CN113441151B - 一种金属氧化物修饰的MOx-CoMnOx纳米催化剂及制备方法和使用方法 - Google Patents

一种金属氧化物修饰的MOx-CoMnOx纳米催化剂及制备方法和使用方法 Download PDF

Info

Publication number
CN113441151B
CN113441151B CN202110698337.4A CN202110698337A CN113441151B CN 113441151 B CN113441151 B CN 113441151B CN 202110698337 A CN202110698337 A CN 202110698337A CN 113441151 B CN113441151 B CN 113441151B
Authority
CN
China
Prior art keywords
catalyst
comno
ceo
nano
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110698337.4A
Other languages
English (en)
Other versions
CN113441151A (zh
Inventor
王悦
马新宾
郭少霞
李卓师
黄守莹
吕静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110698337.4A priority Critical patent/CN113441151B/zh
Publication of CN113441151A publication Critical patent/CN113441151A/zh
Application granted granted Critical
Publication of CN113441151B publication Critical patent/CN113441151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种金属氧化物修饰的MOx‑CoMnOx纳米催化剂及制备方法和使用方法;催化剂化学成分包括Co、Mn和M;Co占总催化剂质量的16.8‑19.8wt.%,Mn占总催化剂质量的40.5‑45.9wt.%,而M占总催化剂质量的0.1‑9.9%。本发明通过添加第三种金属氧化物MOx使得催化剂形成新的活性位。尤其是CeO2的添加使得CeO2‑CoMnOx纳米催化剂在合成气直接制低碳醇反应中,表现出优异的总醇选择性。CO转化率为30.0%时,总醇选择性达64.6%。且经过250h稳定性测试后没有失活现象,且具有较低的CH4和CO2选择性,展现出优异的催化性能和稳定性。

Description

一种金属氧化物修饰的MOx-CoMnOx纳米催化剂及制备方法和 使用方法
技术领域
本发明属于金属催化剂改进技术领域,涉及一种用于合成气制取低碳醇的催化剂的改进,尤其是一种来自不同金属氧化物MOx(M=La、Ce、Pr、Ti、V、Cr、Zr和Ga)修饰的CoMnOx纳米催化剂的制备及应用。
背景技术
合成气指H2与CO的混合气,主要来源于煤炭、天然气、生物质等,来源广泛价格低廉。低碳醇主要是指含碳原子为2-6直链α-醇,通常被作为优质燃料添加剂和多种基本化工品原料,实用价值高,应用前景广,因此以合成气直接制备低碳醇受到广泛的关注且被认为是从非石油路线到能源供应的最具有前景的节能途径之一。合成气直接制备低碳醇反应路径复杂,涉及的副反应较多,除主产物低碳醇之外,还包括甲醇、烃类、CO2、积碳等副产物;因而C2+醇选择性较低,且由于积碳和长链烃的生成,及双活性位之间的不匹配,导致催化剂的稳定性较差。开发具有高的低碳醇选择性且具有优异稳定性的高性能催化剂成为目前研究者所关注的焦点。
合成气制低碳醇反应催化剂需要具备二个活性位,一个用于CO的解离和碳链的增长,一个用于CO非解离和插入,二者相互作用形成低碳醇。目前,Co基催化剂由于具有较强的CO解离性能、碳链增长性能、较低的水气变换性能等优势被广泛应用于该体系,但在实际中发现,传统的Co基催化剂在催化活性、醇选择性和收率等方面仍然有待提高。
发明内容
本发明的目的是提供一种金属氧化物MOx(M=La、Ce、Pr、Ti、V、Cr、Zr和Ga)修饰的CoMnOx纳米催化剂应用于合成气直接制低碳醇反应,其中第三种金属氧化物MOx(M=La、Ce、Pr、Ti、V、Cr、Zr和Ga)的添加不仅创造新的活性位,其具有不同于MnOx的作用方式,使得MOx-CoMnOx催化剂展现出更加出色的低碳醇选择性。
本发明催化剂包括Co、Mn和M,而M主要包括La、Ce、Pr、Ti、V、Cr、Zr、Ga。其中Co占总催化剂质量的16.8-19.8wt.%,Mn占总催化剂质量的40.5-45.9wt.%,而M占总催化剂质量的0.1-9.9%。
催化剂的比表面积为90-150m2/g,平均孔容为0.10-0.20cm3/g,平均孔径为4.5-8.5nm。催化剂的Co:Mn:M之间的摩尔比为1:2:0.01-0.5。
本发明的另一个目的是提供一种金属氧化物修饰的MOx-CoMnOx纳米催化剂的制备方法,该制备方法包括方法一和方法二:
方法一包括如下步骤:
⑴将钴盐、锰盐、M盐、络合剂和分散剂溶解到水中,形成水溶液;
⑵将步骤⑴得到的水溶液蒸发至凝胶状;
⑶将步骤⑵得到的凝胶状物质干燥、焙烧后得到MOx-CoMnOx纳米催化剂。
方法二包括如下步骤:
⑴将钴盐、锰盐、络合剂和分散剂溶解到水中,形成水溶液;
⑵将步骤⑴得到的水溶液蒸发至凝胶状;
⑶将步骤⑵得到的凝胶状物质干燥、焙烧后得到CoMnOx纳米催化剂;
⑷将步骤⑶得到的催化剂浸渍在M盐水溶液中,然后经干燥、焙烧后得到MOx/CoMnOx纳米催化剂。
钴盐为硝酸钴、醋酸钴或氯化钴;锰盐为硝酸锰、醋酸锰或氯化锰;M盐(M=La、Ce、Pr、Ti、V、Cr、Zr和Ga)为对应硝酸盐、醋酸盐或氯化盐;络合剂为柠檬酸、葡萄糖或草酸;分散剂为乙二醇。水为去离子水,各原料加入后,搅拌均匀得到水溶液。
优选地,蒸发的条件是:将水溶液升温至70-90℃,搅拌6-8h,进行蒸发。
优选地,凝胶状物质的干燥温度为110-120℃,干燥时间为8-12h;焙烧温度为400-500℃,焙烧时间为3-6h。
本发明的第三个目的是提供一种金属氧化物修饰的MOx-CoMnOx纳米催化剂的使用方法,其中M主要指La、Ce、Pr、Ti、V、Cr、Zr和Ga。
优选地,所述MOx-CoMnOx纳米催化剂作为合成气直接制低碳醇反应的催化剂,用于提高反应低碳醇选择性,降低副反应产物的选择性及提高反应稳定性。
优选地,首先将所述MOx-CoMnOx纳米催化剂封装在固定床反应器中,然后通入氢气在常压条件下进行原位还原,还原温度为300-500℃,还原时间为4-6h。
优选地,所述MOx-CoMnOx纳米催化剂还原后降温到100-150℃左右,升高反应压力,通入合成气,升温到反应温度进行合成气直接制取低碳醇;所述反应压力为2-4MPa;所述反应温度为220-260℃;所述合成气的氢碳比为0.5-2;所述反应空速为2000-6500mL/(gcath)。
本发明的优点和积极效果是:
1.本发明所述的MOx-CoMnOx纳米催化剂(其中,M=La、Ce、Pr、Ti、V、Cr、Zr和Ga),应用于合成气直接制取低碳醇反应体系,相较于单一的CoMnOx纳米催化剂,在工艺参数相似的条件下(反应温度、压力、原料气氢碳配比、空速等),本发明中的MOx-CoMnOx纳米催化剂表现出较好的催化活性,其中CeO2修饰的CoMnOx纳米催化剂展现出最优催化活性,且CO转化率在30.0%情况下,总醇选择性可达64.6%,低碳醇时空收率达87.6mmol/(gCo·h),是目前报道到的CoMn基催化剂中性能最优的。
2.本发明提供了一种简单且活性位在原子尺度均匀混合的MOx-CoMnOx纳米催化剂制备方法。采用络合剂柠檬酸和分散剂乙二醇使M、Co、Mn分散且聚合在同一个前驱体中,干燥焙烧后得到MOx-CoMnOx纳米催化剂,经一定的还原条件处理后可以得到大量的MOx修饰的CoxMn1-xO物种,其经合成气制低碳醇及乙醇反应后演变成Co-Co2C-MOx-CoxMn1-xO-MnOx结构。收获了优异的目标C2+醇产物选择性,且生成的副产物CO2和CH4都较少,在250h稳定性评价中,催化性能没有出现失活现象。
附图说明
图1为本发明中实施例1催化剂还原及反应后的XRD图及比较例1还原后的XRD图。
图2为本发明中实施例1催化剂反应后的透射电镜图(TEM)和高分辨透射电镜图(HRTEM)。
图3为本发明中实施例1催化剂的稳定性性能评价图。
图4为本发明中实施例1-3和比较例1催化剂反应后XPS的O1s对比图及与Ce含量的关联图。
具体实施方式
下述实施例中,主要采用硝酸盐作为实施例,而钴盐为硝酸钴、醋酸钴或氯化钴中的一种;所述锰盐为硝酸锰、醋酸锰或氯化锰中的一种;所述M盐为硝酸M、醋酸M或氯化M中的一种,可对下述实施例进行钴盐、锰盐和M盐的调整,此处仅以硝酸盐为代表,其他盐用量参考硝酸盐。络合剂以柠檬酸为代表。
实施例1催化剂制备:
按照金属Co、Mn和Ce的摩尔比为1:2:0.1的比例配制混合盐溶液A,硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸铈用量为0.54克。
加入2.87克的柠檬酸和0.8毫升乙二醇,得到水溶液B;将得到的水溶液B于80℃水浴中持续搅拌蒸发至凝胶状;
将凝胶状物质在120℃烘箱中干燥12h,得到干燥产物;
将干燥产物在马弗炉中空气气氛下以2℃/min加热至400℃焙烧3h,得到CeO2-CoMnOx纳米催化剂。
催化性能评价:
将CeO2-CoMnOx纳米催化剂,压片、过筛到40-60目颗粒,装入固定床反应器,常压原位在线氢气条件下还原4h,还原温度为400℃,氢气流量为30ml/min,得到还原后的催化剂,还原结束后降温到100℃左右;通入合成气,升高温度到240℃,升高压力为3MPa,控制转化率在30%左右,氢碳比为2:1的条件下进行合成气直接制低碳醇反应。利用在线色谱和离线色谱分别对气相产物和液相产物进行分析,得到CO的转化率及各个产物的选择性。催化性能评价结果见表1。
本发明中催化剂的金属钴、锰和铈的质量含量均采用电感耦合等离子体发射光谱仪(ICP)表征得到。催化剂中氧缺陷的相对含量通常采用XPS表征中O1s中表面吸附氧与晶格氧的强度比值(OA/OL)定量分析。催化剂金属含量及对应的氧缺陷相对含量值见表2。
【实施例2】
硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸铈用量为1.08克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。催化剂按照金属Co、Mn和Ce的摩尔比为1:2:0.2的比例配制混合盐溶液A,后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
【实施例3】
硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸铈用量为0.54克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。不同于实施例1,实施例3是将一定量硝酸铈盐溶液等体积浸渍到比较例1催化剂上,其铈含量与实施例1中铈含量一致。后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
【实施例4】
硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸镧用量为0.539克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。催化剂按照金属Co、Mn和La的摩尔比为1:2:0.1的比例配制混合盐溶液A,后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
【实施例5】
硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸镨用量为0.542克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。催化剂按照金属Co、Mn和Pr的摩尔比为1:2:0.1的比例配制混合盐溶液A,后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
【实施例6】
硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸钛用量为0.373克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。催化剂按照金属Co、Mn和Ti的摩尔比为1:2:0.1的比例配制混合盐溶液A,后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
【实施例7】
硝酸钴用量为3.623克;硝酸锰用量为4.455克;钒酸的用量为0.146克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。催化剂按照金属Co、Mn和V的摩尔比为1:2:0.1的比例配制混合盐溶液A,后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
【实施例8】
硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸铬用量为0.296克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。催化剂按照金属Co、Mn和Cr的摩尔比为1:2:0.1的比例配制混合盐溶液A,后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
【实施例9】
硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸锆用量为0.535克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。催化剂按照金属Co、Mn和Zr的摩尔比为1:2:0.1的比例配制混合盐溶液A,后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
【实施例10】
硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸镓用量为0.318克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。催化剂按照金属Co、Mn和Ga的摩尔比为1:2:0.1的比例配制混合盐溶液A,后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
【比较例1】
硝酸钴用量为3.623克;硝酸锰用量为4.455克。柠檬酸用量为2.87克,乙二醇用量为0.8毫升。催化剂按照金属Co和Mn的摩尔比为1:2的比例配制混合盐溶液A,后续制备条件及性能评价步骤与实施例1相同;催化性能评价结果及其他物理性质见表1和表2。
表1、实施例1-10及比较例1催化剂的催化性能评价结果
表2实施例1-10及比较例1催化剂的物理性质
催化剂 Co含量(ICP) Co/Mn/M摩尔比 OA/OL(XPS)
实施例1 19.8 1/2/0.1 3.11
实施例2 16.8 1/2/0.2 3.45
实施例3 19.8 1/2/0.1 2.72
实施例4 19.8 1/2/0.1 2.53
实施例5 19.8 1/2/0.1 2.55
实施例6 19.8 1/2/0.1 2.61
实施例7 19.8 1/2/0.1 2.49
实施例8 19.8 1/2/0.1 2.41
实施例9 19.8 1/2/0.1 2.47
实施例10 19.8 1/2/0.1 2.59
比较例1 19.7 1/2/0 2.33
表3文献中具有代表性的高性能催化剂的性能评价结果a
表3中所述的参考文献:
1.Applied CatalysisA:General 2018,549179–187.
2.Journal ofCatalysis 2019,378,1-16.
3.Applied Catalysis B:Environmental 2020,278,119262.
4.ChemCatChem 2019.
5.ACS Catalysis 2015,5(6),3620-3624.
6.Applied CatalysisA:General 2016,523,263-271.
7.Angewandte Chemie International Edition 2019,58,4627-4631.
8.ACS Catalysis 2018,8,228-241.
9.Journal ofCatalysis 2018,361,156-167.
10.Industrial&Engineering Chemistry Research 2018,57,14957-14966.
从表1中实施例1-10和比较例1催化剂的催化性能结果可以看出,在相近的转化率条件下,所有的MOx(M=La、Ce、Pr、Ti、V、Cr、Zr和Ga)修饰的CoMnOx纳米催化剂中,CeO2修饰的CoMnOx纳米催化剂其C2+醇选择性最大,随着Ce含量的增加,总醇选择性增加,且不论是溶胶凝胶法制备的实施例1催化剂还是将Ce等体积浸渍的实施例3催化剂,其C2+醇选择性都比不添加其他金属氧化物的比较例1催化剂的C2+醇选择性高。
利用X射线衍射(XRD)对本发明中还原及反应后实施例1和还原后对比例1催化剂进行表征,结果如图1所示。实施例1和对比例1还原后XRD图谱都检测到CoxMn1-xO物种。且在2θ=44.3°处金属Co的衍射峰都不明显,说明还原后的金属Co高度分散。由实施例1催化剂反应后的XRD表明,催化剂除检测到还原后的物种,还检测到Co2C的衍射峰。但实施例1中并没有检测到CeO2物种,说明由溶胶凝胶法制备得到的实施例1催化剂中添加的Ce进入到CoxMn1-xO晶格。对比实施例1和比较例1可以看出,实施例1位于2θ=35.8,41.7,60.1,72.4和75.9°处的衍射峰向高角度发生偏移,这归属于Ce3+(0.102nm)的离子半径小于Co3+(0.125nm)和Mn3+(0.137nm)的离子半径导致。
采用场发射透射电子显微镜(TEM)及高分辨率场发射透射电子显微镜(HRTEM)对实施例1反应后催化剂进行表征,TEM图和HRTEM图结果见图2。可以看出实施例1反应后物种包括Co2C、MnOx和Co0,没有检测到CoxMn1-xO,归属于Ce进入到CoxMn1-xO的晶格中,导致既没有检测到CoxMn1-xO也没有检测到CeO2的晶格条纹。与XRD结果一致,且反应后的金属Co颗粒也没有明显的烧结,说明本发明可实现金属颗粒高分散在催化剂表面。
对实施例1催化剂进行稳定性测试,结果如图3所示。在250h稳定性测试过程中,催化剂性能保持稳定且没有失活趋势。这种优异的稳定性被认为是由于该发明中催化剂的溶胶凝胶法制备,使得催化剂均匀混合在同一个络合物前驱体中,三者相互作用,使得活性位之间表现出最大的作用优势,不会导致催化剂的分离和团聚。
采用XPS对反应后的实施例1-3和比较例1催化剂进行O1s表征,目前计算氧空穴相对含量的方法是以表面吸附氧与晶格氧的强度比(OA/OL)来定量分析。实施例1-3及比较例1的氧空穴含量表征结果如图4a,其他实施例催化剂氧空穴含量被列在表2中。对实施例1-3和比较例1催化剂与Ce添加量进行关联,结果如图4b。催化剂展现非常好的线性关系,说明Ce的添加明显改善了催化剂的总醇选择性,且随着Ce含量的增加,催化剂的氧空穴含量增多。相对于比较例1没有添加任何金属氧化物,实施例1-3催化剂中多出来的氧空穴含量被认为是由于添加的CeO2导致而成。其他实施例5-10的氧空穴含量也明显高于比较例1。且其氧空穴含量与催化性能成一定正比,说明不同金属氧化物的添加增加了催化剂的氧空穴,进而促进了低碳醇选择性。
基于以上分析,本发明优异的催化性能归因于:通过简单的溶胶凝胶法制备了一系列的实施例1-10和比较例1催化剂,该发明方法的使用使得Co、Mn和M(M=La、Ce、Pr、Ti、V、Cr、Zr和Ga)能够均匀的分散在同一体相结构中,金属氧化物MOx的添加增加了催化剂的氧空穴含量,多余的空穴量主要来自MOx,其促进了CO非解离吸附,增加了CO插入性能,进而提高了低碳醇选择性。其中,金属Co和MnOx的缺陷位主要负责解离CO生成CHx单体,且金属Co还负责C-C耦联,而碳化钴负责CO非解离和插入,4种不同的活性位相互作用改进低碳醇选择性。与此同时,催化剂在250h稳定性期间没有失活现象,表现出优异的催化性能和稳定性。
以上对本发明做了示例性的描述,在此说明的是,在不脱离本发明的核心的情况下,任何简单的改变、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (1)

1.一种CeO2-CoMnOx纳米催化剂的使用方法,其特征在于:
将CeO2-CoMnOx纳米催化剂,压片、过筛到40-60目颗粒,装入固定床反应器,常压原位在线氢气条件下还原4h,还原温度为400℃,氢气流量为30mL/min,得到还原后的催化剂,还原结束后降温到100℃;通入合成气,升高温度到240℃,升高压力为3MPa,控制转化率在30%,氢碳比为2:1的条件下进行合成气直接制低碳醇反应;
所述CeO2-CoMnOx纳米催化剂的制备方法,包括如下步骤:
按照金属Co、Mn和Ce的摩尔比为1:2:0.1的比例配制混合盐溶液A,硝酸钴用量为3.623克;硝酸锰用量为4.455克;硝酸铈用量为0.54克;加入2.87克的柠檬酸和0.8毫升乙二醇,得到水溶液B;将得到的水溶液B于80℃水浴中持续搅拌蒸发至凝胶状;将凝胶状物质在120℃烘箱中干燥12h,得到干燥产物;将干燥产物在马弗炉中空气气氛下以2℃/min加热至400℃焙烧3h,得到CeO2-CoMnOx纳米催化剂。
CN202110698337.4A 2021-06-23 2021-06-23 一种金属氧化物修饰的MOx-CoMnOx纳米催化剂及制备方法和使用方法 Active CN113441151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110698337.4A CN113441151B (zh) 2021-06-23 2021-06-23 一种金属氧化物修饰的MOx-CoMnOx纳米催化剂及制备方法和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110698337.4A CN113441151B (zh) 2021-06-23 2021-06-23 一种金属氧化物修饰的MOx-CoMnOx纳米催化剂及制备方法和使用方法

Publications (2)

Publication Number Publication Date
CN113441151A CN113441151A (zh) 2021-09-28
CN113441151B true CN113441151B (zh) 2023-08-25

Family

ID=77812235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110698337.4A Active CN113441151B (zh) 2021-06-23 2021-06-23 一种金属氧化物修饰的MOx-CoMnOx纳米催化剂及制备方法和使用方法

Country Status (1)

Country Link
CN (1) CN113441151B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475106A (zh) * 2014-12-15 2015-04-01 天津大学 用于低碳醇合成的碳纳米管复合的纳米钴铜合金催化剂及制备方法
CN105727982A (zh) * 2014-12-11 2016-07-06 中国石油化工股份有限公司 一种合成低碳醇的催化剂及其制备方法
CN107335446A (zh) * 2017-07-06 2017-11-10 中国科学院上海高等研究院 一种用于合成气一步法制取混合醇的钴基催化剂及其制备和应用
CN108043421A (zh) * 2017-12-13 2018-05-18 太原理工大学 一种合成气转化制低碳烃的纳米钴锰催化剂的制备方法
CN110876955A (zh) * 2019-11-08 2020-03-13 天津大学 一种用于合成气直接制取低碳醇的钴铜双金属催化剂及其制备方法
EP3628400A1 (en) * 2018-09-26 2020-04-01 Bp P.L.C. Fischer-tropsch process, supported fischer-tropsch synthesis catalyst and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105727982A (zh) * 2014-12-11 2016-07-06 中国石油化工股份有限公司 一种合成低碳醇的催化剂及其制备方法
CN104475106A (zh) * 2014-12-15 2015-04-01 天津大学 用于低碳醇合成的碳纳米管复合的纳米钴铜合金催化剂及制备方法
CN107335446A (zh) * 2017-07-06 2017-11-10 中国科学院上海高等研究院 一种用于合成气一步法制取混合醇的钴基催化剂及其制备和应用
CN108043421A (zh) * 2017-12-13 2018-05-18 太原理工大学 一种合成气转化制低碳烃的纳米钴锰催化剂的制备方法
EP3628400A1 (en) * 2018-09-26 2020-04-01 Bp P.L.C. Fischer-tropsch process, supported fischer-tropsch synthesis catalyst and uses thereof
CN110876955A (zh) * 2019-11-08 2020-03-13 天津大学 一种用于合成气直接制取低碳醇的钴铜双金属催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tuning the Fischer–Tropsch reaction over CoxMnyLa/AC catalysts toward alcohols: Effects of La promotion;Ziang Zhao et al.;《Journal of Catalysis》;20181231;第361卷;第156-167页 *

Also Published As

Publication number Publication date
CN113441151A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
Ren et al. Effect of group IB metals on the dehydrogenation of propane to propylene over anti-sintering Pt/MgAl2O4
Choudhary et al. Acetylene hydrogenation on Au-based catalysts
CN109225249B (zh) 一种用于乙酸自热重整制氢的镍锰铝复合氧化物催化剂
CN112871198B (zh) 一种二氧化碳加氢合成甲酸催化剂及其制备方法和应用
Wang et al. Activation reconstructing CuZnO/SiO2 catalyst for CO2 hydrogenation
CN112844446B (zh) 一种溶剂配位金属催化剂的制备方法及应用
Ronduda et al. Tuning the catalytic performance of Co/Mg-La system for ammonia synthesis via the active phase precursor introduction method
Sangeetha et al. Preferential oxidation of CO in H2 stream on Au/CeO2–TiO2 catalysts
CN110787789A (zh) 一种用于二氧化碳加氢制甲醇的催化剂的制备及其应用
Qin et al. Catalytic oxidation of ethyl acetate over LaBO 3 (B= Co, Mn, Ni, Fe) perovskites supported silver catalysts
Hu et al. Bimetallic Au-Li/SAC catalysts for acetylene hydrochlorination
CN106268856A (zh) 合成气一步法制乙醇用的铑基催化剂及其制备方法和应用
CN113058613B (zh) 一种用于甲烷干气重整反应锆-锰-锌复合氧化物担载镍基催化剂及其制备和应用
Fan et al. Well-Designed morphology regulated ZIF-67 derived 0D/1D Co3O4@ TiO2 NWs integrated with in-situ grown Ni/Co-Active metals for Low-Temperature driven CO2 methanation
CN113441151B (zh) 一种金属氧化物修饰的MOx-CoMnOx纳米催化剂及制备方法和使用方法
Adamski et al. Role of $ CeO_2-ZrO_2 $ support for structural, textural and functional properties of Ni-based catalysts active in dry reforming of methane
Hong et al. Methane combustion over Pd/Ni-Al oxide catalysts: Effect of Ni/Al ratio in the Ni-Al oxide support
CN114160137B (zh) 一种用于合成气直接制取低碳醇的钴铜双金属催化剂及制备方法和使用方法
CN113649014B (zh) 一种镍-锌基催化剂及其制备方法和应用
CN114602449B (zh) 一种ZnZrO2表面固溶体催化剂及其制备方法和应用
CN114192180A (zh) 一种改性氮化硼负载的镍基甲烷干重整催化剂、其制备方法及其应用
CN113731407A (zh) 一种TiO2基贵金属催化剂及其制备方法和应用
CN113145127A (zh) 一种用于甲醇水蒸气重整制氢的Cu催化剂及其制备方法和应用
Li et al. Constructing the active pairs of Co0-Co2+ via surface solid reaction on TiO2 with the additives of La and Al for higher alcohols synthesis
CN114797881A (zh) 一种碳材料负载钴基催化剂及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant