CN113446762B - 空调自清洁装置以及空调自清洁方法 - Google Patents

空调自清洁装置以及空调自清洁方法 Download PDF

Info

Publication number
CN113446762B
CN113446762B CN202110691466.0A CN202110691466A CN113446762B CN 113446762 B CN113446762 B CN 113446762B CN 202110691466 A CN202110691466 A CN 202110691466A CN 113446762 B CN113446762 B CN 113446762B
Authority
CN
China
Prior art keywords
air conditioner
evaporator
self
throttling element
throttling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110691466.0A
Other languages
English (en)
Other versions
CN113446762A (zh
Inventor
靳亚娟
仲明凯
鞠文宏
王泽钦
钟昌原
黄成龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gree Electric Appliances Inc of Zhuhai
Original Assignee
Gree Electric Appliances Inc of Zhuhai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gree Electric Appliances Inc of Zhuhai filed Critical Gree Electric Appliances Inc of Zhuhai
Priority to CN202110691466.0A priority Critical patent/CN113446762B/zh
Publication of CN113446762A publication Critical patent/CN113446762A/zh
Application granted granted Critical
Publication of CN113446762B publication Critical patent/CN113446762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • F24F2221/225Cleaning ducts or apparatus using a liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及一种节流装置、空调自清洁装置以及空调的自调节方法。节流装置包括主管路以及支管路。主管路设有第一节流件;支管路通过换向阀连接于主管路,支管路设有第二节流件;换向阀处于第一位置,冷媒通过第一节流件;换向阀换向至第二位置,冷媒通过第一节流件和第二节流件。本申请,通过换向阀来调整节流的程度,换向阀处于第一位置,冷媒通过主管路的第一节流件,产生制冷的预定效果,换向阀换向到第二位置,冷媒经过主管路和支管路,先后经过第一节流件和第二节流件,使制冷效果大幅提高。在空调需要换热操作以外的工作如结霜时,则将换向阀换位,使冷媒经过第一节流件和第二节流件,达到结霜效果以便于后续的化霜清洁。

Description

空调自清洁装置以及空调自清洁方法
技术领域
本申请涉及空调器领域,尤其涉及一种节流装置、空调自清洁装置以及空调自清洁方法。
背景技术
随着生活品质的提高,用户在炎热夏季通常使用空调降低室内温度,空调使用一段时间后,虽然过滤网能阻挡部分灰尘,但空调的蒸发器上还是会积附一些灰尘或其它杂物,容易造成空调换热器脏堵,热阻增大,换热效果变差,空调制冷量不足;而一旦脏堵程度比较严重时,还会带来细菌滋生、吹风带有灰尘污染等影响健康的问题,为了保证空调的换热效率及室内空气质量,需要定期对空调作清洁处理。
目前,通过自清洁技术可以在一定程度上解决灰尘问题。市场上有一种自清洁方法是:使蒸发器先结霜而后化霜,通过融化后的水带走灰尘。结霜和化霜的模式转变一般采用改变蒸发器进出风量来控制蒸发器换热量的方式,对于窗机来说耗时长,结霜厚度不够,导致自清洁过程中出现结霜不充分和清洁不彻底等问题。
有鉴于此,亟需对现有的空调自清洁结构进行改进,以提高蒸发器的结霜效率。
发明内容
为了解决上述现有技术的空调自清洁结构存在蒸发器的结霜效率低导致清洁不彻底的技术问题,本申请提供了一种空调自清洁装置以及空调自清洁方法。
第一方面,本申请提供了一种空调自清洁方法,空调安装有节流装置,节流装置包括:
主管路,所述主管路设有第一节流件;以及,
支管路,所述支管路通过换向阀连通于所述主管路,所述支管路设有第二节流件;
所述换向阀处于第一位置,冷媒依次通过所述第一接口、所述第一节流件和所述第二接口;所述换向阀换向至第二位置,冷媒依次通过所述第一接口、所述第一节流件、所述第二节流件和所述第二接口;
空调自清洁方法包括以下步骤:
控制器接收自清洁指令;
控制器发出第一信号,换向阀由第一位置换向至第二位置,冷媒通过第一节流件和第二节流件,蒸发器开始结霜;
继续运行至蒸发器的结霜量达到预定阈值;
控制器发出第二信号,换向阀由第二位置换向至第一位置,控制器发出第二信号,换向阀由第二位置回至第一位置,压缩机停机,空调进入送风模式,开始化霜至化霜结束;
降低风机转速以降低空气流通,加快结霜;
降低风机转速的具体步骤为:
以压缩机规定的最大排气温度为a,冷凝器的最大外管温度为b;
以压缩机规定的最大排气温度为a,冷凝器的最大外管温度为b;
压缩机的实测排气温度为a1,冷凝器的实测外管温度为b1
若a1<a且b1<b,将风机的转速设置为最大风速的30%;
若a1>a或b1>b,将风机的转速设置为最大风速的50%;
若a1>a且b1>b,将风机的转速设置为最大风速的70%。
在一个优选的实施例中,所述第一节流件和/或所述第二节流件设置为毛细管,或者,所述第一节流件和/或所述第二节流件设置为电子膨胀阀。
在一个优选的实施例中,控制器发出第一信号,还包括以下步骤:闭合室内侧的出风口,减少室内侧空气流通,直至结霜完成。
在一个优选的实施例中,控制器发出第二信号,还包括以下步骤:蒸发器化霜后的冷凝水引流至冷凝器,并对冷凝器进行降温。
进一步地,在上述实施例中,控制器发出第二信号,空调进入送风模式,包括以下具体步骤:增大风机转速至最大转速,同时打开室内侧的出风口加快空气流通,直至化霜结束。
在一个优选的实施例中,蒸发器开始结霜至结霜完成,包括以下具体步骤:
蒸发器的感应件检测到霜层,感应件向控制器发出霜层达到预定阈值的信号;
蒸发器继续结霜到达预定结霜时间后,结霜完成。
第二方面,本申请还提供了一种空调自清洁装置,包括换热回路,所述换热回路包括冷凝器和蒸发器,空调自清洁装置采用上述空调自清洁方法,所述冷凝器和所述蒸发器之间设有上述结构的节流装置。
在一个优选的实施例中,所述蒸发器设有用于检测霜层的感应件。
在一个优选的实施例中,所述感应件设置为接触式传感器。
本申请实施例提供的上述技术方案与现有技术相比具有如下优点:通过换向阀来调整节流的程度,换向阀处于第一位置,冷媒通过主管路的第一节流件,产生制冷的预定效果,换向阀换向到第二位置,冷媒经过主管路和支管路,先后经过第一节流件和第二节流件,使制冷效果大幅提高。利用节流装置的换向来调整空调自清洁装置的工作模式,在空调的正常状态下,采用第一节流件进行换热操作,在空调需要换热操作以外的工作如结霜时,则将换向阀换位,使冷媒经过第一节流件和第二节流件,达到结霜效果以便于后续的化霜清洁。
本申请提供的该方法,通过空调自身的结构进行自清洁,只需要改变节流方式即可实现结霜和化霜,操作简单,尤其适用于单个电机的窗机,可解决现有技术中窗机结霜效率低的问题。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的一种节流装置的结构示意图;
图2为本申请实施例提供的一种空调室内侧开启出风的结构示意图;
图3为本申请实施例提供的一种空调室内侧关闭出风的流程示意图;
图4为本申请实施例提供的一种空调的左视方向的内部结构示意图;
图5为本申请实施例提供的一种空调的俯视角度的内部结构示意图;
图6为本申请实施例提供的一种空调的自清洁方法的流程图。
其中,附图标记为:
100、节流装置;101、第一接口;102、第二接口;110、主管路;111、第一节流件;120、支管路;121、第二节流件;130、换向阀;200、冷凝器;300、蒸发器;310、感应件;400、电机;500、出风口。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。
为了解决现有技术的空调自清洁结构存在蒸发器300的结霜效率低导致清洁不彻底的技术问题,参阅图1-6,本申请提供了一种节流装置100、空调自清洁装置以及空调自清洁方法。
本申请所述的节流装置100尤其适用于单电机空调,即仅有一个电机400来控制室外侧和室内侧的风量,常见的单电机空调主要是窗机。双电机400空调器即具有两个电机,分别设置在室内侧和室外侧来调节风速,两个电机的转速可独立调节,自清洁模式更易实现,而由于大多数窗机的室内侧和室外侧共用同一个电机400,无法使室外侧风叶正常旋转而室内侧风叶停转,无法达到室内侧几乎无换热的情况,影响结霜效率。
下面通过说明书附图和具体实施例对本发明进行详细阐述。
参阅图1,本申请提供了一种节流装置100,包括主管路110和支管路120。主管路110设有第一节流件111。支管路120通过换向阀130连接于主管路110,支管路120设有第二节流件121。换向阀130处于第一位置,冷媒依次通过第一接口101、第一节流件111和第二接口102;换向阀130换向至第二位置,冷媒依次通过第一接口101、第一节流件111、第二节流件121和第二接口102。
本申请的技术方案,通过换向阀130来调整节流的程度,换向阀130处于第一位置,冷媒通过主管路110的第一节流件111,产生制冷或制热的预定效果,换向阀130换向到第二位置,冷媒经过主管路110和支管路120,先后经过第一节流件111和第二节流件121,使制冷效果大幅提高,有效提供结霜效率,尤其适合单冷机空调,单个电机且只用于制冷的空调。
在应用于空调时,换向阀130可采用电子阀,与空调的控制器实现信号连接,空调调整自身的工作模式,换向阀130即可接收信号进而实现换向。
在一个优选的实施例中,第一节流件111和/或第二节流件121设置为毛细管,或者,第一节流件111和/或第二节流件121设置为电子膨胀阀。本实施例中,第一节流件111和第二节流件121进行结构优化。毛细管一般内径在0.9mm-4mm,能够将冷媒的流速大幅降低,从而充分进行换热,大幅提高换热效果。毛细管增长后,流经毛细管的冷媒压降大,流量变小,流入蒸发器300的冷媒吸热能力高、充分气化,过热度大,使蒸发器300外表面温度过低;房间湿热空气经过温度低于空气露点温度(干球温度27℃、湿球温度19℃时空气露点温度为14.8℃)的蒸发器300表面时,空气中的水蒸汽在其表面凝结为霜;由于空气中的水蒸汽在传递压力的作用下不断向冷表面移动并凝结,使表面霜层的密度及厚度不断增长。
电子膨胀阀则根据内部阀门的通量进行调节,改变节流开度,实现预期的换热效果,一般需要配备电气元件,结构成本稍高,但是更利于控制器进行更好的控制。
具体地,在上述实施例中,若第一节流件111和第二节流件121设置为毛细管,二者的长度不作特别限定,可根据机型的不同性能指标调整,在不同整机上仍能保证第一节流件111和第二节流件121同时工作时,实现快速结霜。
参阅图2-5,第二方面,本申请提供了一种空调自清洁装置,包括换热回路,换热回路包括冷凝器200和蒸发器300,冷凝器200和蒸发器300之间设有上述结构的节流装置100。
本申请,利用节流装置100的换向来调整空调自清洁装置的工作模式,在空调的正常状态下,采用第一节流件111进行换热操作,在空调需要换热操作以外的工作如结霜时,则将换向阀130换位,使冷媒经过第一节流件111和第二节流件121,达到结霜效果以便于后续的化霜清洁。
本实施例中,将此空调自清洁装置应用于单冷机上,一般为窗机,只适用于夏季,其是在制冷模式的基础上使其蒸发器300结霜除尘。外部空气在风机的作用下经过蒸发器300后进入室内,室内侧设置出风口500。冷媒经过第一节流件111实现制冷,由于空调的长时间运行会使蒸发器300上出现灰尘,因此为了保证室内空气的清洁,减少灰尘的散逸,需要对蒸发器300进行自清洁。自清洁时,使换向阀130由第一位置换向至第二位置,制冷效果显著增强,蒸发器300上开始结霜,待霜层达到一定程度一般是覆盖蒸发器300翅片为止,再关闭自清洁模式中的制冷阶段,使空调进入到送风模式,室外热空气流入室内使霜层逐渐融化,并将灰尘由融化后的水带走,从而完成蒸发器300的自清洁。
在一个优选的实施例中,蒸发器300设有用于检测霜层的感应件310。感应件310用于检测霜层的位置,是否将蒸发器300的翅片完全覆盖。本实施例中感应件310设置在蒸发器300的顶端,这是因为由于重力作用,液态冷媒极易造成分液不均,下部冷媒流量多于上部,易积液造成换热差,使蒸发器300下部的管路温度一般低于上部,温度最低点普遍在蒸发器300的中下部,因此下部优先结霜。因此若蒸发器300上端的霜层达到要求,蒸发器300的其它部位肯定也达到要求,不需要另行检测。
进一步地,在上述实施例中,感应件310设置为接触式传感器。接触式温度传感器包括多个感温包组件,当传感器接触到霜层,霜层完全覆盖蒸发器300翅片,且设定传感器检测到的温度连续3min低于-5℃后(排除霜层冷辐射的影响),向控制器发出反馈信号。
参阅图6,第三方面,本申请提供了一种空调自清洁方法,包括以下步骤:
S10、控制器接收自清洁指令;
S20、控制器发出第一信号,换向阀130由第一位置换向至第二位置,冷媒通过第一节流件111和第二节流件121,蒸发器300开始结霜至结霜完成;
S30、控制器发出第二信号,换向阀130由第二位置换向至第一位置,压缩机停机,空调进入送风模式,开始化霜至化霜结束。
其中,步骤S10中,用户开启该机自清洁模式时,可通过遥控器或按下整机上的自清洁按钮进行操作,向整机控制器发送自清洁控制信号。
需要注意的是,步骤S30中,换向阀130由第二位置回至第一位置,但是由于压缩机停机操作,此时换热回路不再进行换热操作,即冷媒停止循环流动。此时换向阀130的回位是为了方便清洁结束后的一般运行。化霜流程可设置预定的化霜时间,化霜时间应当通过多次模拟化霜和结霜的步骤制定,化霜时间可大于模拟的化霜时间,以保证化霜的彻底。
空调完成自清洁后,用户可根据自身需求进行模式更换,进行制冷或送风。
在一个优选的实施例中,步骤S20中,控制器发出第一信号,还包括以下步骤:降低风机转速以降低空气流通,加快结霜。风机的转速由电机400控制,风机的转速越低,则蒸发器300更易结霜,但是风量越少,压缩机的排气温度会升高,因此,应当将风机的转速根据结霜速度和压缩机的运行同时考虑。
进一步地,步骤S20中,在上述实施例中,降低风机转速的具体步骤为:
以压缩机规定的最大排气温度为a,冷凝器200的最大外管温度为b;
压缩机的实测排气温度为a1,冷凝器200的实测外管温度为b1
若a1<a且b1<b,将风机的转速设置为最大风速的30%;即压缩机的排气温度处于合理范围,冷凝器200的外管温度处于合理范围,在目前状态下压缩机的工况良好,此时风机的转速可降至30%。
若a1>a或b1>b,将风机的转速设置为最大风速的50%;压缩机的排气温度或冷凝器200的外管温度有一个超出合理范围,在目前状态风机的转速不应过低,风机的转速可调至50%。
若a1>a且b1>b,将风机的转速设置为最大风速的70%,压缩机的排气温度和冷凝器200的外管温度均超出合理范围,在目前状态风机的转速应当提高,风机的转速可调至70%。
在一个优选的实施例中,步骤S20中,控制器发出第一信号,还包括以下步骤:闭合室内侧的出风口,减少室内侧空气流通,直至结霜完成。为了提高结霜效率,避免室内侧的空气与蒸发器300产生换热,闭合出风口500。应当注意的是,出风口一般设有挡板或格栅,闭合出风口的操作和风机降速的操作可以同时进行,与换向阀130的换向动作同时进行,也可以在风机降速后关闭出风口,减少挡板或格栅的阻力,延后时间可以为1s-3s,总体来说没有严格的顺序限定。
在一个优选的实施例中,步骤S30中,控制器发出第二信号,还包括以下步骤:蒸发器300化霜后的冷凝水引流至冷凝器200,并对冷凝器200进行降温。蒸发器300在化霜过程中形成融化的冷凝水,冷凝水含有较大冷量,温度较低,可用于对温度较高的冷凝器200进行降温,保持冷凝器200的正常运行,充分回收可用的能量。优选地,蒸发器300的底部设有底盘,底盘通过排水通道流向室外侧的冷凝器200,通过轴流风机的叶片上的打水圈打向冷凝器200翅片。
在一个优选的实施例中,步骤S30中,控制器发出第二信号,空调进入送风模式,包括以下具体步骤:增大风机转速至最大转速,同时打开室内侧的出风口加快空气流通,直至化霜结束。化霜时,利用室外空气的自带热量将霜层进行融化,为了缩短此流程,将风机转速提升至最大,以向室内的蒸发器300提供最大的风量。
在一个优选的实施例中,步骤S20中,蒸发器300开始结霜至结霜完成,包括以下具体步骤:
蒸发器300的感应件310检测到霜层,感应件310向控制器发出霜层达到预定阈值的信号;
蒸发器300继续结霜到达预定结霜时间后,结霜完成。
本实施例中,利用感应件310检测霜层的位置和厚度,具体地,采用前文所述的接触式传感器,且设定传感器检测到的温度连续3min低于-5℃后(排除霜层冷辐射的影响),向控制器发出反馈信号。为了保证霜层达到预定效果,若此时未达到结霜时间,则应继续结霜达到结霜时间,避免霜层未达到预定效果。
在一个优选的实施例中,步骤S30中,控制器发出第二信号,蒸发器300开始化霜,经过预定化霜时间后结束化霜。预定化霜时间能够保证化霜效果,保证蒸发器300的翅片上不存在残留霜块,避免空调恢复正常运行后,室内出风的温度过低。
本申请的技术方案,通过换向阀130来调整节流的程度,换向阀130处于第一位置,冷媒通过主管路110的第一节流件111,产生制冷的预定效果,换向阀130换向到第二位置,冷媒经过主管路110和支管路120,先后经过第一节流件111和第二节流件121,使制冷效果大幅提高。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种空调自清洁方法,其特征在于,空调安装有节流装置(100),节流装置(100),包括:
主管路(110),所述主管路(110)设有第一接口(101)和第二接口(102),所述主管路(110)设有第一节流件(111);以及,
支管路(120),所述支管路(120)通过换向阀(130)连通于所述主管路(110),所述支管路(120)设有第二节流件(121);
所述换向阀(130)处于第一位置,冷媒依次通过所述第一接口(101)、所述第一节流件(111)和所述第二接口(102);所述换向阀(130)换向至第二位置,冷媒依次通过所述第一接口(101)、所述第一节流件(111)、所述第二节流件(121)和所述第二接口(102);
空调自清洁方法包括以下步骤:
控制器接收自清洁指令;
控制器发出第一信号,换向阀(130)由第一位置换向至第二位置,冷媒通过第一节流件(111)和第二节流件(121),蒸发器(300)开始结霜至结霜完成;
控制器发出第二信号,换向阀(130)由第二位置回至第一位置,压缩机停机,空调进入送风模式,开始化霜至化霜结束;
控制器发出第一信号,还包括以下步骤:降低风机转速以降低空气流通,加快结霜;
降低风机转速的具体步骤为:
以压缩机规定的最大排气温度为a,冷凝器(200)的最大外管温度为b;
压缩机的实测排气温度为a1,冷凝器(200)的实测外管温度为b1
若a1<a且b1<b,将风机的转速设置为最大风速的30%;
若a1>a或b1>b,将风机的转速设置为最大风速的50%;
若a1>a且b1>b,将风机的转速设置为最大风速的70%。
2.根据权利要求1所述的方法,其特征在于,所述第一节流件(111)和/或所述第二节流件(121)设置为毛细管,或者,所述第一节流件(111)和/或所述第二节流件(121)设置为电子膨胀阀。
3.根据权利要求1所述的方法,其特征在于,控制器发出第一信号,还包括以下步骤:闭合室内侧的出风口,减少室内侧空气流通,直至结霜完成。
4.根据权利要求1所述的方法,其特征在于,控制器发出第二信号,还包括以下步骤:蒸发器(300)化霜后的冷凝水引流至冷凝器(200),并对冷凝器(200)进行降温。
5.根据权利要求1所述的方法,其特征在于,控制器发出第二信号,空调进入送风模式,包括以下具体步骤:增大风机转速至最大转速,同时打开室内侧的出风口加快空气流通,直至化霜结束。
6.根据权利要求1所述的方法,其特征在于,蒸发器(300)开始结霜至结霜完成,包括以下具体步骤:
蒸发器(300)的感应件(310)检测到霜层,感应件(310)向控制器发出霜层达到预定阈值的信号;
蒸发器(300)继续结霜到达预定结霜时间后,结霜完成。
7.一种空调自清洁装置,其特征在于,包括换热回路,所述换热回路包括冷凝器(200)和蒸发器(300),所述空调自清洁装置采用如权利要求1-2任一项所述的空调自清洁方法,所述冷凝器(200)和所述蒸发器(300)之间设有如权利要求1-2任一项所述的空调自清洁方法中的节流装置(100)。
8.根据权利要求7所述的装置,其特征在于,所述蒸发器(300)设有用于检测霜层的感应件(310)。
9.根据权利要求8所述的装置,其特征在于,所述感应件(310)设置为接触式传感器。
CN202110691466.0A 2021-06-22 2021-06-22 空调自清洁装置以及空调自清洁方法 Active CN113446762B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110691466.0A CN113446762B (zh) 2021-06-22 2021-06-22 空调自清洁装置以及空调自清洁方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110691466.0A CN113446762B (zh) 2021-06-22 2021-06-22 空调自清洁装置以及空调自清洁方法

Publications (2)

Publication Number Publication Date
CN113446762A CN113446762A (zh) 2021-09-28
CN113446762B true CN113446762B (zh) 2022-03-18

Family

ID=77812101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110691466.0A Active CN113446762B (zh) 2021-06-22 2021-06-22 空调自清洁装置以及空调自清洁方法

Country Status (1)

Country Link
CN (1) CN113446762B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234365A (zh) * 2021-11-12 2022-03-25 青岛海尔空调器有限总公司 用于空调器自清洁的方法及装置、空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679111A (zh) * 2017-01-23 2017-05-17 深圳创维空调科技有限公司 一种空调器换热器的自动清洁处理方法及系统
CN107388658A (zh) * 2017-07-10 2017-11-24 青岛海尔空调器有限总公司 一种空调及自清洁的控制方法
CN110017543A (zh) * 2019-04-17 2019-07-16 广东美的制冷设备有限公司 空调器、清洁控制方法和计算机可读存储介质
CN111854048A (zh) * 2020-07-24 2020-10-30 广东美的暖通设备有限公司 空调器的自清洁方法、装置、空调器和电子设备
CN112432395A (zh) * 2020-11-30 2021-03-02 珠海格力电器股份有限公司 节流组件及其控制方法和空调系统
CN112880046A (zh) * 2021-01-21 2021-06-01 珠海格力电器股份有限公司 辅助清洁装置、清洁方法及整体式空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679111A (zh) * 2017-01-23 2017-05-17 深圳创维空调科技有限公司 一种空调器换热器的自动清洁处理方法及系统
CN107388658A (zh) * 2017-07-10 2017-11-24 青岛海尔空调器有限总公司 一种空调及自清洁的控制方法
CN110017543A (zh) * 2019-04-17 2019-07-16 广东美的制冷设备有限公司 空调器、清洁控制方法和计算机可读存储介质
CN111854048A (zh) * 2020-07-24 2020-10-30 广东美的暖通设备有限公司 空调器的自清洁方法、装置、空调器和电子设备
CN112432395A (zh) * 2020-11-30 2021-03-02 珠海格力电器股份有限公司 节流组件及其控制方法和空调系统
CN112880046A (zh) * 2021-01-21 2021-06-01 珠海格力电器股份有限公司 辅助清洁装置、清洁方法及整体式空调器

Also Published As

Publication number Publication date
CN113446762A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
AU2016409529B2 (en) Method for cleaning air conditioner indoor unit and outdoor unit
TWI689688B (zh) 空調機、空調機的控制方法以及程式
WO2019024681A1 (zh) 一种空调自清洁的控制方法及装置
WO2020248414A1 (zh) 一拖多空调器及其自清洁控制方法
CN107514683A (zh) 空调器及其室内机自清洁控制方法
JP5997060B2 (ja) 空気調和機
CN103363600A (zh) 热泵式空气调节装置
CN207688449U (zh) 空调装置
CN106885405A (zh) 一种空调器系统及其除霜方法
CN107655171A (zh) 空调器换热器的自清洁方法和空调器
CN211782124U (zh) 一种热风化霜装置和空调器
CN103363601A (zh) 热泵式空气调节装置
CN106895618A (zh) 空调及其室内机换热器的自清洗控制方法
CN113446762B (zh) 空调自清洁装置以及空调自清洁方法
CN113803848A (zh) 自清洁的控制方法、装置、设备和空调系统
CN202993410U (zh) 一种内置辅助电加热器的空调器室外机
CN109916058B (zh) 空调器自清洁控制方法
CN107388658A (zh) 一种空调及自清洁的控制方法
CN111649394B (zh) 空调器及其除霜控制方法
CN206739693U (zh) 一种空调器系统
KR20060017396A (ko) 에어콘의 실내기 구조
CN115031358B (zh) 一种空调的控制方法、装置、空调和存储介质
CN205425372U (zh) 一种空调
CN106940057A (zh) 空调器和空调器的运行方法
CN217031367U (zh) 室内机以及空调机组

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant