CN113432622A - 一种惯导系统误差仿真及修理辅助分析方法 - Google Patents
一种惯导系统误差仿真及修理辅助分析方法 Download PDFInfo
- Publication number
- CN113432622A CN113432622A CN202110705955.7A CN202110705955A CN113432622A CN 113432622 A CN113432622 A CN 113432622A CN 202110705955 A CN202110705955 A CN 202110705955A CN 113432622 A CN113432622 A CN 113432622A
- Authority
- CN
- China
- Prior art keywords
- wie
- sin
- cos
- error
- inertial navigation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 28
- 238000004458 analytical method Methods 0.000 title claims abstract description 24
- 230000009897 systematic effect Effects 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 claims 1
- 230000010354 integration Effects 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Navigation (AREA)
Abstract
本发明涉及一种惯导系统误差仿真及修理辅助分析方法,包括以下步骤:步骤1、建立惯性导航系统误差方程;步骤2、根据步骤1所建立的惯性导航系统误差方程,设置初始条件,对惯导系统误差进行仿真及修理辅助分析,并根据仿真结果对影响惯导系统精度的决定性因素进行分析。本发明能够更为直观的进行分析及故障定位,减少误判率,提高修理效率。
Description
技术领域
本发明属于惯导系统技术领域,涉及一种惯导系统误差分析方法,尤其是一种惯导系统误差仿真及修理辅助分析方法。
背景技术
惯性导航系统是舰船的重要导航装备,为舰船导航及武器系统提供全参量的导航基准信息。作为高精度精密复杂装备,惯导系统性能下降或精度超差的故障定位及修理,一直是惯导系统修理保障的重难点工程,对修理人员有较高的技术要求。
因此,如何研发出一种惯导系统误差仿真及修理辅助分析方法,使其更为直观的进行分析及故障定位,减少误判率,提高修理效率是本领域技术人员亟待解决的技术难题。
发明内容
本发明的目的在于克服现有技术的不足,提出一种惯导系统误差仿真及修理辅助分析方法,能够直观的进行分析及故障定位,减少误判率,提高修理效率。
本发明解决其现实问题是采取以下技术方案实现的:
一种惯导系统误差仿真及修理辅助分析方法,包括以下步骤:
步骤1、建立惯性导航系统误差方程;
步骤2、根据步骤1所建立的惯性导航系统误差方程,设置初始条件,对惯导系统误差进行仿真及修理辅助分析,并根据仿真结果对影响惯导系统精度的决定性因素进行分析。
而且,所述步骤1的具体步骤包括:
(1)建立静基座误差方程:
(2)写成状态方程矩阵形式并进行拉氏变换得到:
而且,所述步骤2的具体步骤包括:
(1)设置初始条件
初始条件:设陀螺的常值漂移为0.1°/h,加速度计的常值零偏误差为0.0001g,当地纬度39°;起始条件误差为:速度误差0.1m/s,位置误差为0.0005°,水平姿态误差为20角秒,方位姿态误差为5角分。运行时间t=24小时;
(2)对惯导系统误差进行仿真及修理辅助分析,推导出陀螺漂移引起的系统误差,并画出误差传播曲线;推导出加速度计零偏引起的系统误差,并画出误差传播曲线;推导出初始条件误差引起的系统误差,并画出误差传播曲线;
(3)根据仿真结果对影响惯导系统精度的决定性因素进行分析。
而且,所述步骤2第(2)步的具体步骤包括:
①建立系数阵为:
用Matlab求特征矩阵C=(sI-F)-1有:
C11=(R*s)/(R*s^2+g)
C12=0
C13=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C14=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C15=-(R*g*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C16=-(R*g*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C21=0
C22=(R*s)/(R*s^2+g)
C23=-(R*g*wie^2)/((s^2+wie^2)*(R*s^2+g))
C24=(R*g*s^2)/((s^2+wie^2)*(R*s^2+g))
C25=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C26=-(R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C31=0
C32=1/(R*s^2+g)
C33=(R*s^3+(R*wie^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
C34=(g*s)/((s^2+wie^2)*(R*s^2+g))
C35=(g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C36=-(g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C41=0
C42=-1/(R*s^2+g)
C43=-(R*s*wie^2)/((s^2+wie^2)*(R*s^2+g))
C44=(R*s^3)/((s^2+wie^2)*(R*s^2+g))
C45=(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C46=-(R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C51=1/(R*s^2+g)
C52=0
C53=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C54=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C55=(R*s*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C56=(R*s*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C61=tan(L)/(R*s^2+g)
C62=0
C63=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C64=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C65=-(s*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C66=(R*s^3+(R*wie^2*sin(L)^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
各式中,常数值g表示重力加速度,ws表示舒勒角频率,wie表示地球自转角速度,R表示地球半径,L表示当地纬度;
Dx表示东向加速度计常值零偏,Dy表示北向加速度计常值零偏,Ex表示东向陀螺漂移,Ey表示北向陀螺漂移,Ez表示方位陀螺漂移;
Dx0表示初始东向速度误差,Dy0表示初始北向速度误差,L0表示初始纬度位置误差,N0表示初始经度位置误差,Qx0表示初始东向姿态误差,Qy0表示初始北向姿态误差,Qz0表示初始方位姿态误差;
dVx表示系统东向速度误差,dVy表示系统北向速度误差;dL表示纬度误差,dN表示经度误差;Qx、Qy、Qz表示平台误差;
②计算东向陀螺漂移εx引起的系统误差及误差传播曲线;
dVxs=(Ex*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVxt=(Ex*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dVys=(Ex*R*g*s)/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ex*R*g*cos(t*wie))/(g-R*wie^2)-(Ex*R*g*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dLs=(Ex*g)/((s^2+wie^2)*(R*s^2+g))
dLt=(Ex*g*sin(t*wie))/(wie*(g-R*wie^2))-(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dNs=(Ex*g*wie*sin(L))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=((Ex*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(1/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2))/cos(L)
Qxs=(Ex*R*s^2)/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ex*R*wie*sin(t*wie))/(g-R*wie^2)
Qys=-(Ex*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ex*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)
Qzs=(Ex*wie*(R*s^2*cos(L)^2+g))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ex*cos(t*wie)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-Ex/wie+(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*(cos(L)-1)*(cos(L)+1))/(g-R*wie^2))/cos(L)
③计算北向陀螺漂移εy引起的系统误差及误差传播曲线;
dVxs=-(Ey*R*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*(s^2+wie^2)*(R*s^2+g))
dVxt=Ey*R*(sin(L)-1)*(sin(L)+1)+(Ey*R*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*R*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2)
dVys=(Ey*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ey*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dLs=(Ey*g*wie*sin(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ey*sin(L))/wie+(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L))/(wie*(g-R*wie^2))
dNs=-(Ey*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=(Ey*(sin(L)-1)*(sin(L)+1)+(Ey*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2))/cos(L)
Qxs=(Ey*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ey*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
Qys=(Ey*R*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g^(1/2)*(g-R*wie^2))-(Ey*R*wie*sin(t*wie)*sin(L)^2)/(g-R*wie^2)
Qzs=-(Ey*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ey*sin(t*wie)*sin(L)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*sin(L)*(g-R*wie^2*cos(L)^2))/(g^(1/2)*(g-R*wie^2)))/cos(L)
④计算方位陀螺漂移εz引起的系统误差及误差传播曲线;
dVxs=-(Ez*R*g*wie^2*sin(2*L))/(s*(R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Ez*R*g*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Ez*R^2*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Ez*R*sin(2*L))/2
dVys=-(Ez*R*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ez*R^(3/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ez*R*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dLs=-(Ez*g*wie*cos(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ez*g*cos(t*wie)*cos(L))/(wie*(g-R*wie^2))-(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*cos(L))/wie
dNs=-(Ez*g*wie^2*sin(2*L))/(s*cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-(Ez*sin(2*L)-(Ez*g*sin(2*L)*cos(t*wie))/(g-R*wie^2)+(Ez*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Ez*R*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*R*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
Qys=(Ez*R*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Ez*R*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)-(Ez*R^(3/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g^(1/2)*(2*g-2*R*wie^2))
Qzs=(Ez*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/(s*(s^2+wie^2)*(R*s^2+g))
Qzt=(Ez*sin(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(wie*(g-R*wie^2))-(Ez*R^(3/2)*wie^2*sin((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g^(1/2)*(g-R*wie^2))
dVxs=(Dx*R)/(R*s^2+g)
dVxt=(Dx*R^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/g^(1/2)
dVys=0
dVyt=0
dLs=0
dLt=0
dNs=Dx/(cos(L)*(R*s^2+g))
dNt=(Dx*sin((g^(1/2)*t)/R^(1/2)))/(R^(1/2)*g^(1/2)*cos(L))
Qxs=0
Qxt=0
Qys=Dx/(s*(R*s^2+g))
Qyt=Dx/g-(Dx*cos((g^(1/2)*t)/R^(1/2)))/g
Qzs=(Dx*tan(L))/(s*(R*s^2+g))
Qzt=(Dx*tan(L))/g-(Dx*cos((g^(1/2)*t)/R^(1/2))*tan(L))/g
⑥计算初始方位姿态误差Φz0引起的系统误差及误差传播曲线;
dVxs=-(Qz0*R*g*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Qz0*R^(3/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Qz0*R*g*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)
dVys=-(Qz0*R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Qz0*R*g*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Qz0*R*g*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
dLs=-(Qz0*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dLt=(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Qz0*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dNs=-(Qz0*g*wie^2*sin(2*L))/(cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-((Qz0*g*wie*sin(2*L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Qz0*R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Qz0*R*wie^2*cos(L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
Qys=(Qz0*R*s*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Qz0*R*wie^2*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Qz0*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)
Qzs=(Qz0*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/((s^2+wie^2)*(R*s^2+g))
Qzt=(Qz0*cos(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Qz0*R*wie^2*cos((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g-R*wie^2)
本发明的优点和有益效果:
本发明提供一种惯导系统误差仿真及修理辅助分析方法,能够最大程度模拟惯导系统实际使用情况,合理设置误差模型和实验条件,通过仿真得到各主要误差源的误差传播曲线及结果,帮助修理人员更直观地掌握惯导误差传播特性,提高惯导系统性能下降或精度超差故障定位及修理能力。在实际修理中遇到性能下降或精度超差故障,也可以对仿真程序相关参数进行调整来最大程度仿真模拟实际情况,帮助更为直观的进行分析及故障定位,减少误判率,提高修理效率。
附图说明
图1是本发明的惯导系统误差传递方框图;
图2是本发明的东向陀螺漂移引起系统误差曲线图;
图3是本发明的北向陀螺漂移引起系统误差曲线图;
图4是本发明的方位陀螺漂移引起系统误差曲线图;
图5是本发明的东向加速度计零偏引起系统误差曲线图;
图6是本发明的初始方位姿态误差引起系统误差曲线图。
具体实施方式
以下结合附图对本发明实施例作进一步详述:
一种惯导系统误差仿真及修理辅助分析方法,如图1所示,包括以下步骤:
步骤1、建立惯性导航系统误差方程;
在本实施例中,如图1所示,惯性平台的两个水平控制回路既有交联影响,同时又构成了一个大的闭环系统。因而误差量之间的相互影响也具有相同的特点。
所述步骤1的具体步骤包括:
(1)建立静基座误差方程:
(2)写成状态方程矩阵形式并进行拉氏变换得到:
步骤2、根据步骤1所建立的惯性导航系统误差方程,设置初始条件,对惯导系统误差进行仿真及修理辅助分析,并根据仿真结果对影响惯导系统精度的决定性因素进行分析。
所述步骤2的具体步骤包括:
(1)设置初始条件
初始条件:设陀螺的常值漂移为0.1°/h,加速度计的常值零偏误差为0.0001g,当地纬度39°;起始条件误差为:速度误差0.1m/s,位置误差为0.0005°,水平姿态误差为20角秒,方位姿态误差为5角分。运行时间t=24小时(利用Matlab分析软件)。
(2)对惯导系统误差进行仿真及修理辅助分析,推导出陀螺漂移引起的系统误差,并画出误差传播曲线;推导出加速度计零偏引起的系统误差,并画出误差传播曲线;推导出初始条件误差引起的系统误差,并画出误差传播曲线;
所述步骤2第(2)步的具体步骤包括:
①考虑到求解的简单,又不妨害对解的主要特性的了解,建立的系数阵为:
用Matlab求特征矩阵C=(sI-F)-1有:
C11=(R*s)/(R*s^2+g)
C12=0
C13=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C14=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C15=-(R*g*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C16=-(R*g*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C21=0
C22=(R*s)/(R*s^2+g)
C23=-(R*g*wie^2)/((s^2+wie^2)*(R*s^2+g))
C24=(R*g*s^2)/((s^2+wie^2)*(R*s^2+g))
C25=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C26=-(R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C31=0
C32=1/(R*s^2+g)
C33=(R*s^3+(R*wie^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
C34=(g*s)/((s^2+wie^2)*(R*s^2+g))
C35=(g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C36=-(g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C41=0
C42=-1/(R*s^2+g)
C43=-(R*s*wie^2)/((s^2+wie^2)*(R*s^2+g))
C44=(R*s^3)/((s^2+wie^2)*(R*s^2+g))
C45=(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C46=-(R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C51=1/(R*s^2+g)
C52=0
C53=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C54=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C55=(R*s*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C56=(R*s*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C61=tan(L)/(R*s^2+g)
C62=0
C63=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C64=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C65=-(s*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C66=(R*s^3+(R*wie^2*sin(L)^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
各式中,常数值g表示重力加速度,ws表示舒勒角频率,wie表示地球自转角速度,R表示地球半径,L表示当地纬度;
Dx表示东向加速度计常值零偏,Dy表示北向加速度计常值零偏,Ex表示东向陀螺漂移,Ey表示北向陀螺漂移,Ez表示方位陀螺漂移;
Dx0表示初始东向速度误差,Dy0表示初始北向速度误差,L0表示初始纬度位置误差,N0表示初始经度位置误差,Qx0表示初始东向姿态误差,Qy0表示初始北向姿态误差,Qz0表示初始方位姿态误差;
dVx表示系统东向速度误差,dVy表示系统北向速度误差;dL表示纬度误差,dN表示经度误差;Qx、Qy、Qz表示平台误差;
②如图2所示,计算东向陀螺漂移εx引起的系统误差及误差传播曲线;
dVxs=(Ex*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVxt=(Ex*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dVys=(Ex*R*g*s)/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ex*R*g*cos(t*wie))/(g-R*wie^2)-(Ex*R*g*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dLs=(Ex*g)/((s^2+wie^2)*(R*s^2+g))
dLt=(Ex*g*sin(t*wie))/(wie*(g-R*wie^2))-(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dNs=(Ex*g*wie*sin(L))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=((Ex*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(1/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2))/cos(L)
Qxs=(Ex*R*s^2)/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ex*R*wie*sin(t*wie))/(g-R*wie^2)
Qys=-(Ex*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ex*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)
Qzs=(Ex*wie*(R*s^2*cos(L)^2+g))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ex*cos(t*wie)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-Ex/wie+(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*(cos(L)-1)*(cos(L)+1))/(g-R*wie^2))/cos(L)
③如图3所示,计算北向陀螺漂移(εy)引起的系统误差及误差传播曲线;
dVxs=-(Ey*R*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*(s^2+wie^2)*(R*s^2+g))
dVxt=Ey*R*(sin(L)-1)*(sin(L)+1)+(Ey*R*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*R*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2)
dVys=(Ey*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ey*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dLs=(Ey*g*wie*sin(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ey*sin(L))/wie+(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L))/(wie*(g-R*wie^2))
dNs=-(Ey*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=(Ey*(sin(L)-1)*(sin(L)+1)+(Ey*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2))/cos(L)
Qxs=(Ey*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ey*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
Qys=(Ey*R*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g^(1/2)*(g-R*wie^2))-(Ey*R*wie*sin(t*wie)*sin(L)^2)/(g-R*wie^2)
Qzs=-(Ey*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ey*sin(t*wie)*sin(L)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*sin(L)*(g-R*wie^2*cos(L)^2))/(g^(1/2)*(g-R*wie^2)))/cos(L)
④如图4所示,计算方位陀螺漂移(εz)引起的系统误差及误差传播曲线;
dVxs=-(Ez*R*g*wie^2*sin(2*L))/(s*(R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Ez*R*g*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Ez*R^2*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Ez*R*sin(2*L))/2
dVys=-(Ez*R*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ez*R^(3/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ez*R*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dLs=-(Ez*g*wie*cos(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ez*g*cos(t*wie)*cos(L))/(wie*(g-R*wie^2))-(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*cos(L))/wie
dNs=-(Ez*g*wie^2*sin(2*L))/(s*cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-(Ez*sin(2*L)-(Ez*g*sin(2*L)*cos(t*wie))/(g-R*wie^2)+(Ez*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Ez*R*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*R*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
Qys=(Ez*R*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Ez*R*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)-(Ez*R^(3/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g^(1/2)*(2*g-2*R*wie^2))
Qzs=(Ez*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/(s*(s^2+wie^2)*(R*s^2+g))
Qzt=(Ez*sin(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(wie*(g-R*wie^2))-(Ez*R^(3/2)*wie^2*sin((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g^(1/2)*(g-R*wie^2))
dVxs=(Dx*R)/(R*s^2+g)
dVxt=(Dx*R^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/g^(1/2)
dVys=0
dVyt=0
dLs=0
dLt=0
dNs=Dx/(cos(L)*(R*s^2+g))
dNt=(Dx*sin((g^(1/2)*t)/R^(1/2)))/(R^(1/2)*g^(1/2)*cos(L))
Qxs=0
Qxt=0
Qys=Dx/(s*(R*s^2+g))
Qyt=Dx/g-(Dx*cos((g^(1/2)*t)/R^(1/2)))/g
Qzs=(Dx*tan(L))/(s*(R*s^2+g))
Qzt=(Dx*tan(L))/g-(Dx*cos((g^(1/2)*t)/R^(1/2))*tan(L))/g
⑥如图6所示,计算初始方位姿态误差(Φz0)引起的系统误差及误差传播曲线;
dVxs=-(Qz0*R*g*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Qz0*R^(3/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Qz0*R*g*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)
dVys=-(Qz0*R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Qz0*R*g*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Qz0*R*g*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
dLs=-(Qz0*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dLt=(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Qz0*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dNs=-(Qz0*g*wie^2*sin(2*L))/(cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-((Qz0*g*wie*sin(2*L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Qz0*R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Qz0*R*wie^2*cos(L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
Qys=(Qz0*R*s*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Qz0*R*wie^2*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Qz0*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)
Qzs=(Qz0*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/((s^2+wie^2)*(R*s^2+g))
Qzt=(Qz0*cos(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Qz0*R*wie^2*cos((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g-R*wie^2)
(3)根据仿真结果对影响惯导系统精度的决定性因素进行分析。
在本实施例中,利用编程求得的各系统误差幅度最大值见表1(横向表示各误差类型,纵向表示各误差源)。
表1惯导系统误差最大幅值列表
从上述误差传播曲线可以看出,陀螺的常值漂移引起的系统误差大多为振荡性误差,但对某些导航参数和平台误差角将产生常值误差。而最为严重的是北向陀螺的εy及方位陀螺的εz,对于经度误差бλ将引起随时间积累的位置偏差。但这并不意味可以放松对东向陀螺的精度要求。在对初始对准的分析中将看到,平台方位对准的精度主要取决于东向陀螺漂移εx。从误差幅度表格中可以看出,三个陀螺的漂移率都是决定系统精度的主要因素。
此外,由于量纲的不同,平台初始偏差Φx0、Φy0、Φz0的输入点与陀螺漂移εx、εy、εz的输入点之间均相差一个积分环节;速度初始误差бvx0、бvy0的输入点与加速度计零偏的输入点之间也均相差一个积分环节,这表明初始误差对于系统的影响要少一次积分作用,因而引起的系统误差大多是振荡的,只对бλ产生常值误差分量,完全没有随时间积累的误差分量。至于初始误差бλ0的输入点是在开环回路上,故只对бλ有影响。
总之,陀螺仪和加速度计的精度是影响惯导系统精度的决定性因素,其中陀螺仪的精度尤为突出。
在本实施例中,Matlab仿真程序如下:
需要强调的是,本发明所述实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。
Claims (4)
1.一种惯导系统误差仿真及修理辅助分析方法,其特征在于:包括以下步骤:
步骤1、建立惯性导航系统误差方程;
步骤2、根据步骤1所建立的惯性导航系统误差方程,设置初始条件,对惯导系统误差进行仿真及修理辅助分析,并根据仿真结果对影响惯导系统精度的决定性因素进行分析。
3.根据权利要求1所述的一种惯导系统误差仿真及修理辅助分析方法,其特征在于:所述步骤2的具体步骤包括:
(1)设置初始条件
初始条件:设陀螺的常值漂移为0.1°/h,加速度计的常值零偏误差为0.0001g,当地纬度39°;起始条件误差为:速度误差0.1m/s,位置误差为0.0005°,水平姿态误差为20角秒,方位姿态误差为5角分。运行时间t=24小时;
(2)对惯导系统误差进行仿真及修理辅助分析,推导出陀螺漂移引起的系统误差,并画出误差传播曲线;推导出加速度计零偏引起的系统误差,并画出误差传播曲线;推导出初始条件误差引起的系统误差,并画出误差传播曲线;
(3)根据仿真结果对影响惯导系统精度的决定性因素进行分析。
4.根据权利要求3所述的一种惯导系统误差仿真及修理辅助分析方法,其特征在于:所述步骤2第(2)步的具体步骤包括:
①建立系数阵为:
用Matlab求特征矩阵C=(sI-F)-1有:
C11=(R*s)/(R*s^2+g)
C12=0
C13=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C14=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C15=-(R*g*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C16=-(R*g*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C21=0
C22=(R*s)/(R*s^2+g)
C23=-(R*g*wie^2)/((s^2+wie^2)*(R*s^2+g))
C24=(R*g*s^2)/((s^2+wie^2)*(R*s^2+g))
C25=(R*g*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C26=-(R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C31=0
C32=1/(R*s^2+g)
C33=(R*s^3+(R*wie^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
C34=(g*s)/((s^2+wie^2)*(R*s^2+g))
C35=(g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C36=-(g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C41=0
C42=-1/(R*s^2+g)
C43=-(R*s*wie^2)/((s^2+wie^2)*(R*s^2+g))
C44=(R*s^3)/((s^2+wie^2)*(R*s^2+g))
C45=(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C46=-(R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
C51=1/(R*s^2+g)
C52=0
C53=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C54=-(R*s^2*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
C55=(R*s*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
C56=(R*s*wie^2*sin(2*L))/(2*(s^2+wie^2)*(R*s^2+g))
C61=tan(L)/(R*s^2+g)
C62=0
C63=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C64=(wie*(R*s^2*cos(L)^2+g))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C65=-(s*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
C66=(R*s^3+(R*wie^2*sin(L)^2+g)*s)/((s^2+wie^2)*(R*s^2+g))
各式中,常数值g表示重力加速度,ws表示舒勒角频率,wie表示地球自转角速度,R表示地球半径,L表示当地纬度;
Dx表示东向加速度计常值零偏,Dy表示北向加速度计常值零偏,Ex表示东向陀螺漂移,Ey表示北向陀螺漂移,Ez表示方位陀螺漂移;
Dx0表示初始东向速度误差,Dy0表示初始北向速度误差,L0表示初始纬度位置误差,N0表示初始经度位置误差,Qx0表示初始东向姿态误差,Qy0表示初始北向姿态误差,Qz0表示初始方位姿态误差;
dVx表示系统东向速度误差,dVy表示系统北向速度误差;dL表示纬度误差,dN表示经度误差;Qx、Qy、Qz表示平台误差;
②计算东向陀螺漂移εx引起的系统误差及误差传播曲线;
dVxs=(Ex*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVxt=(Ex*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dVys=(Ex*R*g*s)/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ex*R*g*cos(t*wie))/(g-R*wie^2)-(Ex*R*g*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dLs=(Ex*g)/((s^2+wie^2)*(R*s^2+g))
dLt=(Ex*g*sin(t*wie))/(wie*(g-R*wie^2))-(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
dNs=(Ex*g*wie*sin(L))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=((Ex*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ex*R^(1/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2))/cos(L)
Qxs=(Ex*R*s^2)/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ex*R^(1/2)*g^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ex*R*wie*sin(t*wie))/(g-R*wie^2)
Qys=-(Ex*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ex*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)
Qzs=(Ex*wie*(R*s^2*cos(L)^2+g))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ex*cos(t*wie)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-Ex/wie+(Ex*R*wie*cos((g^(1/2)*t)/R^(1/2))*(cos(L)-1)*(cos(L)+1))/(g-R*wie^2))/cos(L)
③计算北向陀螺漂移εy引起的系统误差及误差传播曲线;
dVxs=-(Ey*R*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*(s^2+wie^2)*(R*s^2+g))
dVxt=Ey*R*(sin(L)-1)*(sin(L)+1)+(Ey*R*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*R*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2)
dVys=(Ey*R*g*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ey*R*g*sin(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R^(3/2)*g^(1/2)*wie*sin((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
dLs=(Ey*g*wie*sin(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ey*sin(L))/wie+(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L))/(wie*(g-R*wie^2))
dNs=-(Ey*g*(s^2-wie^2*sin(L)^2+wie^2))/(s*cos(L)*(s^2+wie^2)*(R*s^2+g))
dNt=(Ey*(sin(L)-1)*(sin(L)+1)+(Ey*cos((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Ey*g*cos(t*wie)*sin(L)^2)/(g-R*wie^2))/cos(L)
Qxs=(Ey*R*s*wie*sin(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ey*R*wie*cos(t*wie)*sin(L))/(g-R*wie^2)-(Ey*R*wie*cos((g^(1/2)*t)/R^(1/2))*sin(L))/(g-R*wie^2)
Qys=(Ey*R*(s^2-wie^2*sin(L)^2+wie^2))/((s^2+wie^2)*(R*s^2+g))
Qyt=(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*(R*wie^2*sin(L)^2-R*wie^2+g))/(g^(1/2)*(g-R*wie^2))-(Ey*R*wie*sin(t*wie)*sin(L)^2)/(g-R*wie^2)
Qzs=-(Ey*sin(L)*(g-R*wie^2*cos(L)^2))/(cos(L)*(s^2+wie^2)*(R*s^2+g))
Qzt=-((Ey*sin(t*wie)*sin(L)*(g-R*wie^2*cos(L)^2))/(wie*(g-R*wie^2))-(Ey*R^(1/2)*sin((g^(1/2)*t)/R^(1/2))*sin(L)*(g-R*wie^2*cos(L)^2))/(g^(1/2)*(g-R*wie^2)))/cos(L)
④计算方位陀螺漂移εz引起的系统误差及误差传播曲线;
dVxs=-(Ez*R*g*wie^2*sin(2*L))/(s*(R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Ez*R*g*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Ez*R^2*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Ez*R*sin(2*L))/2
dVys=-(Ez*R*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Ez*R^(3/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Ez*R*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dLs=-(Ez*g*wie*cos(L))/(s*(s^2+wie^2)*(R*s^2+g))
dLt=(Ez*g*cos(t*wie)*cos(L))/(wie*(g-R*wie^2))-(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*cos(L))/wie
dNs=-(Ez*g*wie^2*sin(2*L))/(s*cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-(Ez*sin(2*L)-(Ez*g*sin(2*L)*cos(t*wie))/(g-R*wie^2)+(Ez*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Ez*R*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Ez*R*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Ez*R*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
Qys=(Ez*R*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Ez*R*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)-(Ez*R^(3/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g^(1/2)*(2*g-2*R*wie^2))
Qzs=(Ez*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/(s*(s^2+wie^2)*(R*s^2+g))
Qzt=(Ez*sin(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(wie*(g-R*wie^2))-(Ez*R^(3/2)*wie^2*sin((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g^(1/2)*(g-R*wie^2))
dVxs=(Dx*R)/(R*s^2+g)
dVxt=(Dx*R^(1/2)*sin((g^(1/2)*t)/R^(1/2)))/g^(1/2)
dVys=0
dVyt=0
dLs=0
dLt=0
dNs=Dx/(cos(L)*(R*s^2+g))
dNt=(Dx*sin((g^(1/2)*t)/R^(1/2)))/(R^(1/2)*g^(1/2)*cos(L))
Qxs=0
Qxt=0
Qys=Dx/(s*(R*s^2+g))
Qyt=Dx/g-(Dx*cos((g^(1/2)*t)/R^(1/2)))/g
Qzs=(Dx*tan(L))/(s*(R*s^2+g))
Qzt=(Dx*tan(L))/g-(Dx*cos((g^(1/2)*t)/R^(1/2))*tan(L))/g
⑥计算初始方位姿态误差Φz0引起的系统误差及误差传播曲线;
dVxs=-(Qz0*R*g*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
dVxt=(Qz0*R^(3/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)-(Qz0*R*g*wie*sin(2*L)*sin(t*wie))/(2*g-2*R*wie^2)
dVys=-(Qz0*R*g*s*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dVyt=(Qz0*R*g*wie*cos((g^(1/2)*t)/R^(1/2))*cos(L))/(g-R*wie^2)-(Qz0*R*g*wie*cos(t*wie)*cos(L))/(g-R*wie^2)
dLs=-(Qz0*g*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
dLt=(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)-(Qz0*g*cos(L)*sin(t*wie))/(g-R*wie^2)
dNs=-(Qz0*g*wie^2*sin(2*L))/(cos(L)*(R*s^2+g)*(2*s^2+2*wie^2))
dNt=-((Qz0*g*wie*sin(2*L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie^2*sin(2*L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2))/(2*cos(L))
Qxs=-(Qz0*R*s^2*wie*cos(L))/((s^2+wie^2)*(R*s^2+g))
Qxt=(Qz0*R*wie^2*cos(L)*sin(t*wie))/(g-R*wie^2)-(Qz0*R^(1/2)*g^(1/2)*wie*cos(L)*sin((g^(1/2)*t)/R^(1/2)))/(g-R*wie^2)
Qys=(Qz0*R*s*wie^2*sin(2*L))/((R*s^2+g)*(2*s^2+2*wie^2))
Qyt=(Qz0*R*wie^2*sin(2*L)*cos(t*wie))/(2*g-2*R*wie^2)-(Qz0*R*wie^2*sin(2*L)*cos((g^(1/2)*t)/R^(1/2)))/(2*g-2*R*wie^2)
Qzs=(Qz0*(R*s^3+(R*wie^2*sin(L)^2+g)*s))/((s^2+wie^2)*(R*s^2+g))
Qzt=(Qz0*cos(t*wie)*(R*wie^2*sin(L)^2-R*wie^2+g))/(g-R*wie^2)-(Qz0*R*wie^2*cos((g^(1/2)*t)/R^(1/2))*sin(L)^2)/(g-R*wie^2)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110705955.7A CN113432622A (zh) | 2021-06-24 | 2021-06-24 | 一种惯导系统误差仿真及修理辅助分析方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110705955.7A CN113432622A (zh) | 2021-06-24 | 2021-06-24 | 一种惯导系统误差仿真及修理辅助分析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113432622A true CN113432622A (zh) | 2021-09-24 |
Family
ID=77754016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110705955.7A Pending CN113432622A (zh) | 2021-06-24 | 2021-06-24 | 一种惯导系统误差仿真及修理辅助分析方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113432622A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102628691A (zh) * | 2012-04-09 | 2012-08-08 | 北京自动化控制设备研究所 | 一种完全自主的相对惯性导航方法 |
CN103557876A (zh) * | 2013-11-15 | 2014-02-05 | 山东理工大学 | 一种用于天线跟踪稳定平台的捷联惯导初始对准方法 |
CN105136166A (zh) * | 2015-08-17 | 2015-12-09 | 南京航空航天大学 | 一种指定惯导位置精度的捷联惯导误差模型仿真方法 |
CN109443391A (zh) * | 2018-12-07 | 2019-03-08 | 上海机电工程研究所 | 一种基于误差估计的惯性导航仿真方法 |
-
2021
- 2021-06-24 CN CN202110705955.7A patent/CN113432622A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102628691A (zh) * | 2012-04-09 | 2012-08-08 | 北京自动化控制设备研究所 | 一种完全自主的相对惯性导航方法 |
CN103557876A (zh) * | 2013-11-15 | 2014-02-05 | 山东理工大学 | 一种用于天线跟踪稳定平台的捷联惯导初始对准方法 |
CN105136166A (zh) * | 2015-08-17 | 2015-12-09 | 南京航空航天大学 | 一种指定惯导位置精度的捷联惯导误差模型仿真方法 |
CN109443391A (zh) * | 2018-12-07 | 2019-03-08 | 上海机电工程研究所 | 一种基于误差估计的惯性导航仿真方法 |
Non-Patent Citations (2)
Title |
---|
徐志浩等: "载体初始姿态对单轴旋转惯导误差传播的影响", 《弹 箭 与 制 导 学 报》 * |
李金钊: "光纤捷联惯性导航系统精度评估技术研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | A self-calibration method for non-orthogonal angles of gimbals in tri-axis rotational inertial navigation system | |
CN106441357B (zh) | 一种基于阻尼网络的单轴旋转sins轴向陀螺漂移校正方法 | |
CN105509769B (zh) | 一种运载火箭捷联惯导全自主对准方法 | |
Huang et al. | Application of adaptive Kalman filter technique in initial alignment of strapdown inertial navigation system | |
CN110285838B (zh) | 基于重力矢量时间差分的惯性导航设备对准方法 | |
CN103557864A (zh) | Mems捷联惯导自适应sckf滤波的初始对准方法 | |
CN113503894B (zh) | 基于陀螺基准坐标系的惯导系统误差标定方法 | |
CN110006453A (zh) | 一种基于双轴转位机构的mems自主初始对准方法 | |
Wang et al. | A fast SINS self-alignment method under geographic latitude uncertainty | |
CN111486870B (zh) | 一种斜置捷联惯组系统级标定方法 | |
CN109506638A (zh) | 一种补偿陀螺标度因数对旋转调制罗经方位对准影响方法 | |
Dai et al. | A full-parameter self-calibration method based on inertial frame filtering for triaxis RINS under swaying base | |
Deng et al. | A novel damping method for strapdown inertial navigation system | |
CN104121930B (zh) | 一种基于加表耦合的mems陀螺漂移误差的补偿方法 | |
CN106643726B (zh) | 一种统一惯性导航解算方法 | |
CN113137977B (zh) | 一种sins/偏振光组合导航初始对准滤波方法 | |
CN115235460A (zh) | 基于法向量位置模型的船舶惯导容错阻尼方法及系统 | |
Sun et al. | A vehicle-carried INS positioning accuracy improvement method by using lateral constraint in GPS-denied environment | |
Zhang et al. | SINS initial alignment based on fifth-degree cubature Kalman filter | |
CN111060140B (zh) | 一种地球椭球模型下的极区惯性导航误差获得方法 | |
Han et al. | A fast SINS initial alignment method based on RTS forward and backward resolution | |
Cai et al. | Data fusion method of measurement lag compensation for multirate MIMU/FOG/GNSS compound navigation | |
CN113432622A (zh) | 一种惯导系统误差仿真及修理辅助分析方法 | |
CN108279025B (zh) | 一种基于重力信息的光纤陀螺罗经快速精对准方法 | |
Zhao et al. | Integrated navigation error analysis based on Kalman filter of INS error compensation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210924 |
|
RJ01 | Rejection of invention patent application after publication |