CN113432622A - 一种惯导系统误差仿真及修理辅助分析方法 - Google Patents

一种惯导系统误差仿真及修理辅助分析方法 Download PDF

Info

Publication number
CN113432622A
CN113432622A CN202110705955.7A CN202110705955A CN113432622A CN 113432622 A CN113432622 A CN 113432622A CN 202110705955 A CN202110705955 A CN 202110705955A CN 113432622 A CN113432622 A CN 113432622A
Authority
CN
China
Prior art keywords
wie
sin
cos
error
inertial navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110705955.7A
Other languages
English (en)
Inventor
覃刚
范云鹏
姚宇
林晓彬
董海静
董金珠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
707th Research Institute of CSIC
Original Assignee
707th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 707th Research Institute of CSIC filed Critical 707th Research Institute of CSIC
Priority to CN202110705955.7A priority Critical patent/CN113432622A/zh
Publication of CN113432622A publication Critical patent/CN113432622A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

本发明涉及一种惯导系统误差仿真及修理辅助分析方法,包括以下步骤:步骤1、建立惯性导航系统误差方程;步骤2、根据步骤1所建立的惯性导航系统误差方程,设置初始条件,对惯导系统误差进行仿真及修理辅助分析,并根据仿真结果对影响惯导系统精度的决定性因素进行分析。本发明能够更为直观的进行分析及故障定位,减少误判率,提高修理效率。

Description

一种惯导系统误差仿真及修理辅助分析方法
技术领域
本发明属于惯导系统技术领域,涉及一种惯导系统误差分析方法,尤其是一种惯导系统误差仿真及修理辅助分析方法。
背景技术
惯性导航系统是舰船的重要导航装备,为舰船导航及武器系统提供全参量的导航基准信息。作为高精度精密复杂装备,惯导系统性能下降或精度超差的故障定位及修理,一直是惯导系统修理保障的重难点工程,对修理人员有较高的技术要求。
因此,如何研发出一种惯导系统误差仿真及修理辅助分析方法,使其更为直观的进行分析及故障定位,减少误判率,提高修理效率是本领域技术人员亟待解决的技术难题。
发明内容
本发明的目的在于克服现有技术的不足,提出一种惯导系统误差仿真及修理辅助分析方法,能够直观的进行分析及故障定位,减少误判率,提高修理效率。
本发明解决其现实问题是采取以下技术方案实现的:
一种惯导系统误差仿真及修理辅助分析方法,包括以下步骤:
步骤1、建立惯性导航系统误差方程;
步骤2、根据步骤1所建立的惯性导航系统误差方程,设置初始条件,对惯导系统误差进行仿真及修理辅助分析,并根据仿真结果对影响惯导系统精度的决定性因素进行分析。
而且,所述步骤1的具体步骤包括:
(1)建立静基座误差方程:
Figure BDA0003131272560000021
Figure BDA0003131272560000022
(2)写成状态方程矩阵形式并进行拉氏变换得到:
Figure BDA0003131272560000023
Figure BDA0003131272560000024
Figure BDA0003131272560000025
而且,所述步骤2的具体步骤包括:
(1)设置初始条件
初始条件:设陀螺的常值漂移为0.1°/h,加速度计的常值零偏误差为0.0001g,当地纬度39°;起始条件误差为:速度误差0.1m/s,位置误差为0.0005°,水平姿态误差为20角秒,方位姿态误差为5角分。运行时间t=24小时;
(2)对惯导系统误差进行仿真及修理辅助分析,推导出陀螺漂移引起的系统误差,并画出误差传播曲线;推导出加速度计零偏引起的系统误差,并画出误差传播曲线;推导出初始条件误差引起的系统误差,并画出误差传播曲线;
(3)根据仿真结果对影响惯导系统精度的决定性因素进行分析。
而且,所述步骤2第(2)步的具体步骤包括:
①建立系数阵为:
Figure BDA0003131272560000031
用Matlab求特征矩阵C=(sI-F)-1有:
C11=(R*s)/(R*s^2+g)
C12=0
C13=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C14=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C15=-(R*g*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C16=-(R*g*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C21=0
C22=(R*s)/(R*s^2+g)
C23=-(R*g*wie^2)/((s^2+wie^2)*(R*s^2+g))
C24=(R*g*s^2)/((s^2+wie^2)*(R*s^2+g))
C25=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C26=-(R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C31=0
C32=1/(R*s^2+g)
C33=(R*s^3+(R*wie^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
C34=(g*s)/((s^2+wie^2)*(R*s^2+g))
C35=(g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C36=-(g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C41=0
C42=-1/(R*s^2+g)
C43=-(R*s*wie^2)/((s^2+wie^2)*(R*s^2+g))
C44=(R*s^3)/((s^2+wie^2)*(R*s^2+g))
C45=(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C46=-(R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C51=1/(R*s^2+g)
C52=0
C53=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C54=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C55=(R*s*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C56=(R*s*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C61=tan(L)/(R*s^2+g)
C62=0
C63=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C64=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C65=-(s*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C66=(R*s^3+(R*wie^2*sin(L)^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
各式中,常数值g表示重力加速度,ws表示舒勒角频率,wie表示地球自转角速度,R表示地球半径,L表示当地纬度;
Dx表示东向加速度计常值零偏,Dy表示北向加速度计常值零偏,Ex表示东向陀螺漂移,Ey表示北向陀螺漂移,Ez表示方位陀螺漂移;
Dx0表示初始东向速度误差,Dy0表示初始北向速度误差,L0表示初始纬度位置误差,N0表示初始经度位置误差,Qx0表示初始东向姿态误差,Qy0表示初始北向姿态误差,Qz0表示初始方位姿态误差;
dVx表示系统东向速度误差,dVy表示系统北向速度误差;dL表示纬度误差,dN表示经度误差;Qx、Qy、Qz表示平台误差;
②计算东向陀螺漂移εx引起的系统误差及误差传播曲线;
dVxs=(Ex*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVxt=(Ex*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dVys=(Ex*R*g*s)/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ex*R*g*cos(t*wie))/(g-R*wie^2)-(Ex*R*g*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dLs=(Ex*g)/((s^2+wie^2)*(R*s^2+g))
dLt=(Ex*g*sin(t*wie))/(wie*(g-R*wie^2))-(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dNs=(Ex*g*wie*sin(L))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=((Ex*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(1/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2))/cos(L)
Qxs=(Ex*R*s^2)/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ex*R*wie*sin(t*wie))/(g-R*wie^2)
Qys=-(Ex*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ex*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)
Qzs=(Ex*wie*(R*s^2*cos(L)^2+g))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ex*cos(t*wie)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-Ex/wie+(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*(cos(L)-1)*(cos(L)+1))/(g-R*wie^2))/cos(L)
③计算北向陀螺漂移εy引起的系统误差及误差传播曲线;
dVxs=-(Ey*R*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*(s^2+wie^2)*(R*s^2+g))
dVxt=Ey*R*(sin(L)-1)*(sin(L)+1)+(Ey*R*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*R*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2)
dVys=(Ey*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ey*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dLs=(Ey*g*wie*sin(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ey*sin(L))/wie+(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L))/(wie*(g-R*wie^2))
dNs=-(Ey*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=(Ey*(sin(L)-1)*(sin(L)+1)+(Ey*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2))/cos(L)
Qxs=(Ey*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ey*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
Qys=(Ey*R*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g^(1/2)*(g-R*wie^2))-(Ey*R*wie*sin(t*wie)*sin(L)^2)/(g-R*wie^2)
Qzs=-(Ey*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ey*sin(t*wie)*sin(L)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*sin(L)*(g-R*wie^2*cos(L)^2))/(g^(1/2)*(g-R*wie^2)))/cos(L)
④计算方位陀螺漂移εz引起的系统误差及误差传播曲线;
dVxs=-(Ez*R*g*wie^2*sin(2*L))/(s*(R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Ez*R*g*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Ez*R^2*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Ez*R*sin(2*L))/2
dVys=-(Ez*R*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ez*R^(3/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ez*R*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dLs=-(Ez*g*wie*cos(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ez*g*cos(t*wie)*cos(L))/(wie*(g-R*wie^2))-(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*cos(L))/wie
dNs=-(Ez*g*wie^2*sin(2*L))/(s*cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-(Ez*sin(2*L)-(Ez*g*sin(2*L)*cos(t*wie))/(g-R*wie^2)+(Ez*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Ez*R*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*R*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
Qys=(Ez*R*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Ez*R*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)-(Ez*R^(3/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g^(1/2)*(2*g-2*R*wie^2))
Qzs=(Ez*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/(s*(s^2+wie^2)*(R*s^2+g))
Qzt=(Ez*sin(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(wie*(g-R*wie^2))-(Ez*R^(3/2)*wie^2*sin((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g^(1/2)*(g-R*wie^2))
⑤计算东向加速度计零偏
Figure BDA0003131272560000081
引起的系统误差及误差传播曲线;
dVxs=(Dx*R)/(R*s^2+g)
dVxt=(Dx*R^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/g^(1/2)
dVys=0
dVyt=0
dLs=0
dLt=0
dNs=Dx/(cos(L)*(R*s^2+g))
dNt=(Dx*sin((g^(1/2)*t)/R^(1/2)))/(R^(1/2)*g^(1/2)*cos(L))
Qxs=0
Qxt=0
Qys=Dx/(s*(R*s^2+g))
Qyt=Dx/g-(Dx*cos((g^(1/2)*t)/R^(1/2)))/g
Qzs=(Dx*tan(L))/(s*(R*s^2+g))
Qzt=(Dx*tan(L))/g-(Dx*cos((g^(1/2)*t)/R^(1/2))*tan(L))/g
⑥计算初始方位姿态误差Φz0引起的系统误差及误差传播曲线;
dVxs=-(Qz0*R*g*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Qz0*R^(3/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Qz0*R*g*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)
dVys=-(Qz0*R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Qz0*R*g*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Qz0*R*g*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
dLs=-(Qz0*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dLt=(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Qz0*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dNs=-(Qz0*g*wie^2*sin(2*L))/(cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-((Qz0*g*wie*sin(2*L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Qz0*R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Qz0*R*wie^2*cos(L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
Qys=(Qz0*R*s*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Qz0*R*wie^2*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Qz0*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)
Qzs=(Qz0*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/((s^2+wie^2)*(R*s^2+g))
Qzt=(Qz0*cos(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Qz0*R*wie^2*cos((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g-R*wie^2)
本发明的优点和有益效果:
本发明提供一种惯导系统误差仿真及修理辅助分析方法,能够最大程度模拟惯导系统实际使用情况,合理设置误差模型和实验条件,通过仿真得到各主要误差源的误差传播曲线及结果,帮助修理人员更直观地掌握惯导误差传播特性,提高惯导系统性能下降或精度超差故障定位及修理能力。在实际修理中遇到性能下降或精度超差故障,也可以对仿真程序相关参数进行调整来最大程度仿真模拟实际情况,帮助更为直观的进行分析及故障定位,减少误判率,提高修理效率。
附图说明
图1是本发明的惯导系统误差传递方框图;
图2是本发明的东向陀螺漂移引起系统误差曲线图;
图3是本发明的北向陀螺漂移引起系统误差曲线图;
图4是本发明的方位陀螺漂移引起系统误差曲线图;
图5是本发明的东向加速度计零偏引起系统误差曲线图;
图6是本发明的初始方位姿态误差引起系统误差曲线图。
具体实施方式
以下结合附图对本发明实施例作进一步详述:
一种惯导系统误差仿真及修理辅助分析方法,如图1所示,包括以下步骤:
步骤1、建立惯性导航系统误差方程;
在本实施例中,如图1所示,惯性平台的两个水平控制回路既有交联影响,同时又构成了一个大的闭环系统。因而误差量之间的相互影响也具有相同的特点。
所述步骤1的具体步骤包括:
(1)建立静基座误差方程:
Figure BDA0003131272560000101
Figure BDA0003131272560000102
(2)写成状态方程矩阵形式并进行拉氏变换得到:
Figure BDA0003131272560000111
Figure BDA0003131272560000112
Figure BDA0003131272560000113
步骤2、根据步骤1所建立的惯性导航系统误差方程,设置初始条件,对惯导系统误差进行仿真及修理辅助分析,并根据仿真结果对影响惯导系统精度的决定性因素进行分析。
所述步骤2的具体步骤包括:
(1)设置初始条件
初始条件:设陀螺的常值漂移为0.1°/h,加速度计的常值零偏误差为0.0001g,当地纬度39°;起始条件误差为:速度误差0.1m/s,位置误差为0.0005°,水平姿态误差为20角秒,方位姿态误差为5角分。运行时间t=24小时(利用Matlab分析软件)。
(2)对惯导系统误差进行仿真及修理辅助分析,推导出陀螺漂移引起的系统误差,并画出误差传播曲线;推导出加速度计零偏引起的系统误差,并画出误差传播曲线;推导出初始条件误差引起的系统误差,并画出误差传播曲线;
所述步骤2第(2)步的具体步骤包括:
①考虑到求解的简单,又不妨害对解的主要特性的了解,建立的系数阵为:
Figure BDA0003131272560000121
用Matlab求特征矩阵C=(sI-F)-1有:
C11=(R*s)/(R*s^2+g)
C12=0
C13=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C14=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C15=-(R*g*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C16=-(R*g*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C21=0
C22=(R*s)/(R*s^2+g)
C23=-(R*g*wie^2)/((s^2+wie^2)*(R*s^2+g))
C24=(R*g*s^2)/((s^2+wie^2)*(R*s^2+g))
C25=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C26=-(R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C31=0
C32=1/(R*s^2+g)
C33=(R*s^3+(R*wie^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
C34=(g*s)/((s^2+wie^2)*(R*s^2+g))
C35=(g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C36=-(g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C41=0
C42=-1/(R*s^2+g)
C43=-(R*s*wie^2)/((s^2+wie^2)*(R*s^2+g))
C44=(R*s^3)/((s^2+wie^2)*(R*s^2+g))
C45=(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C46=-(R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C51=1/(R*s^2+g)
C52=0
C53=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C54=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C55=(R*s*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C56=(R*s*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C61=tan(L)/(R*s^2+g)
C62=0
C63=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C64=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C65=-(s*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C66=(R*s^3+(R*wie^2*sin(L)^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
各式中,常数值g表示重力加速度,ws表示舒勒角频率,wie表示地球自转角速度,R表示地球半径,L表示当地纬度;
Dx表示东向加速度计常值零偏,Dy表示北向加速度计常值零偏,Ex表示东向陀螺漂移,Ey表示北向陀螺漂移,Ez表示方位陀螺漂移;
Dx0表示初始东向速度误差,Dy0表示初始北向速度误差,L0表示初始纬度位置误差,N0表示初始经度位置误差,Qx0表示初始东向姿态误差,Qy0表示初始北向姿态误差,Qz0表示初始方位姿态误差;
dVx表示系统东向速度误差,dVy表示系统北向速度误差;dL表示纬度误差,dN表示经度误差;Qx、Qy、Qz表示平台误差;
②如图2所示,计算东向陀螺漂移εx引起的系统误差及误差传播曲线;
dVxs=(Ex*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVxt=(Ex*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dVys=(Ex*R*g*s)/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ex*R*g*cos(t*wie))/(g-R*wie^2)-(Ex*R*g*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dLs=(Ex*g)/((s^2+wie^2)*(R*s^2+g))
dLt=(Ex*g*sin(t*wie))/(wie*(g-R*wie^2))-(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dNs=(Ex*g*wie*sin(L))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=((Ex*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(1/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2))/cos(L)
Qxs=(Ex*R*s^2)/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ex*R*wie*sin(t*wie))/(g-R*wie^2)
Qys=-(Ex*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ex*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)
Qzs=(Ex*wie*(R*s^2*cos(L)^2+g))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ex*cos(t*wie)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-Ex/wie+(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*(cos(L)-1)*(cos(L)+1))/(g-R*wie^2))/cos(L)
③如图3所示,计算北向陀螺漂移(εy)引起的系统误差及误差传播曲线;
dVxs=-(Ey*R*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*(s^2+wie^2)*(R*s^2+g))
dVxt=Ey*R*(sin(L)-1)*(sin(L)+1)+(Ey*R*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*R*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2)
dVys=(Ey*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ey*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dLs=(Ey*g*wie*sin(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ey*sin(L))/wie+(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L))/(wie*(g-R*wie^2))
dNs=-(Ey*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=(Ey*(sin(L)-1)*(sin(L)+1)+(Ey*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2))/cos(L)
Qxs=(Ey*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ey*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
Qys=(Ey*R*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g^(1/2)*(g-R*wie^2))-(Ey*R*wie*sin(t*wie)*sin(L)^2)/(g-R*wie^2)
Qzs=-(Ey*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ey*sin(t*wie)*sin(L)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*sin(L)*(g-R*wie^2*cos(L)^2))/(g^(1/2)*(g-R*wie^2)))/cos(L)
④如图4所示,计算方位陀螺漂移(εz)引起的系统误差及误差传播曲线;
dVxs=-(Ez*R*g*wie^2*sin(2*L))/(s*(R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Ez*R*g*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Ez*R^2*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Ez*R*sin(2*L))/2
dVys=-(Ez*R*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ez*R^(3/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ez*R*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dLs=-(Ez*g*wie*cos(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ez*g*cos(t*wie)*cos(L))/(wie*(g-R*wie^2))-(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*cos(L))/wie
dNs=-(Ez*g*wie^2*sin(2*L))/(s*cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-(Ez*sin(2*L)-(Ez*g*sin(2*L)*cos(t*wie))/(g-R*wie^2)+(Ez*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Ez*R*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*R*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
Qys=(Ez*R*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Ez*R*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)-(Ez*R^(3/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g^(1/2)*(2*g-2*R*wie^2))
Qzs=(Ez*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/(s*(s^2+wie^2)*(R*s^2+g))
Qzt=(Ez*sin(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(wie*(g-R*wie^2))-(Ez*R^(3/2)*wie^2*sin((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g^(1/2)*(g-R*wie^2))
⑤如图5所示,计算东向加速度计零偏
Figure BDA0003131272560000171
引起的系统误差及误差传播曲线;
dVxs=(Dx*R)/(R*s^2+g)
dVxt=(Dx*R^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/g^(1/2)
dVys=0
dVyt=0
dLs=0
dLt=0
dNs=Dx/(cos(L)*(R*s^2+g))
dNt=(Dx*sin((g^(1/2)*t)/R^(1/2)))/(R^(1/2)*g^(1/2)*cos(L))
Qxs=0
Qxt=0
Qys=Dx/(s*(R*s^2+g))
Qyt=Dx/g-(Dx*cos((g^(1/2)*t)/R^(1/2)))/g
Qzs=(Dx*tan(L))/(s*(R*s^2+g))
Qzt=(Dx*tan(L))/g-(Dx*cos((g^(1/2)*t)/R^(1/2))*tan(L))/g
⑥如图6所示,计算初始方位姿态误差(Φz0)引起的系统误差及误差传播曲线;
dVxs=-(Qz0*R*g*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Qz0*R^(3/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Qz0*R*g*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)
dVys=-(Qz0*R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Qz0*R*g*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Qz0*R*g*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
dLs=-(Qz0*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dLt=(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Qz0*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dNs=-(Qz0*g*wie^2*sin(2*L))/(cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-((Qz0*g*wie*sin(2*L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Qz0*R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Qz0*R*wie^2*cos(L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
Qys=(Qz0*R*s*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Qz0*R*wie^2*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Qz0*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)
Qzs=(Qz0*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/((s^2+wie^2)*(R*s^2+g))
Qzt=(Qz0*cos(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Qz0*R*wie^2*cos((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g-R*wie^2)
(3)根据仿真结果对影响惯导系统精度的决定性因素进行分析。
在本实施例中,利用编程求得的各系统误差幅度最大值见表1(横向表示各误差类型,纵向表示各误差源)。
表1惯导系统误差最大幅值列表
Figure BDA0003131272560000191
从上述误差传播曲线可以看出,陀螺的常值漂移引起的系统误差大多为振荡性误差,但对某些导航参数和平台误差角将产生常值误差。而最为严重的是北向陀螺的εy及方位陀螺的εz,对于经度误差бλ将引起随时间积累的位置偏差。但这并不意味可以放松对东向陀螺的精度要求。在对初始对准的分析中将看到,平台方位对准的精度主要取决于东向陀螺漂移εx。从误差幅度表格中可以看出,三个陀螺的漂移率都是决定系统精度的主要因素。
另外,加速度计的零偏将产生振荡误差及常值误差。如两个水平加速度计的零偏
Figure BDA0003131272560000192
将引起经、纬度及平台姿态角的常值偏差。可以说,平台的姿态精度主要取决于加速度计的零偏。
此外,由于量纲的不同,平台初始偏差Φx0、Φy0、Φz0的输入点与陀螺漂移εx、εy、εz的输入点之间均相差一个积分环节;速度初始误差бvx0、бvy0的输入点与加速度计零偏
Figure BDA0003131272560000193
的输入点之间也均相差一个积分环节,这表明初始误差对于系统的影响要少一次积分作用,因而引起的系统误差大多是振荡的,只对бλ产生常值误差分量,完全没有随时间积累的误差分量。至于初始误差бλ0的输入点是在开环回路上,故只对бλ有影响。
总之,陀螺仪和加速度计的精度是影响惯导系统精度的决定性因素,其中陀螺仪的精度尤为突出。
在本实施例中,Matlab仿真程序如下:
Figure BDA0003131272560000201
Figure BDA0003131272560000211
Figure BDA0003131272560000221
Figure BDA0003131272560000231
需要强调的是,本发明所述实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (4)

1.一种惯导系统误差仿真及修理辅助分析方法,其特征在于:包括以下步骤:
步骤1、建立惯性导航系统误差方程;
步骤2、根据步骤1所建立的惯性导航系统误差方程,设置初始条件,对惯导系统误差进行仿真及修理辅助分析,并根据仿真结果对影响惯导系统精度的决定性因素进行分析。
2.根据权利要求1所述的一种惯导系统误差仿真及修理辅助分析方法,其特征在于:所述步骤1的具体步骤包括:
(1)建立静基座误差方程:
Figure FDA0003131272550000011
Figure FDA0003131272550000012
(2)写成状态方程矩阵形式并进行拉氏变换得到:
Figure FDA0003131272550000021
Figure FDA0003131272550000022
3.根据权利要求1所述的一种惯导系统误差仿真及修理辅助分析方法,其特征在于:所述步骤2的具体步骤包括:
(1)设置初始条件
初始条件:设陀螺的常值漂移为0.1°/h,加速度计的常值零偏误差为0.0001g,当地纬度39°;起始条件误差为:速度误差0.1m/s,位置误差为0.0005°,水平姿态误差为20角秒,方位姿态误差为5角分。运行时间t=24小时;
(2)对惯导系统误差进行仿真及修理辅助分析,推导出陀螺漂移引起的系统误差,并画出误差传播曲线;推导出加速度计零偏引起的系统误差,并画出误差传播曲线;推导出初始条件误差引起的系统误差,并画出误差传播曲线;
(3)根据仿真结果对影响惯导系统精度的决定性因素进行分析。
4.根据权利要求3所述的一种惯导系统误差仿真及修理辅助分析方法,其特征在于:所述步骤2第(2)步的具体步骤包括:
①建立系数阵为:
Figure FDA0003131272550000031
用Matlab求特征矩阵C=(sI-F)-1有:
C11=(R*s)/(R*s^2+g)
C12=0
C13=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C14=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C15=-(R*g*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C16=-(R*g*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C21=0
C22=(R*s)/(R*s^2+g)
C23=-(R*g*wie^2)/((s^2+wie^2)*(R*s^2+g))
C24=(R*g*s^2)/((s^2+wie^2)*(R*s^2+g))
C25=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C26=-(R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C31=0
C32=1/(R*s^2+g)
C33=(R*s^3+(R*wie^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
C34=(g*s)/((s^2+wie^2)*(R*s^2+g))
C35=(g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C36=-(g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C41=0
C42=-1/(R*s^2+g)
C43=-(R*s*wie^2)/((s^2+wie^2)*(R*s^2+g))
C44=(R*s^3)/((s^2+wie^2)*(R*s^2+g))
C45=(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C46=-(R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C51=1/(R*s^2+g)
C52=0
C53=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C54=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C55=(R*s*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C56=(R*s*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C61=tan(L)/(R*s^2+g)
C62=0
C63=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C64=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C65=-(s*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C66=(R*s^3+(R*wie^2*sin(L)^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
各式中,常数值g表示重力加速度,ws表示舒勒角频率,wie表示地球自转角速度,R表示地球半径,L表示当地纬度;
Dx表示东向加速度计常值零偏,Dy表示北向加速度计常值零偏,Ex表示东向陀螺漂移,Ey表示北向陀螺漂移,Ez表示方位陀螺漂移;
Dx0表示初始东向速度误差,Dy0表示初始北向速度误差,L0表示初始纬度位置误差,N0表示初始经度位置误差,Qx0表示初始东向姿态误差,Qy0表示初始北向姿态误差,Qz0表示初始方位姿态误差;
dVx表示系统东向速度误差,dVy表示系统北向速度误差;dL表示纬度误差,dN表示经度误差;Qx、Qy、Qz表示平台误差;
②计算东向陀螺漂移εx引起的系统误差及误差传播曲线;
dVxs=(Ex*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVxt=(Ex*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dVys=(Ex*R*g*s)/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ex*R*g*cos(t*wie))/(g-R*wie^2)-(Ex*R*g*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dLs=(Ex*g)/((s^2+wie^2)*(R*s^2+g))
dLt=(Ex*g*sin(t*wie))/(wie*(g-R*wie^2))-(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dNs=(Ex*g*wie*sin(L))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=((Ex*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(1/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2))/cos(L)
Qxs=(Ex*R*s^2)/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ex*R*wie*sin(t*wie))/(g-R*wie^2)
Qys=-(Ex*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ex*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)
Qzs=(Ex*wie*(R*s^2*cos(L)^2+g))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ex*cos(t*wie)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-Ex/wie+(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*(cos(L)-1)*(cos(L)+1))/(g-R*wie^2))/cos(L)
③计算北向陀螺漂移εy引起的系统误差及误差传播曲线;
dVxs=-(Ey*R*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*(s^2+wie^2)*(R*s^2+g))
dVxt=Ey*R*(sin(L)-1)*(sin(L)+1)+(Ey*R*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*R*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2)
dVys=(Ey*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ey*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dLs=(Ey*g*wie*sin(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ey*sin(L))/wie+(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L))/(wie*(g-R*wie^2))
dNs=-(Ey*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=(Ey*(sin(L)-1)*(sin(L)+1)+(Ey*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2))/cos(L)
Qxs=(Ey*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ey*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
Qys=(Ey*R*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g^(1/2)*(g-R*wie^2))-(Ey*R*wie*sin(t*wie)*sin(L)^2)/(g-R*wie^2)
Qzs=-(Ey*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ey*sin(t*wie)*sin(L)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*sin(L)*(g-R*wie^2*cos(L)^2))/(g^(1/2)*(g-R*wie^2)))/cos(L)
④计算方位陀螺漂移εz引起的系统误差及误差传播曲线;
dVxs=-(Ez*R*g*wie^2*sin(2*L))/(s*(R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Ez*R*g*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Ez*R^2*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Ez*R*sin(2*L))/2
dVys=-(Ez*R*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ez*R^(3/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ez*R*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dLs=-(Ez*g*wie*cos(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ez*g*cos(t*wie)*cos(L))/(wie*(g-R*wie^2))-(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*cos(L))/wie
dNs=-(Ez*g*wie^2*sin(2*L))/(s*cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-(Ez*sin(2*L)-(Ez*g*sin(2*L)*cos(t*wie))/(g-R*wie^2)+(Ez*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Ez*R*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*R*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
Qys=(Ez*R*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Ez*R*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)-(Ez*R^(3/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g^(1/2)*(2*g-2*R*wie^2))
Qzs=(Ez*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/(s*(s^2+wie^2)*(R*s^2+g))
Qzt=(Ez*sin(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(wie*(g-R*wie^2))-(Ez*R^(3/2)*wie^2*sin((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g^(1/2)*(g-R*wie^2))
⑤计算东向加速度计零偏
Figure FDA0003131272550000071
引起的系统误差及误差传播曲线;
dVxs=(Dx*R)/(R*s^2+g)
dVxt=(Dx*R^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/g^(1/2)
dVys=0
dVyt=0
dLs=0
dLt=0
dNs=Dx/(cos(L)*(R*s^2+g))
dNt=(Dx*sin((g^(1/2)*t)/R^(1/2)))/(R^(1/2)*g^(1/2)*cos(L))
Qxs=0
Qxt=0
Qys=Dx/(s*(R*s^2+g))
Qyt=Dx/g-(Dx*cos((g^(1/2)*t)/R^(1/2)))/g
Qzs=(Dx*tan(L))/(s*(R*s^2+g))
Qzt=(Dx*tan(L))/g-(Dx*cos((g^(1/2)*t)/R^(1/2))*tan(L))/g
⑥计算初始方位姿态误差Φz0引起的系统误差及误差传播曲线;
dVxs=-(Qz0*R*g*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Qz0*R^(3/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Qz0*R*g*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)
dVys=-(Qz0*R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Qz0*R*g*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Qz0*R*g*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
dLs=-(Qz0*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dLt=(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Qz0*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dNs=-(Qz0*g*wie^2*sin(2*L))/(cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-((Qz0*g*wie*sin(2*L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Qz0*R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Qz0*R*wie^2*cos(L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
Qys=(Qz0*R*s*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Qz0*R*wie^2*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Qz0*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)
Qzs=(Qz0*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/((s^2+wie^2)*(R*s^2+g))
Qzt=(Qz0*cos(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Qz0*R*wie^2*cos((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g-R*wie^2)。
CN202110705955.7A 2021-06-24 2021-06-24 一种惯导系统误差仿真及修理辅助分析方法 Pending CN113432622A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110705955.7A CN113432622A (zh) 2021-06-24 2021-06-24 一种惯导系统误差仿真及修理辅助分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110705955.7A CN113432622A (zh) 2021-06-24 2021-06-24 一种惯导系统误差仿真及修理辅助分析方法

Publications (1)

Publication Number Publication Date
CN113432622A true CN113432622A (zh) 2021-09-24

Family

ID=77754016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110705955.7A Pending CN113432622A (zh) 2021-06-24 2021-06-24 一种惯导系统误差仿真及修理辅助分析方法

Country Status (1)

Country Link
CN (1) CN113432622A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628691A (zh) * 2012-04-09 2012-08-08 北京自动化控制设备研究所 一种完全自主的相对惯性导航方法
CN103557876A (zh) * 2013-11-15 2014-02-05 山东理工大学 一种用于天线跟踪稳定平台的捷联惯导初始对准方法
CN105136166A (zh) * 2015-08-17 2015-12-09 南京航空航天大学 一种指定惯导位置精度的捷联惯导误差模型仿真方法
CN109443391A (zh) * 2018-12-07 2019-03-08 上海机电工程研究所 一种基于误差估计的惯性导航仿真方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628691A (zh) * 2012-04-09 2012-08-08 北京自动化控制设备研究所 一种完全自主的相对惯性导航方法
CN103557876A (zh) * 2013-11-15 2014-02-05 山东理工大学 一种用于天线跟踪稳定平台的捷联惯导初始对准方法
CN105136166A (zh) * 2015-08-17 2015-12-09 南京航空航天大学 一种指定惯导位置精度的捷联惯导误差模型仿真方法
CN109443391A (zh) * 2018-12-07 2019-03-08 上海机电工程研究所 一种基于误差估计的惯性导航仿真方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐志浩等: "载体初始姿态对单轴旋转惯导误差传播的影响", 《弹 箭 与 制 导 学 报》 *
李金钊: "光纤捷联惯性导航系统精度评估技术研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 *

Similar Documents

Publication Publication Date Title
Gao et al. A self-calibration method for non-orthogonal angles of gimbals in tri-axis rotational inertial navigation system
CN106441357B (zh) 一种基于阻尼网络的单轴旋转sins轴向陀螺漂移校正方法
CN105509769B (zh) 一种运载火箭捷联惯导全自主对准方法
Huang et al. Application of adaptive Kalman filter technique in initial alignment of strapdown inertial navigation system
CN110285838B (zh) 基于重力矢量时间差分的惯性导航设备对准方法
CN103557864A (zh) Mems捷联惯导自适应sckf滤波的初始对准方法
CN113503894B (zh) 基于陀螺基准坐标系的惯导系统误差标定方法
CN110006453A (zh) 一种基于双轴转位机构的mems自主初始对准方法
Wang et al. A fast SINS self-alignment method under geographic latitude uncertainty
CN111486870B (zh) 一种斜置捷联惯组系统级标定方法
CN109506638A (zh) 一种补偿陀螺标度因数对旋转调制罗经方位对准影响方法
Dai et al. A full-parameter self-calibration method based on inertial frame filtering for triaxis RINS under swaying base
Deng et al. A novel damping method for strapdown inertial navigation system
CN104121930B (zh) 一种基于加表耦合的mems陀螺漂移误差的补偿方法
CN106643726B (zh) 一种统一惯性导航解算方法
CN113137977B (zh) 一种sins/偏振光组合导航初始对准滤波方法
CN115235460A (zh) 基于法向量位置模型的船舶惯导容错阻尼方法及系统
Sun et al. A vehicle-carried INS positioning accuracy improvement method by using lateral constraint in GPS-denied environment
Zhang et al. SINS initial alignment based on fifth-degree cubature Kalman filter
CN111060140B (zh) 一种地球椭球模型下的极区惯性导航误差获得方法
Han et al. A fast SINS initial alignment method based on RTS forward and backward resolution
Cai et al. Data fusion method of measurement lag compensation for multirate MIMU/FOG/GNSS compound navigation
CN113432622A (zh) 一种惯导系统误差仿真及修理辅助分析方法
CN108279025B (zh) 一种基于重力信息的光纤陀螺罗经快速精对准方法
Zhao et al. Integrated navigation error analysis based on Kalman filter of INS error compensation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210924

RJ01 Rejection of invention patent application after publication