CN113448344B - 一种无人机二自由度喷管瞄准控制方法及装置 - Google Patents

一种无人机二自由度喷管瞄准控制方法及装置 Download PDF

Info

Publication number
CN113448344B
CN113448344B CN202110785408.4A CN202110785408A CN113448344B CN 113448344 B CN113448344 B CN 113448344B CN 202110785408 A CN202110785408 A CN 202110785408A CN 113448344 B CN113448344 B CN 113448344B
Authority
CN
China
Prior art keywords
pipe
spray pipe
unmanned aerial
aerial vehicle
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110785408.4A
Other languages
English (en)
Other versions
CN113448344A (zh
Inventor
邸健
孙道博
王兴虎
张晨旭
郑丹
李鲲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202110785408.4A priority Critical patent/CN113448344B/zh
Publication of CN113448344A publication Critical patent/CN113448344A/zh
Application granted granted Critical
Publication of CN113448344B publication Critical patent/CN113448344B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Abstract

本发明公开了一种无人机二自由度喷管瞄准控制方法及装置,属于无人机技术领域,包括:获取无人机机载相机所拍摄的图像;在图像中圈定待瞄准目标物的中心;在相机坐标系中,根据二轴喷管的辅助瞄准激光光点与待瞄准目标物的像素位置偏差,计算相对姿态控制量;根据相对姿态控制量,控制二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心重合。本发明将喷管与无人机之间二自由连接,将喷管的瞄准控制与无人机姿态进行解耦,将无人机运动视为喷管自动瞄准系统的扰动,以此实现对目标物更加精确的瞄准。

Description

一种无人机二自由度喷管瞄准控制方法及装置
技术领域
本发明涉及无人机技术领域,特别涉及一种无人机二自由度喷管瞄准控制方法及装置。
背景技术
在电力系统中,空气中油污、金属颗粒、酸碱盐等污染物附着在高压线的绝缘子串上,容易发生线路闪络、软击穿等危险,给线路安全稳定运行造成隐患。以往输电线路的清洗工作要在线路停电方式下由人工爬塔擦拭,存在去污不彻底、效率低、风险高等缺点。
多旋翼飞行平台的稳定性高,电控方式简便。使用多旋翼无人机进行水冲洗任务,可以有效地提高清洗效率,与此同时,还能减少人员登塔次数,提高工作效率,保障人员的人身安全。
但是现存装置中,喷管多与机体固连,喷管对目标的瞄准需要依赖于无人机的位置变化,而无人机本身的位置运动必须依赖于其自身的姿态运动,这会导致在运动过程中瞄准困难。且无人机难以满足喷管瞄准的精细化操作需求,这进一步加剧了此类无人机上喷管对目标的瞄准困难。
发明内容
本发明的目的在于克服上述背景技术中的不足,实现对目标物的精确瞄准。
为实现以上目的,一方面,采用一种无人机二自由度喷管瞄准控制方法,用于对无人机的二轴喷管进行瞄准控制,包括:
获取无人机机载相机所拍摄的图像;
在所述图像中圈定待瞄准目标物的中心;
在相机坐标系中,根据二轴喷管的辅助瞄准激光光点与待瞄准目标物的像素位置偏差,计算相对姿态控制量;
根据相对姿态控制量,控制二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心重合。
进一步地,所述在所述图像中圈定待瞄准目标物的中心,包括:
无人机操纵员根据从第一视角观察的待瞄准目标物的位置,在所述图像中圈定所述待瞄准目标物的中心。
进一步地,所述在相机坐标系中,根据二轴喷管的辅助瞄准激光光点与待瞄准目标物的像素位置偏差,计算相对姿态控制量的公式表示如下:
r=[yaw pitch]T
yaw=ky*Δx
pitch=kp*Δy
其中,r为喷管机载控制器的期望姿态角,yaw为喷管的偏航角,pitch为喷管的俯仰角,ky为偏航方向上的比例系数,kp为俯仰方向上的比例系数,Δx、Δy分别为喷管中心点与目标物的中心点在x、y方向上的偏差量。
进一步地,所述根据相对姿态控制量,控制二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心重合,包括:
将所述相对姿态控制量作为喷管机载控制器的期望姿态角,将无人机外部扰动作为所述二轴喷管的扰动,输出所述二轴喷管的实际姿态角;
将所述二轴喷管的实际姿态角作为系统反馈量,输入至喷管机载控制器,进行闭环控制,直至二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心的偏差小于设定阈值,则确定二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心重合。
进一步地,所述喷管机载控制器包括PI控制器C(s)、喷管机载控制器模型P(s)、喷管机载控制器系统辨识模型P'(s)和补偿器C'(s),所述无人机外部扰动包括平台力矩扰动、二轴喷管扰动和无人机姿态扰动;
所述相对姿态控制量和所述二轴喷管的实际姿态角作为PI控制器C(s)的输入量,PI控制器C(s)根据所述相对姿态控制量和所述实际姿态角,计算得到所述二轴喷管初始的姿态控制量;
将所述二轴喷管初始的姿态控制量、平台力矩扰动以及二轴喷管扰动进行运算,得到修正后的控制量作为喷管机载控制器模型P(s)的输入,喷管机载控制器模型P(s)的输出信号量作为系统反馈量输入至PI控制器C(s);
将所述二轴喷管初始的姿态控制量作为喷管机载控制器系统辨识模型P'(s)的输入,喷管机载控制器系统辨识模型P'(s)的输出信号量与喷管机载控制器模型P(s)的输出信号量以及无人机姿态扰动进行运算,并将运算结果作为补偿器C'(s)的输入,补偿器C'(s)的输出为所述二轴喷管扰动。
另一方面,采用一种无人机二自由度喷管瞄准控制装置包括二轴喷管和喷管控制系统,二轴喷管固定安装在无人机的中间下底板上,且二轴喷管的朝向与无人机机头方向一致;所述喷管控制系统包括扰动观测器和喷管机载控制器,扰动观测器输入与无人机的飞控系统连接、输出与喷管机载控制器连接,喷管机载控制器的输入为相对姿态控制量,输出为二轴喷管的实际姿态角。
进一步地,所述二轴喷管包括喷管底座、水平方向旋转座、竖直方向旋转座、激光发射装置以及喷管,喷管底座固定在所述无人机的中间下底板上,水平方向旋转座固定在喷管底座上,竖直方向旋转座固定在水平方向旋转座上,激光发射装置与喷管固定在竖直方向旋转座上。
进一步地,所述相对姿态控制量的公式表示如下:
r=[yaw pitch]T
yaw=ky*Δx
pitch=kp*Δy
其中,r为喷管机载控制器的期望姿态角,yaw为喷管的偏航角,pitch为喷管的俯仰角,ky为偏航方向上的比例系数,kp为俯仰方向上的比例系数,Δx、Δy分别为喷管中心点与目标物的中心点在x、y方向上的偏差量。
进一步地,所述喷管机载控制器包括PI控制器C(s)、喷管机载控制器模型P(s)、喷管机载控制器系统辨识模型P'(s)和补偿器C'(s);
所述相对姿态控制量和所述二轴喷管的实际姿态角作为PI控制器C(s)的输入量,PI控制器C(s)根据所述相对姿态控制量和所述实际姿态角,计算得到所述二轴喷管初始的姿态控制量;
将所述二轴喷管初始的姿态控制量、平台力矩扰动以及所述扰动观测器输出的二轴喷管扰动进行运算,得到修正后的控制量作为喷管机载控制器模型P(s)的输入,喷管机载控制器模型P(s)的输出信号量作为系统反馈量输入至PI控制器C(s);
将所述二轴喷管初始的姿态控制量作为喷管机载控制器系统辨识模型P'(s)的输入,喷管机载控制器系统辨识模型P'(s)的输出信号量与喷管机载控制器模型P(s)的输出信号量以及无人机姿态扰动进行运算,并将运算结果作为补偿器C'(s)的输入,补偿器C'(s)的输出为所需的扰动观测器输出。
与现有技术相比,本发明存在以下技术效果:本发明喷管与无人机之间二自由连接,将喷管的瞄准控制与无人机姿态进行解耦,将无人机运动视为喷管自动瞄准系统的扰动,以此实现对目标物更加精确的瞄准,实现整个无人机系统对目标物的精确、稳定瞄准。
附图说明
下面结合附图,对本发明的具体实施方式进行详细描述:
图1是一种无人机二自由度喷管瞄准控制方法的流程图;
图2是激光偏移示意图;
图3是喷管机载控制器的结构框图;
图4是一种无人机二自由度喷管瞄准控制系统结构图;
图5是无人机及喷管位置示意图;
图6是喷管结构示意图。
图中:
1-喷管底座;2-水平方向旋转座;3-竖直方向旋转座;4-激光发射装置;5-喷管。
具体实施方式
为了更进一步说明本发明的特征,请参阅以下有关本发明的详细说明与附图。所附图仅供参考与说明之用,并非用来对本发明的保护范围加以限制。
如图1所示,本实施例公开了一种无人机二自由度喷管瞄准控制方法,用于对无人机的二轴喷管进行瞄准控制,包括如下步骤S1至S4:
S1、获取无人机机载相机所拍摄的图像;
S2、在所述图像中圈定待瞄准目标物的中心;
S3、在相机坐标系中,根据二轴喷管的辅助瞄准激光光点与待瞄准目标物的像素位置偏差,计算相对姿态控制量;
S4、根据相对姿态控制量,控制二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心重合。
需要说明的是,本实施例中的喷管与无人机之间二自由连接,喷管姿态与无人机姿态进行解耦,将无人机运动视为对喷管自动瞄准系统的扰动,以此实现对目标物更加精确的瞄准。
作为进一步优选的技术方案,上述步骤S2:在所述图像中圈定待瞄准目标物的中心,具体包括:
无人机操纵员根据从第一视角观察的待瞄准目标物的位置,通过客户端在所述图像中圈定所述待瞄准目标物的中心
作为进一步优选的技术方案,如图2所示,由于喷管的正常工作时,喷管中心点在目标物的中心点附近小范围移动,在此工作范围区间内,喷管的偏航(yaw)、俯仰(pitch)移动可以近似等于激光点在水平和竖直方向上的偏移,所述相对姿态控制量的公式表示如下:
r=[yaw pitch[T
yaw=ky*Δx
pitch=kp*Δy
其中,r为喷管机载控制器的期望姿态角,yaw为喷管的偏航角,pitch为喷管的俯仰角,ky为偏航方向上的比例系数,kp为俯仰方向上的比例系数,Δx、Δy分别为喷管中心点与目标物的中心点在x、y方向上的偏差量。
作为进一步优选的技术方案,上述步骤S4:根据相对姿态控制量,控制二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心重合,具体为:
将所述相对姿态控制量作为喷管机载控制器的期望姿态角,将无人机外部扰动作为所述二轴喷管的扰动,输出所述二轴喷管的实际姿态角;
将所述二轴喷管的实际姿态角作为系统反馈量,输入至喷管机载控制器,进行闭环控制,直至二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心的偏差小于设定阈值,则确定二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心重合。
具体地,如图3所示,所述喷管机载控制器包括PI控制器C(s)、喷管机载控制器模型P(s)、喷管机载控制器系统辨识模型P'(s)和补偿器C'(s),所述无人机外部扰动包括平台力矩扰动、二轴喷管扰动和无人机姿态扰动;
所述相对姿态控制量和所述二轴喷管的实际姿态角作为PI控制器C(s)的输入量,PI控制器C(s)根据所述相对姿态控制量和所述实际姿态角,计算得到所述二轴喷管初始的姿态控制量;
将所述二轴喷管初始的姿态控制量、平台力矩扰动以及二轴喷管扰动进行运算,得到修正后的控制量作为喷管机载控制器模型P(s)的输入,喷管机载控制器模型P(s)的输出信号量作为系统反馈量输入至PI控制器C(s);
将所述二轴喷管初始的姿态控制量作为喷管机载控制器系统辨识模型P'(s)的输入,喷管机载控制器系统辨识模型P'(s)的输出信号量与喷管机载控制器模型P(s)的输出信号量以及无人机姿态扰动进行运算,并将运算结果作为补偿器C'(s)的输入,补偿器C'(s)的输出为所述二轴喷管扰动。
需要说明的是,平台力矩扰动Td包括摩擦力矩、线绕力矩、不平衡力矩等。该扰动属于系统自带的扰动,无法消除,但可通过执行器手册获取该扰动信息,并将其视作常数。无人机姿态扰动yd为喷管搭载在无人机上,无人机持续处于运动状态,对喷管机载控制器会产生姿态角干扰,该扰动可通过无人机的飞控直接获取。
需要说明的是,PI控制器C(s)的控制器公式为:
Figure BDA0003158545520000081
其中,e(t)为喷管机载控制器的期望姿态角与实际姿态角间的偏差量。kp,ki分别为比例和积分参数,由本领域技术人员自行调试获取。
需要说明的是,喷管机载控制器系统辨识模型P'(s)为通过系统辨识方法获得的喷管机载控制器模型,由本领域技术人员自行通过系统辨识方法获取。
需要说明的是,补偿器C'(s)为一阶惯性环节
Figure BDA0003158545520000082
其中a,b,τ参数由本领域技术人员自行整定获取。
需要说明的是,喷管机载控制器的工作流程为:
(1)测量平台力矩扰动Td,整定PI控制器C(s)的参数kp与ki,使用系统辨识方法辨识出喷管模型P'(s),确定补偿器C'(s)的参数a,b,τ。
(2)控制系统的输入量为相对姿态控制量r,将其与控制器输出反馈信号y进行求差运算得到中间信号e,并将其传入PI控制器C(s),作为PI控制器C(s)的输入量。
(3)PI控制器C(s)计算出初始的喷管姿态控制量u,与平台力矩扰动Td和扰动观测器输出yc进行运算,得到修正后的控制量ut,将其作为姿态控制指令发送给喷管机载控制器模型P(s),喷管机载控制器模型P(s)为系统控制对象。
(4)喷管姿态控制量u还将输入到喷管机载控制器系统辨识模型P'(s)中,将所得的信号量与二轴喷管的输出y以及无人机姿态扰动信号yd进行运算,所得的结果传送给一阶惯性环节补偿器C'(s)中,最终得到步骤2中所需的扰动观测器输出yc。
(5)将二轴喷管的输出,即姿态信息y将作为系统反馈量,反馈至PI控制器中,最终完成闭环系统的构建。
如图4至图5所示,本实施例公开了一种无人机二自由度喷管瞄准控制装置,包括二轴喷管和喷管控制系统,二轴喷管固定安装在无人机的中间下底板上,且二轴喷管的朝向与无人机机头方向一致;所述喷管控制系统包括扰动观测器和喷管机载控制器,扰动观测器输入与无人机的飞控系统连接、输出与喷管机载控制器连接,喷管机载控制器的输入为相对姿态控制量,输出为二轴喷管的实际姿态角。
如图6所示,所述二轴喷管包括喷管底座、水平方向旋转座、竖直方向旋转座、激光发射装置以及喷管,喷管底座固定在所述无人机的中间下底板上,水平方向旋转座固定在喷管底座上,竖直方向旋转座固定在水平方向旋转座上,激光发射装置与喷管固定在竖直方向旋转座上。
需要说明的是水平方向旋转座固定在喷管底座上,由一个无刷电机控制,可以进行正前方90°扇形范围内的水平方向运动;竖直方向旋转座固定在水平方向旋转座上,由一个无刷电机控制,可以进行正前方120°扇形范围内的竖直方向运动;水平方向旋转座与竖直方向旋转座的合成运动,共同实现了喷管的二自由度运动。
作为进一步优选的技术方案,本实施例通过在相机坐标系中,根据辅助瞄准激光光点与目标物的像素位置偏差,计算二自由度喷管控制器需要的相对姿态控制量,进而控制并实现辅助瞄准激光光点与用户在图像中选择的目标物的中心重合,所述相对姿态控制量的公式表示如下:
r=[yaw pitch]T
yaw=ky*Δx
pitch=kp*Δy
其中,r为喷管机载控制器的期望姿态角,yaw为喷管的偏航角,pitch为喷管的俯仰角,ky为偏航方向上的比例系数,kp为俯仰方向上的比例系数,Δx、Δy分别为喷管中心点与目标物的中心点在x、y方向上的偏差量。
作为进一步优选的技术方案,如图3所示,所述喷管机载控制器包括PI控制器C(s)、喷管机载控制器模型P(s)、喷管机载控制器系统辨识模型P'(s)和补偿器C'(s);
所述相对姿态控制量和所述二轴喷管的实际姿态角作为PI控制器C(s)的输入量,PI控制器C(s)根据所述相对姿态控制量和所述实际姿态角,计算得到所述二轴喷管初始的姿态控制量;
将所述二轴喷管初始的姿态控制量、平台力矩扰动以及所述扰动观测器输出的二轴喷管扰动进行运算,得到修正后的控制量作为喷管机载控制器模型P(s)的输入,喷管机载控制器模型P(s)的输出信号量作为系统反馈量输入至PI控制器C(s);
将所述二轴喷管初始的姿态控制量作为喷管机载控制器系统辨识模型P'(s)的输入,喷管机载控制器系统辨识模型P'(s)的输出信号量与喷管机载控制器模型P(s)的输出信号量以及无人机姿态扰动进行运算,并将运算结果作为补偿器C'(s)的输入,补偿器C'(s)的输出为所需的扰动观测器输出。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种无人机二自由度喷管瞄准控制方法,其特征在于,用于对无人机的二轴喷管进行瞄准控制,包括:
获取无人机机载相机所拍摄的图像;
在所述图像中圈定待瞄准目标物的中心;
在相机坐标系中,根据二轴喷管的辅助瞄准激光光点与待瞄准目标物的像素位置偏差,计算相对姿态控制量;
根据相对姿态控制量,控制二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心重合,具体包括:
将所述相对姿态控制量作为喷管机载控制器的期望姿态角,将无人机外部扰动作为所述二轴喷管的扰动,输出所述二轴喷管的实际姿态角;
将所述二轴喷管的实际姿态角作为系统反馈量,输入至喷管机载控制器,进行闭环控制,直至二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心的偏差小于设定阈值,则确定二轴喷管的辅助瞄准激光光点与图像中圈定的待瞄准目标物的中心重合;
所述喷管机载控制器包括PI控制器C(s)、喷管机载控制器模型P(s)、喷管机载控制器系统辨识模型P'(s)和补偿器C'(s),所述无人机外部扰动包括平台力矩扰动、二轴喷管扰动和无人机姿态扰动;
所述相对姿态控制量和所述二轴喷管的实际姿态角作为PI控制器C(s)的输入量,PI控制器C(s)根据所述相对姿态控制量和所述实际姿态角,计算得到所述二轴喷管初始的姿态控制量;
将所述二轴喷管初始的姿态控制量、平台力矩扰动以及二轴喷管扰动进行运算,得到修正后的控制量作为喷管机载控制器模型P(s)的输入,喷管机载控制器模型P(s)的输出信号量作为系统反馈量输入至PI控制器C(s);
将所述二轴喷管初始的姿态控制量作为喷管机载控制器系统辨识模型P'(s)的输入,喷管机载控制器系统辨识模型P'(s)的输出信号量与喷管机载控制器模型P(s)的输出信号量以及无人机姿态扰动进行运算,并将运算结果作为补偿器C'(s)的输入,补偿器C'(s)的输出为所述二轴喷管扰动。
2.如权利要求1所述的无人机二自由度喷管瞄准控制方法,其特征在于,所述在所述图像中圈定待瞄准目标物的中心,包括:
无人机操纵员根据从第一视角观察的待瞄准目标物的位置,在所述图像中圈定所述待瞄准目标物的中心。
3.如权利要求1所述的无人机二自由度喷管瞄准控制方法,其特征在于,所述在相机坐标系中,根据二轴喷管的辅助瞄准激光光点与待瞄准目标物的像素位置偏差,计算相对姿态控制量的公式表示如下:
r=[yaw pitch]T
yaw=ky*Δx
pitch=kp*Δy
其中,r为喷管机载控制器的期望姿态角,yaw为喷管的偏航角,pitch为喷管的俯仰角,ky为偏航方向上的比例系数,kp为俯仰方向上的比例系数,Δx、Δy分别为喷管中心点与目标物的中心点在x、y方向上的偏差量。
4.一种无人机二自由度喷管瞄准控制装置,用于实现权利要求1-3任意一项所述的无人机二自由度喷管瞄准控制方法,其特征在于,包括二轴喷管和喷管控制系统,二轴喷管固定安装在无人机的中间下底板上,且二轴喷管的朝向与无人机机头方向一致;所述喷管控制系统包括扰动观测器和喷管机载控制器,扰动观测器输入与无人机的飞控系统连接、输出与喷管机载控制器连接,喷管机载控制器的输入为相对姿态控制量,输出为二轴喷管的实际姿态角。
5.如权利要求4所述的无人机二自由度喷管瞄准控制装置,其特征在于,所述二轴喷管包括喷管底座、水平方向旋转座、竖直方向旋转座、激光发射装置以及喷管,喷管底座固定在所述无人机的中间下底板上,水平方向旋转座固定在喷管底座上,竖直方向旋转座固定在水平方向旋转座上,激光发射装置与喷管固定在竖直方向旋转座上。
6.如权利要求4所述的无人机二自由度喷管瞄准控制装置,其特征在于,所述相对姿态控制量的公式表示如下:
r=[yaw pitch]T
yaw=ky*Δx
pitch=kp*Δy
其中,r为喷管机载控制器的期望姿态角,yaw为喷管的偏航角,pitch为喷管的俯仰角,ky为偏航方向上的比例系数,kp为俯仰方向上的比例系数,Δx、Δy分别为喷管中心点与目标物的中心点在x、y方向上的偏差量。
7.如权利要求4所述的无人机二自由度喷管瞄准控制装置,其特征在于,所述喷管机载控制器包括PI控制器C(s)、喷管机载控制器模型P(s)、喷管机载控制器系统辨识模型P'(s)和补偿器C'(s);
所述相对姿态控制量和所述二轴喷管的实际姿态角作为PI控制器C(s)的输入量,PI控制器C(s)根据所述相对姿态控制量和所述实际姿态角,计算得到所述二轴喷管初始的姿态控制量;
将所述二轴喷管初始的姿态控制量、平台力矩扰动以及所述扰动观测器输出的二轴喷管扰动进行运算,得到修正后的控制量作为喷管机载控制器模型P(s)的输入,喷管机载控制器模型P(s)的输出信号量作为系统反馈量输入至PI控制器C(s);
将所述二轴喷管初始的姿态控制量作为喷管机载控制器系统辨识模型P'(s)的输入,喷管机载控制器系统辨识模型P'(s)的输出信号量与喷管机载控制器模型P(s)的输出信号量以及无人机姿态扰动进行运算,并将运算结果作为补偿器C'(s)的输入,补偿器C'(s)的输出为所需的扰动观测器输出。
CN202110785408.4A 2021-07-12 2021-07-12 一种无人机二自由度喷管瞄准控制方法及装置 Active CN113448344B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110785408.4A CN113448344B (zh) 2021-07-12 2021-07-12 一种无人机二自由度喷管瞄准控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110785408.4A CN113448344B (zh) 2021-07-12 2021-07-12 一种无人机二自由度喷管瞄准控制方法及装置

Publications (2)

Publication Number Publication Date
CN113448344A CN113448344A (zh) 2021-09-28
CN113448344B true CN113448344B (zh) 2022-07-15

Family

ID=77815892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110785408.4A Active CN113448344B (zh) 2021-07-12 2021-07-12 一种无人机二自由度喷管瞄准控制方法及装置

Country Status (1)

Country Link
CN (1) CN113448344B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113911356A (zh) * 2021-10-18 2022-01-11 国网四川省电力公司检修公司 基于无人机的电力设施涂料喷射装置及控制方法
CN116300442B (zh) * 2023-02-27 2023-10-13 西北工业大学 一种高海况有限舵面条件下串行干扰快速抑制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204856213U (zh) * 2015-08-12 2015-12-09 北京贯中精仪科技有限公司 无人机着陆引导系统
US10112715B2 (en) * 2016-04-26 2018-10-30 Hewlett-Packard Development Company, L.P. Signaling print substances
CN207658067U (zh) * 2017-12-18 2018-07-27 成都轻云信息科技有限公司 一种植保无人机视觉辅助瞄准系统
CN207759027U (zh) * 2018-01-18 2018-08-24 太原小鸟智能科技有限公司 一种高空喷火清障无人机
CN109305364B (zh) * 2018-09-14 2022-09-02 广州市华科尔科技股份有限公司 一种消防无人机的瞄准方法
RU2695141C2 (ru) * 2018-10-22 2019-07-22 Алексей Владимирович Зубарь Способ автоматической выверки нулевых линий прицеливания оптико-электронных каналов прицелов бронетанкового вооружения
CN110665235A (zh) * 2019-11-05 2020-01-10 淮安鱼鹰航空科技有限公司 一种无人机打靶娱乐系统
CN110915785A (zh) * 2019-12-09 2020-03-27 应急管理部上海消防研究所 一种适用多场景的消防用马蜂窝处理装置及处理方法
CN113095168B (zh) * 2021-03-25 2022-09-02 中国科学技术大学 用于辅助无人机进行绝缘子清洗的水流预测方法及系统

Also Published As

Publication number Publication date
CN113448344A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN113448344B (zh) 一种无人机二自由度喷管瞄准控制方法及装置
CN106979773B (zh) 表面测绘设备、3d坐标确定方法、计算机可读存储介质
CN108983816B (zh) 多旋翼无人机变尺度协同监视编队飞行控制方法
CN106873627B (zh) 一种自动巡检输电线路的多旋翼无人机及方法
KR101873783B1 (ko) 로터식 항공기 및 자동 착륙 시스템 및 방법
US10657832B2 (en) Method and apparatus for target relative guidance
US20180305012A1 (en) Method for controlling small-size unmanned aerial vehicle
EP2472221A1 (en) Flight Control System for Flying Object
EP2538298A1 (en) Method for acquiring images from arbitrary perspectives with UAVs equipped with fixed imagers
CN111766897B (zh) 一种输电线路的通道巡视方法、无人机和系统
WO2012140191A1 (de) System und verfahren zur steuerung eines unbemannten fluggeräts
CN105903590B (zh) 一种喷洒流量自动控制系统
CN107616742B (zh) 一种幕墙无人清洁主机控制系统
CN111897361A (zh) 一种无人机自主航线规划方法及其系统
EP3788451B1 (en) Controlling a vehicle using a remotely located laser and an on-board camera
Pfrunder et al. A proof-of-concept demonstration of visual teach and repeat on a quadrocopter using an altitude sensor and a monocular camera
CN110075462A (zh) 消防系统
CN110088703B (zh) 对自主行进的处理设备进行导航和自身定位的方法
CN111506101A (zh) 基于通信网络拓扑结构的飞行器协同制导控制方法及系统
KR102324059B1 (ko) 드론 조작용 비행 영상 제공 시스템
Miyazaki et al. Development of High-Pressure Washing Aerial Robot Employing Multirotor Platform with Add-on Planar Translational Driving System
CN114147723B (zh) 一种自动放样机器人系统及其运行方法
KR101854371B1 (ko) 도장작업용 무인비행체 및 그의 제어방법
Shaqura et al. Human supervised multirotor UAV system design for inspection applications
Ax et al. Optical position stabilization of an UAV for autonomous landing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant