CN113430038A - 一种纳米颗粒微量润滑切削增效的切削液及其制备方法 - Google Patents

一种纳米颗粒微量润滑切削增效的切削液及其制备方法 Download PDF

Info

Publication number
CN113430038A
CN113430038A CN202110698177.3A CN202110698177A CN113430038A CN 113430038 A CN113430038 A CN 113430038A CN 202110698177 A CN202110698177 A CN 202110698177A CN 113430038 A CN113430038 A CN 113430038A
Authority
CN
China
Prior art keywords
cutting
cutting fluid
nano
oil
mixing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110698177.3A
Other languages
English (en)
Inventor
高建
李立杰
马明山
杨智勇
侯熙硕
胡萌
赵永峰
詹俊宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
707th Research Institute of CSIC
Original Assignee
707th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 707th Research Institute of CSIC filed Critical 707th Research Institute of CSIC
Priority to CN202110698177.3A priority Critical patent/CN113430038A/zh
Publication of CN113430038A publication Critical patent/CN113430038A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/042Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种纳米颗粒微量润滑切削增效的切削液及其制备方法,切削液的组分及各组分的质量百分比如下:酯油基水溶性切削油3~11%、20nm纳米颗粒0.1~2%、表面活性剂3~14%,其余为去离子水;制备方法包括:1、将配制切削液所需的仪器及量具清洗、擦拭干净,晾干备用;2、将去离子水倒入混合容器中,作为配制切削液的基液;3、向混合容器中加入酯油基水溶性切削油,利用超声波清洗机振动设定时间,形成切削乳液;4、向混合容器中加入表面活性剂,利用超声波清洗机振动设定时间;5、向混合容器中加入纳米颗粒,利用超声波清洗机振动设定时间;6、取出超声波清洗机内的混合容器,静置设定时间后,制备好切削液。本发明切削液具有低粘度,高渗透性,较好的表面附着系数及高温稳定性。

Description

一种纳米颗粒微量润滑切削增效的切削液及其制备方法
技术领域
本发明属于微量润滑切削技术领域,具体涉及一种纳米颗粒微量润滑切削增效的切削液及其制备方法。
背景技术
钛合金的热导率低,在切削过程中产生的热量不会迅速传递给工件或被切屑带走,而集聚在切削区域,所产生的温度可高达1000℃以上,刀具局部应力高,使刀具的刃口迅速磨损、崩裂和生成积屑瘤,快速出现磨损的刀刃,又使切削区域产生更多的热量,进一步缩短刀具的寿命,另外切屑与刀具前刀面长时间处于紧紧贴合滑移状态,常规的切削液不能良好的作用于刀具-工件接触区,造成刀-工接触区润滑油膜破裂和润滑失效的问题,出现刀工接触区切削液润滑失效等现象,造成刀具的急剧磨损。同时钛合金切削过程中由于润滑冷却不足,易产生加工硬化,降低切削效率,刀具磨损剧烈,严重影响切削表面质量和加工精度;加工时易形成TiN和/或TiC及氧化物硬化层,刀具磨损剧烈;弹性模量小,已加工表面易回弹,零件易变形,难保证加工精度。另外已经有研究微量润滑方式喷射切削液润滑冷却钛合金切削过程。但是,在微量润滑中依靠普通切削液依然不能很好地解决钛合金充分润滑冷却的问题。因此亟需一种能够在钛合金切削过程中能发挥优秀的润滑冷却效果的切削液。
发明内容
本发明的目的在于克服现有技术的不足之处,提供一种纳米颗粒微量润滑切削增效的切削液及其制备方法。
本发明的上述目的通过如下技术方案来实现:
一种纳米颗粒微量润滑切削增效的切削液,其特征在于,切削液的组分及各组分的质量百分比如下:酯油基水溶性切削油3~11%、20nm纳米颗粒0.1~2%、表面活性剂3~14%,其余为去离子水。
进一步的:酯油基水溶性切削油4~10%;20nm纳米颗粒采用石墨纳米颗粒,其质量百分比为0.5~1%;表面活性剂采用三乙醇胺油酸皂,其质量百分比为3~12%,其余为去离子水。
进一步的:酯油基水溶性切削油4~10%;20nm纳米颗粒采用二硫化钼纳米颗粒,其质量百分比为0.5~1%;表面活性剂采用三乙醇胺油酸皂,其质量百分比为3~12%,其余为去离子水。
进一步的:酯油基水溶性切削油3~11%;20nm纳米颗粒采用二硫化钼纳米颗粒,其质量百分比为0.1~2%;表面活性剂采用脂肪醇聚氧乙烯醚AEO-3,其质量百分比为4~14%,其余为去离子水。
进一步的:酯油基水溶性切削油采用巴索切削液。
一种纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于,包括如下步骤:
步骤1、将配制切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2、按照对应的质量百分比将去离子水倒入混合容器中,作为配制切削液的基液;
步骤3、按照对应的质量百分比向混合容器中加入酯油基水溶性切削油,利用超声波清洗机振动设定时间,使离子水和酯油基水溶性切削油均匀混合,形成切削乳液;
步骤4、按照对应的质量百分比向混合容器中加入表面活性剂,利用超声波清洗机振动设定时间;
步骤5、按照对应的质量百分比向混合容器中加入20nm纳米颗粒,利用超声波清洗机振动设定时间;
步骤6、取出超声波清洗机内的混合容器,静置设定时间后,制备好切削液。可将混合容器内配制的切削液倒出至储存罐中备用。
进一步的:步骤3中的设定时间为10~20min。
进一步的:在表面活性剂采用三乙醇胺油酸皂的情况下,步骤4中的设定时间为20~60min;在表面活性剂采用脂肪醇聚氧乙烯醚AEO-3的情况下,步骤4中的设定时间为为30~80min。
进一步的:步骤5中的设定时间为20~100min;
进一步的:步骤6中的静置时间为10~120min。
本发明具有的优点和积极效果:
(1)本发明的微量润滑切削液具有低粘度,高渗透性,较好的表面附着系数,以及高温稳定性。
(2)本发明的微量润滑切削液添加纳米颗粒可吸附于加工表面以及待加工表面,实现固体润滑,有效降低了切屑与刀具、刀具与工件的摩擦,降低切削力,二硫化钼尤其在较高温度下有很好的润滑效果。
(3)本发明的微量润滑切削液为水基切削液,水基无毒无臭来源丰富,并且水基具有冷却性好、低污染、难燃、环保等诸多优点。
(4)本发明的微量润滑切削液使用的酯油基水溶性切削油是一款不含氟、硼、甲醛和锌等物质,拥有优异的切削性能,适用于难加工材料,如钛合金、镍合金、钴铬合金等,同时也适用于铸铁、钢、铝合金等的重负荷加工,另外,适合于软水和硬水。
(5)本发明微量润滑切削液使用的AEO-3为无色透明粘稠液体,亲油性,易溶于油和有机溶剂,可分散到水中,可使纳米颗粒均匀悬浮于切削液中,其可作为水消泡剂,具有很好的生物降解性,对皮肤的低刺激特性,生物稳定好,具有良好的去污、净洗性能。
(6)本发明微量润滑切削液使用的三乙醇胺油酸皂具有亲水性,溶于水,对介质中的物质有分散作用,使纳米颗粒均匀悬浮于切削液中,其还具有良好的润滑、冷却和防锈特性,对机油、石蜡、润滑油等具有良好的清洗能力,同时具有良好的润滑性能,并有很好的冷却和防锈功能。
(7)本发明切削液中的去离子水,一方面与酯油基水溶性切削油混合形成切削乳液,另一方面可避免纳米颗粒团聚,使纳米颗粒均匀悬浮于切削乳液中。
(8)本发明切削液在制备过程中操作简单,对车间工人的操作技术无太高的要求,适用的操作人员的范围比较广,制造成本低。
具体实施方式
以下通过实施例对本发明的结构作进一步说明。需要说明的是本实施例是叙述性的,而不是限定性的。
一种纳米颗粒微量润滑切削增效的切削液,其发明点为:切削液的组分及各组分的质量百分比如下:酯油基水溶性切削油3~11%、20nm纳米颗粒0.1~2%、表面活性剂3~14%,其余为去离子水。其中,酯油基水溶性切削油为切削液的主体成分,起到主体润滑作用,可采用但不限于巴索切削液。表面活性剂的主要作用是:使纳米颗粒均匀悬浮于切削液中,起到均匀分散纳米颗粒的作用。纳米颗粒起到固体润滑作用,可有效降低切屑与刀具、刀具与工件之间的摩擦,从而降低对刀具的磨损及保证工件切削表面质量和加工精度。
以下面三个实施例对本发明详细说明如下:
实施例1:
一种纳米颗粒微量润滑切削增效的切削液,包含以下重量份数组分:
酯油基水溶性切削油:5g;
20nm石墨纳米颗粒:0.5g;
三乙醇胺油酸皂:6g;
去离子水88.5g。
按以下步骤制备:
步骤1,将配制纳米颗粒切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2,将88.5g去离子水倒入混合容器中,作为配制切削液的基液;
步骤3,向混合容器中加入5g酯油基水溶性切削油,利用超声波清洗机振动11min;
步骤4,向混合容器中加入6g三乙醇胺油酸皂,利用超声波清洗机振动20min;
步骤5,向混合容器中加入0.5g20nm的石墨纳米颗粒,利用超声波清洗机振动60min;
步骤6,取出超声波清洗机内的混合容器,静置40min后,制备好切削液。
实施例2:
一种纳米颗粒微量润滑切削增效的切削液,包含以下重量份数组分:
酯油基水溶性切削油:5g;
20nm二硫化钼纳米颗粒:0.5g;
三乙醇胺油酸皂:6g;
去离子水88.5g
按以下步骤制备:
步骤1,将配制纳米颗粒切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2,将88.5g去离子水倒入混合容器中,作为配制切削液的基液;
步骤3,向混合容器中加入5g酯油基水溶性切削油,利用超声波清洗机振动11min;
步骤4,向混合容器中加入6g三乙醇胺油酸皂,利用超声波清洗机振动20min;
步骤5,向混合容器中加入0.5g20nm的二硫化钼纳米颗粒,利用超声波清洗机振动60min;
步骤6,取出超声波清洗机内的混合容器,静置40min后,制备好切削液。
实施例3:
一种纳米颗粒微量润滑切削增效的切削液,包含以下重量份数组分:
酯油基水溶性切削油:5g;
20nm二硫化钼纳米颗粒:0.5g;
脂肪醇聚氧乙烯醚AEO-3:10g;
去离子水84.5g。
按以下步骤制备:
步骤1,将配制纳米颗粒切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2,将84.5g去离子水倒入混合容器中,作为配制切削液的基液;
步骤3,向混合容器中加入5g酯油基水溶性切削油,利用超声波清洗机振动11min;
步骤4,向混合容器中加入10g脂肪醇聚氧乙烯醚AEO-3,利用超声波清洗机振动65min;
步骤5,向混合容器中加入0.5g20nm的二硫化钼纳米颗粒,利用超声波清洗机振动85min;
步骤6,取出超声波清洗机内的混合容器,静置30min后,制备好切削液。
利用上述实施例配制的切削液分别进行切削试验,切削试验中采取单一变量法,除切削液不同外,其余各项参数均相同。样件为钛合金(Ti-6Al-4V)棒料,尺寸φ50×150mm,切削参数为主轴转速333r/min,切削深度0.15mm,进给速度0.2mm/r,样件加工直径尺寸为φ39±0.1mm,长度尺寸为120mm。待切削试验结束后清洗试验件后,利用便携式粗糙度仪计量各个切削试验中试件的已加工表面的粗糙度,利用显微镜观测刀具的磨损程度。
下表是实施例的切削试验效果。
实施例1切削试验 实施例2切削试验 实施例3切削试验
已加工表面粗糙度 Ra2.1 Ra1.6 Ra1.2
刀具磨损程度 轻度 轻度 轻度
尽管为说明目的公开了本发明的实施例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神范围内,各种替换、变化和修改都是可以的,因此,本发明的范围不局限于实施例和附图所公开的内容。

Claims (10)

1.一种纳米颗粒微量润滑切削增效的切削液,其特征在于,切削液的组分及各组分的质量百分比如下:酯油基水溶性切削油3~11%、20nm纳米颗粒0.1~2%、表面活性剂3~14%,其余为去离子水。
2.根据权利要求1所述的纳米颗粒微量润滑切削增效的切削液,其特征在于:酯油基水溶性切削油4~10%;20nm纳米颗粒采用石墨纳米颗粒,其质量百分比为0.5~1%;表面活性剂采用三乙醇胺油酸皂,其质量百分比为3~12%,其余为去离子水。
3.根据权利要求1所述的纳米颗粒微量润滑切削增效的切削液,其特征在于:酯油基水溶性切削油4~10%;20nm纳米颗粒采用二硫化钼纳米颗粒,其质量百分比为0.5~1%;表面活性剂采用三乙醇胺油酸皂,其质量百分比为3~12%,其余为去离子水。
4.根据权利要求1所述的纳米颗粒微量润滑切削增效的切削液,其特征在于:酯油基水溶性切削油3~11%;20nm纳米颗粒采用二硫化钼纳米颗粒,其质量百分比为0.1~2%;表面活性剂采用脂肪醇聚氧乙烯醚AEO-3,其质量百分比为4~14%,其余为去离子水。
5.根据权利要求1所述的纳米颗粒微量润滑切削增效的切削液,其特征在于:酯油基水溶性切削油采用巴索切削液。
6.一种纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于,包括如下步骤:
步骤1、将配制切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2、按照对应的质量百分比将去离子水倒入混合容器中,作为配制切削液的基液;
步骤3、按照对应的质量百分比向混合容器中加入酯油基水溶性切削油,利用超声波清洗机振动设定时间,使离子水和酯油基水溶性切削油均匀混合,形成切削乳液;
步骤4、按照对应的质量百分比向混合容器中加入表面活性剂,利用超声波清洗机振动设定时间;
步骤5、按照对应的质量百分比向混合容器中加入20nm纳米颗粒,利用超声波清洗机振动设定时间;
步骤6、取出超声波清洗机内的混合容器,静置设定时间后,制备好切削液。
7.根据权利要求6纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于:步骤3中的设定时间为10~20min。
8.根据权利要求6纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于:在表面活性剂采用三乙醇胺油酸皂的情况下,步骤4中的设定时间为20~60min;在表面活性剂采用脂肪醇聚氧乙烯醚AEO-3的情况下,步骤4中的设定时间为为30~80min。
9.根据权利要求6纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于:步骤5中的设定时间为20~100min。
10.根据权利要求6纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于:步骤6中的静置时间为10~120min。
CN202110698177.3A 2021-06-23 2021-06-23 一种纳米颗粒微量润滑切削增效的切削液及其制备方法 Pending CN113430038A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110698177.3A CN113430038A (zh) 2021-06-23 2021-06-23 一种纳米颗粒微量润滑切削增效的切削液及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110698177.3A CN113430038A (zh) 2021-06-23 2021-06-23 一种纳米颗粒微量润滑切削增效的切削液及其制备方法

Publications (1)

Publication Number Publication Date
CN113430038A true CN113430038A (zh) 2021-09-24

Family

ID=77755202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110698177.3A Pending CN113430038A (zh) 2021-06-23 2021-06-23 一种纳米颗粒微量润滑切削增效的切削液及其制备方法

Country Status (1)

Country Link
CN (1) CN113430038A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2058629A (en) * 1979-08-15 1981-04-15 Kobe Steel Ltd Lubrication in Metal-working Processes
CN104293456A (zh) * 2014-08-29 2015-01-21 安徽乐达精密合金有限公司 一种添加二硫化钼的润滑性好的不锈钢拉丝液及其制备方法
CN106398850A (zh) * 2016-08-31 2017-02-15 湖南金化科技集团有限公司 一种水基石墨防锈切削液的制备方法
CN106433941A (zh) * 2016-08-31 2017-02-22 湖南金化科技集团有限公司 一种水基石墨防锈切削液
CN108383201A (zh) * 2018-03-14 2018-08-10 江南大学 一种水包油型乳状液的快速破乳和再稳定方法
CN108602670A (zh) * 2016-01-05 2018-09-28 纳米技术工业解决方案公司 水基纳米颗粒分散体
CN108865388A (zh) * 2018-07-24 2018-11-23 上海应用技术大学 一种含纳米颗粒硫化钼的合成型切削液及其制备方法
CN110699157A (zh) * 2019-10-18 2020-01-17 中科孚迪科技发展有限公司 一种用于钛合金加工的切削油及其制备方法
CN111378520A (zh) * 2019-12-01 2020-07-07 苏州福瑞斯德新材料科技有限公司 一种含MoS2的水溶性微量润滑液

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2058629A (en) * 1979-08-15 1981-04-15 Kobe Steel Ltd Lubrication in Metal-working Processes
CN104293456A (zh) * 2014-08-29 2015-01-21 安徽乐达精密合金有限公司 一种添加二硫化钼的润滑性好的不锈钢拉丝液及其制备方法
CN108602670A (zh) * 2016-01-05 2018-09-28 纳米技术工业解决方案公司 水基纳米颗粒分散体
CN106398850A (zh) * 2016-08-31 2017-02-15 湖南金化科技集团有限公司 一种水基石墨防锈切削液的制备方法
CN106433941A (zh) * 2016-08-31 2017-02-22 湖南金化科技集团有限公司 一种水基石墨防锈切削液
CN108383201A (zh) * 2018-03-14 2018-08-10 江南大学 一种水包油型乳状液的快速破乳和再稳定方法
CN108865388A (zh) * 2018-07-24 2018-11-23 上海应用技术大学 一种含纳米颗粒硫化钼的合成型切削液及其制备方法
CN110699157A (zh) * 2019-10-18 2020-01-17 中科孚迪科技发展有限公司 一种用于钛合金加工的切削油及其制备方法
CN111378520A (zh) * 2019-12-01 2020-07-07 苏州福瑞斯德新材料科技有限公司 一种含MoS2的水溶性微量润滑液

Similar Documents

Publication Publication Date Title
Yuan et al. Experimental investigation on the compatibility of nanoparticles with vegetable oils for nanofluid minimum quantity lubrication machining
Lv et al. Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nano-lubricants as cutting fluids
Khanafer et al. Toward sustainable micro-drilling of Inconel 718 superalloy using MQL-Nanofluid
Ze et al. Performance of the self-lubricating textured tools in dry cutting of Ti-6Al-4V
Amrita et al. Experimental investigation on application of emulsifier oil based nano cutting fluids in metal cutting process
Virdi et al. Performance Evaluation of Inconel 718 under vegetable oils based nanofluids using Minimum Quantity Lubrication Grinding
CN110129118A (zh) Elid磨削铝基复合材料专用磨削液及其制备方法
Thakur et al. Performance evaluation of different environmental conditions on output characteristics during turning of EN-24 steel
Gong et al. Surface integrity evaluation when turning Inconel 718 alloy using sustainable lubricating-cooling approaches
CN108517251A (zh) 一种水性环保切削液及制备方法
Luan et al. Machining characteristics of Ti6Al4V alloy in laser-assisted machining under minimum quantity lubricant
Cao et al. Cutting performance of tool with continuous lubrication at tool-chip interface
CN113430038A (zh) 一种纳米颗粒微量润滑切削增效的切削液及其制备方法
Gugulothu et al. Performance evaluation of CNT/MoS2 hybrid nanofluid in machining for surface roughness
Du et al. Probing the tribology and drilling performance of high performance cutting fluid on Inconel 690 superalloy by minimum quantity lubrication technology
CN104877737B (zh) 航空航天设备特种材料用乳化切削液及制备方法和用途
Wickramasinghe et al. Surface quality evaluation of 0.2% C and AISI 304 steels in turning with sustainable lubricating condition
CN101791786B (zh) 渗浸砂轮用渗浸剂及其在渗浸砂轮制备中的应用
Pandey et al. Machinability of Inconel 825 under nano-Al2O3 based nanofluid minimum quantity lubrication
CN103834460B (zh) 一种乳化型金属极压防锈切削液及其制备方法和用途
CN104140876A (zh) 金属加工用润滑剂
Mondragón et al. Tribological Analysis and Operation Issues of SiO2 Nanolubricants for MQL Machining Operations
James et al. Experimental study on high-speed saw cutting of hybrid composite stacks using nanoparticle-enhanced minimum quantity lubrication
CN106190517A (zh) 一种环保型水基金属加工切削液
Samykano et al. Characterisation, Performance and Optimisation of Nanocellulose Metalworking Fluid (MWF) for Green Machining Process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210924

RJ01 Rejection of invention patent application after publication