (zh) 基于逼近最大似然性能的低复杂度垂直分层空时码检测方法
CN112491471B (zh) 一种可见光通信系统的迫整预编码方法
Choi et al. An approximate MAP-based iterative receiver for MIMO channels using modified sphere detection
Zolotarev et al. Effective multithreshold decoding algorithms for wireless communication channels
CN107147434B (zh) 一种基于ldpc码的mimo传输分集方法
CN113411282B (zh) 一种基于任意阶空时分组码的mimo系统信号检测方法
CN114124302B (zh) 一种基于概率解卷积的接收端链路自适应解调方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant