CN113444758B - 一种利用组合生物合成技术制备地贝卡星的方法 - Google Patents

一种利用组合生物合成技术制备地贝卡星的方法 Download PDF

Info

Publication number
CN113444758B
CN113444758B CN202010216995.0A CN202010216995A CN113444758B CN 113444758 B CN113444758 B CN 113444758B CN 202010216995 A CN202010216995 A CN 202010216995A CN 113444758 B CN113444758 B CN 113444758B
Authority
CN
China
Prior art keywords
ala
gly
val
kanamycin
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010216995.0A
Other languages
English (en)
Other versions
CN113444758A (zh
Inventor
夏焕章
陈晓堂
倪现朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Pharmaceutical University
Original Assignee
Shenyang Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Pharmaceutical University filed Critical Shenyang Pharmaceutical University
Priority to CN202010216995.0A priority Critical patent/CN113444758B/zh
Publication of CN113444758A publication Critical patent/CN113444758A/zh
Application granted granted Critical
Publication of CN113444758B publication Critical patent/CN113444758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/46Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical bound to a cyclohexyl radical, e.g. kasugamycin
    • C12P19/48Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical bound to a cyclohexyl radical, e.g. kasugamycin the cyclohexyl radical being substituted by two or more nitrogen atoms, e.g. destomycin, neamin
    • C12P19/485Having two saccharide radicals bound through only oxygen to non-adjacent ring carbons of the cyclohexyl radical, e.g. gentamycin, kanamycin, sisomycin, verdamycin, mutamycin, tobramycin, nebramycin, antibiotics 66-40B, 66-40D, XK-62-2, 66-40, G-418, G-52
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明属于抗生素制药领域,涉及地贝卡星生物合成制备方法。具体地说,本发明利用庆大霉素生物合成中的双脱氧基因,通过组合生物学在产生卡那霉素B的菌种中进行内源性表达,获得地贝卡星生产菌株。本发明从棘孢小单孢链霉菌中克隆得到负责庆大霉素双脱氧过程的三个基因genP、genB3、genB4,其基因序列如SEQ ID NO.1‑3所示。通过组合生物学技术在产生卡那霉素B的链霉菌中表达双脱氧基因genP、genB3、genB4,双脱氧酶系在体内催化卡那霉素B的3’,4’羟基双脱氧生成地贝卡星。本发明利用双脱氧酶系通过组合生物学生物合成地贝卡星,极大降低化学合成的工业成本,环境友好,具有重要的工业应用价值。

Description

一种利用组合生物合成技术制备地贝卡星的方法
技术领域
本发明属于抗生素制药领域,涉及地贝卡星生物合成制备方法。具体地说,本发明利用庆大霉素生物合成中的双脱氧基因,通过组合生物学在产生卡那霉素B的菌种中进行内源性表达,获得地贝卡星生产菌株。
背景技术
地贝卡星(dibekacin,双脱氧卡那霉素B)属于半合成氨基糖苷类抗生素,它是一种新型的广谱抗生素,具有独特的化学结构与抗菌作用机制,与其他抗生素与抗菌药之间不但交叉耐药性小,而且多数呈协同作用。同时,地贝卡星也是重要的氨基糖苷类抗生素阿贝卡星的直接前体。
传统地贝卡星的制备,是以卡那霉素B为原料,通过一系列的化学反应脱去3’,4’位两个羟基。但传统化学合成的方法面临成本较高,工艺复杂,环境不友好等问题。
发明内容
庆大霉素的生物合成途径中有独特的3’,4’双脱氧过程。其中间体JI-20A、JI-20B和JI-20Ba经双脱氧酶系催化反应后,脱去3’,4’羟基对应生成庆大霉素C1a、C2和C2a。目前,本课题组已阐明genP、genB3、genB4负责催化庆大霉素的双脱氧过程。以JI-20A为例,GenP催化JI-20A磷酸化,GenB3催化磷酸化JI-20A生成西索米星,GenB4催化西索米星生成庆大霉素C1a。卡那霉素B与JI-20A结构相似(区别仅在于第三个糖环取代基不同),在体外催化反应中以卡那霉素B为底物,经双脱氧酶系GenP-GenB3-GenB4催化成功可以得到地贝卡星。
卡那霉素B是许多微生物的次级代谢产物,或可通过基因技术手段提高卡那霉素B的产量或者使原本不产卡那霉素B的菌株产生该组分。如本课题组在卡那链霉菌中阻断kanJ,使卡那霉素B的产量提高了12倍;在黑暗链霉菌H6中阻断aprD3、aprQ、aprD4和tacA,获得卡那霉素B产生菌SPU314。
本发明的主要目的是提供一种地贝卡星生物合成的制备方法,即利用分子生物学技术构建地贝卡星生产菌株,通过生物合成直接发酵的方法制备地贝卡星。
本发明所述的制备方法包括以位点特异性整合、定点整合或游离质粒表达等形式将将负责3’,4’双脱氧的基因或酶系引入各种产生卡那霉素B菌种中生物合成地贝卡星的方法。
本发明通过如下技术方案实现:
本发明以卡那霉素B作为底物,通过将3’,4’羟基双脱氧基因在产生卡那霉素B的链霉菌中进行内源性表达或外源性加入3’,4’羟基双脱氧基因组成的双脱氧酶系,使卡那霉素B的3’,4’位脱羟基生成地贝卡星。
所述的3’,4’羟基双脱氧基因为genP、genB3、genB4的组合。
所述的genP、genB3、genB4的核苷酸序列如SEQ ID NO.1-3所示;
所述的genP、genB3、genB4的蛋白的氨基酸序列如SEQ ID NO.4-6所示。
所述的产生卡那霉素B的链霉菌为通过基因操作等生物技术手段得到的产生卡那霉素B的菌种。优选为黑暗链霉菌、卡那链霉菌。
进一步地,本发明包括如下步骤:
(1)双脱氧基因表达质粒的构建;
(2)卡那霉素B产生菌株的构建及获得;
(3)通过接合转移或其他技术手段将双脱氧基因表达质粒导入产生卡那霉素B的链霉菌中并使其内源性表达,催化卡那霉素B的3’,4’位脱羟基生成地贝卡星。
本发明的方法可以用于制备地贝卡星,还可以用于制备与地贝卡星结构相近的氨基糖苷类化合物,该化合物中的结构中同时含有3’,4’羟基。
本发明进一步提供了一种3’,4’双脱氧酶系,所述3’,4’的双脱氧酶系为GenP、GenB3、GenB4的组合。
现有地贝卡星的制备方法都是化学合成,本发明是首次提出生物合成地贝卡星的制备方法。通过直接生物发酵的方法制备地贝卡星,工艺简单,成本较低,环境友好,其应用价值是传统化学合成方法无法比拟的。
附图说明
图1地贝卡星以卡那霉素B为底物的生物合成途径
图2双脱氧基因位点特异性整合表达质粒pEAP1-B3-P-B4图谱
图3双脱氧基因PCR扩增产物电泳图谱
图4黑暗链霉菌SPU401分子验证电泳图谱
图5黑暗链霉菌SPU314和SPU401发酵产物HPLC-ELSD分析
图6黑暗链霉菌SPU401新组分生物活性分析
图7发酵产物地贝卡星的高分辨质谱确证。
具体实施方式
为了使本发明的目的、技术方案和有益技术效果更加清晰,以下结合实施例,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本发明,而不是限制本发明的范围,实施例的参数、比例等可因地制宜做出选择而对结果并无实质性影响。在不背离权利要求书范围的条件下,本领域的技术人员对本发明的任何未背离本发明的精神实质与原理下所作改变、修饰、替代、组合、简化等修改和改进都包含在本发明的保护范围之内。例如,将实施例中所实用的启动子和载体替换为本领域中常用的其它启动子和载体,更换实施例中双脱氧基因的整合方式或使用游离表达质粒,更换不同的产生卡那霉素B的宿主菌株等,这些都是本领域的普通技术人员所能够理解并实现的。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均为本领域常规试剂可从商业途径得到。
实施例1:构建双脱氧基因位点特异性整合表达质粒pEAP1-B3-P-B4,通过结合转移将其整合到高产卡那霉素B的黑暗链霉菌SPU314中,构建黑暗链霉菌SPU401,对其进行发酵及产物检测,得到地贝卡星。
1.黑暗链霉菌SPU401的构建
以B3up和B4dn为引物,以棘孢小单孢菌总DNA为模板,扩增得到3608bp的基因片段,包含全部的genB3、genP和genB4序列。PCR扩增产物电泳图谱见图3。目的片段回收后连pMD18-T载体,转化E.coli Top10感受态细胞,过夜培养后挑取转化子。提取转化子质粒,酶切,测序。
转化子经NcoⅠ和XhoⅠ酶切后回收3608bp的目的片段,连入相同酶切处理的pPT2925中得到质粒pPT-B3-P-B4。质粒pPT-B3-P-B4经XbaⅠ和SpeⅠ酶切后回收4447bp的片段连入XbaⅠ部分酶切并去磷酸化处理的位点特异性整合表达质粒pEAP1中得到位点特异性整合表达质粒pEAP1-B3-P-B4,质粒图谱见图5。以启动子PhrdB启动genB3-genP-genB4表达。
位点特异性整合表达质粒pEAP1-B3-P-B4验证正确,以黑暗链霉菌SPU314为受体菌接合转移。将pEAP1-B3-P-B4转化E.coli ET12567(pUZ8002),筛选氨苄青霉素、氯霉素和卡那霉素三抗性菌株,获得用于基因表达的供体菌E.coli ET12567(pUZ8002,pEAP1-B3-P-B4)。供体菌经一级、二级培养后与经过50℃热激10min,37℃萌发培养3h后的黑暗链霉菌SPU314单孢子悬液混合,均匀涂布于MS平板,37℃培养18h后用红霉素(100μg/ml)和萘啶酮酸(50μg/ml)水溶液覆盖,37℃继续培养,4天后平板上长出转化子。将所获得的ermR转化子在含有红霉素(100μg/ml)的合Ⅴ培养基上传代培养。提取转化子总DNA,以B3up和B3dn为引物,出发菌株黑暗链霉菌SPU314无法扩增出条带,而双脱氧基因整合后的转化子能扩增出1353bp的片段,电泳图谱见图4。PCR产物经测序证明与genB3序列一致,PCR结果确证质粒pEAP1-B3-P-B4已转入黑暗链霉菌SPU314中,转化子命名为黑暗链霉菌SPU401。
实验所用引物如下:
B3up:5’-CCatggattctgccaacttgacg-3’
B3dn:5’-CTCGAGtcagttctgtgcggggatgag-3’
B4dn:5’-CTCGAGggatcagttctgtgcgggaac-3’
2.黑暗链霉菌SPU401的发酵培养及产物分析
取新鲜的黑暗链霉菌SPU314和黑暗链霉菌SPU401分别接种在固体斜面培养基(可溶性淀粉20g,牛肉膏1g,KNO3 1g,K2HPO4·3H2O 0.5g,NaCl 0.5g,MgSO4·7H2O 0.5g,FeSO4·7H2O 0.01g,琼脂粉15g,加蒸馏水至1L,pH 7.2)上,37℃培养7天。挖取1cm2菌块接种于30ml种子培养基(生黄豆粉10g,葡萄糖10g,蛋白胨3g,酵母粉1g,玉米粉5g,CaCO3(轻质)1g,加自来水至1L)中,37℃220r/min摇床培养36h。取3ml转种于30ml发酵培养基(可溶性淀粉20g,生黄豆粉40g,葡萄糖20g,酵母粉5g,CaCO3(轻质)5g,MgSO44g,FeSO4 0.05g,ZnSO4 0.03g,MnCl2 0.3g,豆油0.2ml/30mL,加自来水至1L),37℃220r/min摇床培养120h。
收集发酵液,等体积稀释后加入0.5%(w/v)研磨后的草酸,用6mol/l硫酸调pH至2.0,静置2h。7000r/min离心10min,收集上清液。上清液用浓氨水调pH至9.0后,静置过夜。7000r/min离心10min,收集上清液。上清液用6mol/L硫酸调pH至5.5。以732树脂(NH4+型)静态吸附6h。将饱和树脂装柱,蒸馏水洗至无色。用0.6mol/L NH4Cl洗脱除去杂质,再用3%氨水洗脱,收集活性部分。
收集的活性部分样品经0.22μm滤膜过滤,采用Ultimate LP-C18(4.6×200mm,5μm)色谱柱,以0.2mol/L三氟乙酸为流动相,流速0.5ml/min,采用蒸发光散射检测器进行检测(HPLC-ELSD),结果见图5,黑暗链霉菌SPU401除了产生卡那霉素B外,又产生了一个新组分。收集新组分色谱峰流出液,冷冻干燥浓缩,检定其具有生物活性(图6),经高分辨质谱测定分子量为452.2717([M+H]+),与地贝卡星分子量451.4一致(图7)。二级质谱分子量324.1767、205.1186、163.1075、129.1020是地贝卡星的典型碎片峰。高分辨质谱确证新组分为地贝卡星。
<110> 沈阳药科大学
<120> 一种利用组合生物合成技术制备地贝卡星的方法
<160> 9
<210> 1
<211> 807
<212> DNA
<213> 棘孢小单胞菌(Micromonospora echinospora)
<223> genP
<400> 1
atggttgcag caccgatacc ggtggctggc tggggtgaca aggacgaccc gtgggagtgc 60
ctgggcgagc gttcgtccgg cgcgacggtc taccgcgtgg gggagggacc ctccttctac 120
gtgaagacca cgccgcccag gcaccccgac gaccaccggt tcaacccgac caaggaggcc 180
gagcggctcc gctggctggc cgcccaggga ctgcccgtcc ccgaggtggt ggccctcgac 240
gccaacgacg aactggcgtg ggtggtcacc agggcgctgc ccgggcggcc cgccgcccgg 300
cactggaagc cggaggaacg ctggcgggtg atcgacgtcg tcgccgacgt cgcacgcacg 360
ctgcacgcgc ttccggtggc ggagtgcccg ttcgagcgtc ggctggccga cctgatccac 420
caggccagct cctcgatggc gctgggcgcg ctcgacctcg acgacgtgga cccctcgcac 480
gagggctgga cggctcagca gctctgggac gagctgagca agatgacacc cccggccgag 540
gacgatctcg tcgtctgcca cggtgacttc tgcctcgaca acgtgctggt cgatccggag 600
acgctgaccc tggccggcgt cctcgacgtc gaccgggccg gagtgtcgga ccggtggatg 660
gacctcgccc tggcgctgta caacatcggc caggacgacg tctggggtta cggaccgccg 720
cacgccgagc acttcctccg gcggtacggc atcagcgtca accagcacaa gctgacctac 780
atccaactgc tggacgaatt tctctga 807
<210> 2
<211> 1353
<212> DNA
<213> 棘孢小单胞菌(Micromonospora echinospora)
<223> genB3
<400> 2
atggattctg ccaacttgac gaaccggggg ctggtcgagc gggcccgccg ggtgaccgca 60
gcggagaact acgacatcgg gacccgcttc tcggcgatga tccagtcggg cgacggcgcg 120
tggctgaccg acgtcgaggg caaccgctac gtcgacctca ccgcctccag cgggacgatc 180
atcctgggtc accggaatca ggcggtgacc gaggcgatca cgcggcagat tcaggatttc 240
ggtacggcgt tcgcgtcgac gctgtcggtt ccgcgggtgg agttggcgga gcggttgtgc 300
gagcggtacg agtgtgcgga gaaggtcgtc ttccacaaga ccggctccga gggcacggcg 360
atggcggccc gcctggcgcg ggcggcgacc ggtcgcgagt tgatcctgtc gtgcgggtac 420
cacggctggc acgagtggca gttggcgggc gagacgttcg ggtaccagca gaccaccggt 480
gtggtcggtt tcgggtacaa cgagaaggcc ctggcgaaga tgctggaggc cttcggtaac 540
gaggtcgccg gggtgctgat ctcgccggag ctgttgtact tcgacgtcga gttctaccag 600
cgcatgtatg cgttgtgcgc gcggtacgac gtgccgttca tgatggacga ggtgtacacg 660
gtcagcaagg gtctggcgaa cggtcattcg ttggcggcgg tgatgggtcg ccgggacatc 780
atcgacgcgt acgacgtgtc ggggatccag gggacgtaca cgcgggaggt gccgccgatg 840
gcggcggcgc tggcggttat ggatgtgctc gacacgccgg gtgtgtacga gcacgcggag 900
gcgatgggtc gtcggctggc ggacgggatg cgggagatcc tgaccagtga gggcattccg 960
aactgggtgg gcggcccggc cctgatgttc gacacggtgc tgccgaacga cgatctgggt 1020
tgggagatct acaagacggc gcacgacttc ggggtgtatt tcgaggactc cgggacgcag 1080
ctggtgacga cggcgttcga cgatgcggcg gtggaccacg cgttgtcggc gttccggaag 1140
gcgacgcgtc aggtgatcgc ggatcggccg gacatcgcgc cgacgtcggg tggcgagttg 1200
accgaggagc ggaagctcga cttcgcggag gaggccttcg gtggtctgct gcgtgacgac 1260
gagcggacga acgcgctgat cgacgcgacc atcgagcagg tcgtgagccg ggaccggagc 1320
atcaagccgg ttctcatccc cgcacagaac tga 1353
<210> 3
<211> 1338
<212> DNA
<213> 棘孢小单胞菌(Micromonospora echinospora)
<223> genB4
<400> 3
atgaactacc gtgagttgat cgagcgggcc cggcggacga ccgcggcgga ggagtacgac 60
atctcagggc gctatccgtc ggtgatcgcg cacgccgagg gcgcctggat gacggacctg 120
tcgggcaacc gctacgtcga cctgaccggc gctgatgccg ccgtcatcct cggctaccgt 180
cacccggcgg tcaacgaggc gatcacgcgg cagatccggg actacggtac gacgttcgcg 240
tcgacgttgt cggttccgcg ggtggagctg gcagagcgga tgtgtgagcg gtacgagtgt 300
gcggagaagg tcgtcttcca caagaccggt accgagggca cggcgatggc ggtccggttg 360
gcgcgggcgg cgaccggtcg cgagttggtc ctgtcgtccg gctaccacgg ctggcacgag 420
tggcagatgg ccggggagga gttcgggtac cagcagtcca ccggtgtggt gggcttcggg 480
tacagcgaga aggccctggc gaagatgctg gaggcgttcg gtgaccaggt cgccggcgtc 540
atcgtctctc ccgaggttct gtacttcgac ctcgatcact accgccggat gtatacgttg 600
tgcgcgcggt acgacgtgcc gttcatcctc gacgaggtgt acacggggtt ccgggccggc 660
ccgaagggtg tgcacgggtt gggcgtgccg gccgacgtcg tcgtactcgg caagggtctg 720
gcgaacggtc attcgttggc ggcggtgatg ggtcggcggg acatcatcga cgcgtacgac 780
gtgtcgggga ttcaggggac gtacacgcgg gaggtgccgc cgatggcggc ggcgctggcc 840
gtcttcgacg tgttggacac gccgggtgtg tacgagcacg cggaggcgat gggtcgtcgg 900
ctggcggacg ggatgcgcga ggtcctgacc ggtgagggca ttccgaactg ggtgggtggt 960
ccggcgttga tgttcgacgt ggtgctgccg aacgacgatc tgggttggga gatctacaag 102
acggcgcacg acttcggggt gtatttcgag gactccggga cgcagctggt gacgacggcg 108
ttcgacgagg cggcggtgga ccacgcgttg acggggttcc ggaaggcgac gcgtcaggtg 114
atcgcggatc ggccggacat cgcgccgacg tcgggtggcg agttgaccga ggagcggaag 120
ctcgacttcg cggaggaggc cttcggtggt ctgctgcgtg acgacgagga gacgaacgcg 126
ttgatcgacg tgaccatcga gaaggtggtc aaccgggacc ggagcatcaa gccggttctc 132
gttcccgcac agaactga 1338
<210> 4
<211> 268
<212> PRT
<213> 棘孢小单胞菌(Micromonospora echinospora)
<223> GenP
<400> 4
Met Val Ala Ala Pro Ile Pro Val Ala Gly Trp Gly Asp Lys Asp Asp
1 5 10 15
Pro Trp Glu Cys Leu Gly Glu Arg Ser Ser Gly Ala Thr Val Tyr Arg
20 25 30
Val Gly Glu Gly Pro Ser Phe Tyr Val Lys Thr Thr Pro Pro Arg His
35 40 45
Pro Asp Asp His Arg Phe Asn Pro Thr Lys Glu Ala Glu Arg Leu Arg
50 55 60
Trp Leu Ala Ala Gln Gly Leu Pro Val Pro Glu Val Val Ala Leu Asp
65 70 75 80
Ala Asn Asp Glu Leu Ala Trp Val Val Thr Arg Ala Leu Pro Gly Arg
85 90 95
Pro Ala Ala Arg His Trp Lys Pro Glu Glu Arg Trp Arg Val Ile Asp
100 105 110
Val Val Ala Asp Val Ala Arg Thr Leu His Ala Leu Pro Val Ala Glu
115 120 125
Cys Pro Phe Glu Arg Arg Leu Ala Asp Leu Ile His Gln Ala Ser Ser
130 135 140
Ser Met Ala Leu Gly Ala Leu Asp Leu Asp Asp Val Asp Pro Ser His
145 150 155 160
Glu Gly Trp Thr Ala Gln Gln Leu Trp Asp Glu Leu Ser Lys Met Thr
165 170 175
Pro Pro Ala Glu Asp Asp Leu Val Val Cys His Gly Asp Phe Cys Leu
180 185 190
Asp Asn Val Leu Val Asp Pro Glu Thr Leu Thr Leu Ala Gly Val Leu
195 200 205
Asp Val Asp Arg Ala Gly Val Ser Asp Arg Trp Met Asp Leu Ala Leu
210 215 220
Ala Leu Tyr Asn Ile Gly Gln Asp Asp Val Trp Gly Tyr Gly Pro Pro
225 230 235 240
His Ala Glu His Phe Leu Arg Arg Tyr Gly Ile Ser Val Asn Gln His
245 250 255
Lys Leu Thr Tyr Ile Gln Leu Leu Asp Glu Phe Leu
260 265
<210> 5
<211> 450
<212> PRT
<213> 棘孢小单胞菌(Micromonospora echinospora)
<223> GenB3
<400> 5
Met Asp Ser Ala Asn Leu Thr Asn Arg Gly Leu Val Glu Arg Ala Arg
1 5 10 15
Arg Val Thr Ala Ala Glu Asn Tyr Asp Ile Gly Thr Arg Phe Ser Ala
20 25 30
Met Ile Gln Ser Gly Asp Gly Ala Trp Leu Thr Asp Val Glu Gly Asn
35 40 45
Arg Tyr Val Asp Leu Thr Ala Ser Ser Gly Thr Ile Ile Leu Gly His
50 55 60
Arg Asn Gln Ala Val Thr Glu Ala Ile Thr Arg Gln Ile Gln Asp Phe
65 70 75 80
Gly Thr Ala Phe Ala Ser Thr Leu Ser Val Pro Arg Val Glu Leu Ala
85 90 95
Glu Arg Leu Cys Glu Arg Tyr Glu Cys Ala Glu Lys Val Val Phe His
100 105 110
Lys Thr Gly Ser Glu Gly Thr Ala Met Ala Ala Arg Leu Ala Arg Ala
115 120 125
Ala Thr Gly Arg Glu Leu Ile Leu Ser Cys Gly Tyr His Gly Trp His
130 135 140
Glu Trp Gln Leu Ala Gly Glu Thr Phe Gly Tyr Gln Gln Thr Thr Gly
145 150 155 160
Val Val Gly Phe Gly Tyr Asn Glu Lys Ala Leu Ala Lys Met Leu Glu
165 170 175
Ala Phe Gly Asn Glu Val Ala Gly Val Leu Ile Ser Pro Glu Leu Leu
180 185 190
Tyr Phe Asp Val Glu Phe Tyr Gln Arg Met Tyr Ala Leu Cys Ala Arg
195 200 205
Tyr Asp Val Pro Phe Met Met Asp Glu Val Tyr Thr Gly Phe Arg Ala
210 215 220
Gly Pro Lys Gly Val His Gly Leu Gly Val Pro Ala Asp Val Val Val
225 230 235 240
Val Ser Lys Gly Leu Ala Asn Gly His Ser Leu Ala Ala Val Met Gly
245 250 255
Arg Arg Asp Ile Ile Asp Ala Tyr Asp Val Ser Gly Ile Gln Gly Thr
260 265 270
Tyr Thr Arg Glu Val Pro Pro Met Ala Ala Ala Leu Ala Val Met Asp
275 280 285
Val Leu Asp Thr Pro Gly Val Tyr Glu His Ala Glu Ala Met Gly Arg
290 295 300
Arg Leu Ala Asp Gly Met Arg Glu Ile Leu Thr Ser Glu Gly Ile Pro
305 310 315 320
Asn Trp Val Gly Gly Pro Ala Leu Met Phe Asp Thr Val Leu Pro Asn
325 330 335
Asp Asp Leu Gly Trp Glu Ile Tyr Lys Thr Ala His Asp Phe Gly Val
340 345 350
Tyr Phe Glu Asp Ser Gly Thr Gln Leu Val Thr Thr Ala Phe Asp Asp
355 360 365
Ala Ala Val Asp His Ala Leu Ser Ala Phe Arg Lys Ala Thr Arg Gln
370 375 380
Val Ile Ala Asp Arg Pro Asp Ile Ala Pro Thr Ser Gly Gly Glu Leu
385 390 395 400
Thr Glu Glu Arg Lys Leu Asp Phe Ala Glu Glu Ala Phe Gly Gly Leu
405 410 415
Leu Arg Asp Asp Glu Arg Thr Asn Ala Leu Ile Asp Ala Thr Ile Glu
420 425 430
Gln Val Val Ser Arg Asp Arg Ser Ile Lys Pro Val Leu Ile Pro Ala
435 440 445
Gln Asn
450
<210> 6
<211> 445
<212> PRT
<213> 棘孢小单胞菌(Micromonospora echinospora)
<223> GenB4
<400> 6
Met Asn Tyr Arg Glu Leu Ile Glu Arg Ala Arg Arg Thr Thr Ala Ala
1 5 10 15
Glu Glu Tyr Asp Ile Ser Gly Arg Tyr Pro Ser Val Ile Ala His Ala
20 25 30
Glu Gly Ala Trp Met Thr Asp Leu Ser Gly Asn Arg Tyr Val Asp Leu
35 40 45
Thr Gly Ala Asp Ala Ala Val Ile Leu Gly Tyr Arg His Pro Ala Val
50 55 60
Asn Glu Ala Ile Thr Arg Gln Ile Arg Asp Tyr Gly Thr Thr Phe Ala
65 70 75 80
Ser Thr Leu Ser Val Pro Arg Val Glu Leu Ala Glu Arg Met Cys Glu
85 90 95
Arg Tyr Glu Cys Ala Glu Lys Val Val Phe His Lys Thr Gly Thr Glu
100 105 110
Gly Thr Ala Met Ala Val Arg Leu Ala Arg Ala Ala Thr Gly Arg Glu
115 120 125
Leu Val Leu Ser Ser Gly Tyr His Gly Trp His Glu Trp Gln Met Ala
130 135 140
Gly Glu Glu Phe Gly Tyr Gln Gln Ser Thr Gly Val Val Gly Phe Gly
145 150 155 160
Tyr Ser Glu Lys Ala Leu Ala Lys Met Leu Glu Ala Phe Gly Asp Gln
165 170 175
Val Ala Gly Val Ile Val Ser Pro Glu Val Leu Tyr Phe Asp Leu Asp
180 185 190
His Tyr Arg Arg Met Tyr Thr Leu Cys Ala Arg Tyr Asp Val Pro Phe
195 200 205
Ile Leu Asp Glu Val Tyr Thr Gly Phe Arg Ala Gly Pro Lys Gly Val
210 215 220
His Gly Leu Gly Val Pro Ala Asp Val Val Val Leu Gly Lys Gly Leu
225 230 235 240
Ala Asn Gly His Ser Leu Ala Ala Val Met Gly Arg Arg Asp Ile Ile
245 250 255
Asp Ala Tyr Asp Val Ser Gly Ile Gln Gly Thr Tyr Thr Arg Glu Val
260 265 270
Pro Pro Met Ala Ala Ala Leu Ala Val Phe Asp Val Leu Asp Thr Pro
275 280 285
Gly Val Tyr Glu His Ala Glu Ala Met Gly Arg Arg Leu Ala Asp Gly
290 295 300
Met Arg Glu Val Leu Thr Gly Glu Gly Ile Pro Asn Trp Val Gly Gly
305 310 315 320
Pro Ala Leu Met Phe Asp Val Val Leu Pro Asn Asp Asp Leu Gly Trp
325 330 335
Glu Ile Tyr Lys Thr Ala His Asp Phe Gly Val Tyr Phe Glu Asp Ser
340 345 350
Gly Thr Gln Leu Val Thr Thr Ala Phe Asp Glu Ala Ala Val Asp His
355 360 365
Ala Leu Thr Gly Phe Arg Lys Ala Thr Arg Gln Val Ile Ala Asp Arg
370 375 380
Pro Asp Ile Ala Pro Thr Ser Gly Gly Glu Leu Thr Glu Glu Arg Lys
385 390 395 400
Leu Asp Phe Ala Glu Glu Ala Phe Gly Gly Leu Leu Arg Asp Asp Glu
405 410 415
Glu Thr Asn Ala Leu Ile Asp Val Thr Ile Glu Lys Val Val Asn Arg
420 425 430
Asp Arg Ser Ile Lys Pro Val Leu Val Pro Ala Gln Asn
<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence
<223> B3up
<400> 7
ccatggattc tgccaacttg acg 23
<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence
<223> B4dn
<400> 8
ctcgagggat cagttctgtg cgggaac 27
<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence
<223> B3dn
<400> 9
ctcgagtcag ttctgtgcgg ggatgag 27

Claims (5)

1.一种利用组合生物合成技术制备地贝卡星的方法,其特征在于:通过基因操作将3’,4’羟基双脱氧基因在产生卡那霉素B的链霉菌中进行内源性表达或外源性的加入3’,4’羟基双脱氧基因组成的双脱氧酶系,使卡那霉素B的3’,4’位脱羟基生成地贝卡星;所述的3’,4’羟基双脱氧基因为genP、genB3、genB4的组合,所述的genP、genB3、genB4的核苷酸序列如SEQ ID NO.1-3所示。
2.如权利要求1所述的方法,其特征在于,所述的genP、genB3、genB4的蛋白的氨基酸序列如SEQ ID NO.4-6所示。
3.如权利要求1所述的方法,其特征在于,所述的产生卡那霉素B的链霉菌为产生卡那霉素B的菌株或通过生物技术手段得到的产生卡那霉素B的菌种。
4.如权利要求1所述的方法,其特征在于,所述的产生卡那霉素B的链霉菌为卡那链霉菌、黑暗链霉菌。
5.如权利要求1所述的一种利用组合生物合成技术制备地贝卡星的方法,其特征在于,包括如下步骤:
(1)双脱氧基因表达质粒的构建;
(2)卡那霉素B产生菌株的构建及获得;
(3)通过接合转移或其他技术手段将双脱氧基因表达质粒导入产生卡那霉素B的链霉菌中并使其内源性表达,催化卡那霉素B的3’,4’位脱羟基生成地贝卡星。
CN202010216995.0A 2020-03-25 2020-03-25 一种利用组合生物合成技术制备地贝卡星的方法 Active CN113444758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010216995.0A CN113444758B (zh) 2020-03-25 2020-03-25 一种利用组合生物合成技术制备地贝卡星的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010216995.0A CN113444758B (zh) 2020-03-25 2020-03-25 一种利用组合生物合成技术制备地贝卡星的方法

Publications (2)

Publication Number Publication Date
CN113444758A CN113444758A (zh) 2021-09-28
CN113444758B true CN113444758B (zh) 2022-11-01

Family

ID=77806785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010216995.0A Active CN113444758B (zh) 2020-03-25 2020-03-25 一种利用组合生物合成技术制备地贝卡星的方法

Country Status (1)

Country Link
CN (1) CN113444758B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278638A (zh) * 2021-04-25 2021-08-20 黑龙江格林赫思生物科技有限公司 一种高产庆大霉素c组分的工程菌及其构建

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614330A (zh) * 2013-11-30 2014-03-05 福州市鼓楼区荣德生物科技有限公司 产卡那霉素b工程菌及其构建和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614330A (zh) * 2013-11-30 2014-03-05 福州市鼓楼区荣德生物科技有限公司 产卡那霉素b工程菌及其构建和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
2-脱氧链霉胺类抗生素生物合成基因的研究进展;余永红等;《中国抗生素杂志》;20080325(第03期);2-6 *
genP基因在依纽小单孢菌中表达的分析;万云凤等;《石河子大学学报(自然科学版)》;20161231(第05期);36-42 *
Pyridoxal-5"-phosphate-dependent enzyme GenB3 Catalyzes C-3",4"-dideoxygenation in gentamicin biosynthesis;Zhou S等;《Microb Cell Fact》;20210309;65 *
Specificity and promiscuity at the branch point in gentamicin biosynthesis;Guo J等;《Chem Biol》;20140522;第21卷(第5期);608-618 *
The bifunctional enzyme, GenB4, catalyzes the last step of gentamicin 3",4"-di-deoxygenation via reduction and transamination activities;Chen X等;《Microb Cell Fact》;20200310;62 *
庆大霉素生物合成特色基因克隆与表达的研究;连榕;《中国优秀博硕士学位论文全文数据库(硕士) 基础科学辑》;20200315;A006-219 *

Also Published As

Publication number Publication date
CN113444758A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
KR20200087220A (ko) 생물 전환으로 타우로우루소데옥시콜산을 제조하는 방법 및 그 응용
CN115197172B (zh) 二倍半萜化合物、其合成基因簇与合成方法
CN112592880A (zh) 一种产假尿苷工程菌及其应用
CN113444758B (zh) 一种利用组合生物合成技术制备地贝卡星的方法
CN114940980B (zh) 一类倍半萜聚酮合成基因及其应用
CN111088254B (zh) 一种内源搭载的外源基因高效可控表达系统
CN111051515B (zh) 来自细菌的iii型聚酮合酶作为间苯三酚合酶的用途
KR101718985B1 (ko) 케토리덕타아제 변이체
CN111197020B (zh) 一种生产米尔贝霉素的重组菌及其构建方法与应用
CN110945122A (zh) 用于羟醛缩合碳连接的果糖-6-磷酸醛缩酶变体
CN108841769B (zh) 一种非达霉素基因工程菌及构建方法和应用
EP3460055B1 (en) Doxa protein mutant, and coding gene and applications thereof
CN106554932B (zh) 一种产生庆大霉素b的基因工程菌及其构建方法
KR100679759B1 (ko) 관능기에 의해 수식된 이차 대사산물을 생산하는형질전환체 및 신규 생합성 유전자
CN110484576B (zh) 一种提高榴菌素和榴菌素b产量的方法
EP1632569B1 (en) Strain belonging to the genus streptomyces and being capable of producing nemadictin and process for producing nemadictin using the strain
CN108456689B (zh) 提高安丝菌素p-3生物合成产量的方法
CN110343650A (zh) 一种高产两性霉素b的重组结节链霉菌及其应用
CN114350646B (zh) 一种UDP-糖差向异构酶PsUGE2及其在合成阿拉伯糖苷中的应用
KR102009015B1 (ko) 1-데옥시노지리마이신 생산능을 가지는 재조합 미생물 및 이를 이용한 1-데옥시노지리마이신의 제조방법
CN117737029B (zh) 一种糖基转移酶突变体及其在络塞合成中的应用
KR101525309B1 (ko) rapX 또는 rapW를 과발현하는 방선균주 및 이를 이용한 라파마이신 생산성 증대방법
CA2354030A1 (en) Micromonospora echinospora genes encoding for biosynthesis of calicheamicin and self-resistance thereto
CN115247179B (zh) 一种聚酮化合物骨架及其后修饰物的生物合成基因簇及其应用
CN110904065A (zh) 一种甲基转移酶AprI及其编码基因和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant