CN113430038A - 一种纳米颗粒微量润滑切削增效的切削液及其制备方法 - Google Patents
一种纳米颗粒微量润滑切削增效的切削液及其制备方法 Download PDFInfo
- Publication number
- CN113430038A CN113430038A CN202110698177.3A CN202110698177A CN113430038A CN 113430038 A CN113430038 A CN 113430038A CN 202110698177 A CN202110698177 A CN 202110698177A CN 113430038 A CN113430038 A CN 113430038A
- Authority
- CN
- China
- Prior art keywords
- cutting
- cutting fluid
- nano
- oil
- mixing container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002173 cutting fluid Substances 0.000 title claims abstract description 66
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 57
- 238000005520 cutting process Methods 0.000 title claims abstract description 53
- 238000005461 lubrication Methods 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000002156 mixing Methods 0.000 claims abstract description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000010730 cutting oil Substances 0.000 claims abstract description 26
- 239000010696 ester oil Substances 0.000 claims abstract description 26
- 239000008367 deionised water Substances 0.000 claims abstract description 20
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 20
- 239000004094 surface-active agent Substances 0.000 claims abstract description 20
- 238000004506 ultrasonic cleaning Methods 0.000 claims abstract description 10
- 238000004140 cleaning Methods 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 239000000839 emulsion Substances 0.000 claims abstract description 5
- 230000001050 lubricating effect Effects 0.000 claims description 18
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical group OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 claims description 15
- 239000000344 soap Substances 0.000 claims description 15
- 229940117013 triethanolamine oleate Drugs 0.000 claims description 15
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 13
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 13
- 230000002195 synergetic effect Effects 0.000 claims description 11
- 239000011881 graphite nanoparticle Substances 0.000 claims description 6
- 229940051841 polyoxyethylene ether Drugs 0.000 claims description 6
- 229920000056 polyoxyethylene ether Polymers 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 230000035699 permeability Effects 0.000 abstract description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 238000003754 machining Methods 0.000 description 5
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000008234 soft water Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M177/00—Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/04—Elements
- C10M2201/041—Carbon; Graphite; Carbon black
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/065—Sulfides; Selenides; Tellurides
- C10M2201/066—Molybdenum sulfide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
- C10M2207/042—Epoxides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/126—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/2805—Esters used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/22—Metal working with essential removal of material, e.g. cutting, grinding or drilling
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
本发明涉及一种纳米颗粒微量润滑切削增效的切削液及其制备方法,切削液的组分及各组分的质量百分比如下:酯油基水溶性切削油3~11%、20nm纳米颗粒0.1~2%、表面活性剂3~14%,其余为去离子水;制备方法包括:1、将配制切削液所需的仪器及量具清洗、擦拭干净,晾干备用;2、将去离子水倒入混合容器中,作为配制切削液的基液;3、向混合容器中加入酯油基水溶性切削油,利用超声波清洗机振动设定时间,形成切削乳液;4、向混合容器中加入表面活性剂,利用超声波清洗机振动设定时间;5、向混合容器中加入纳米颗粒,利用超声波清洗机振动设定时间;6、取出超声波清洗机内的混合容器,静置设定时间后,制备好切削液。本发明切削液具有低粘度,高渗透性,较好的表面附着系数及高温稳定性。
Description
技术领域
本发明属于微量润滑切削技术领域,具体涉及一种纳米颗粒微量润滑切削增效的切削液及其制备方法。
背景技术
钛合金的热导率低,在切削过程中产生的热量不会迅速传递给工件或被切屑带走,而集聚在切削区域,所产生的温度可高达1000℃以上,刀具局部应力高,使刀具的刃口迅速磨损、崩裂和生成积屑瘤,快速出现磨损的刀刃,又使切削区域产生更多的热量,进一步缩短刀具的寿命,另外切屑与刀具前刀面长时间处于紧紧贴合滑移状态,常规的切削液不能良好的作用于刀具-工件接触区,造成刀-工接触区润滑油膜破裂和润滑失效的问题,出现刀工接触区切削液润滑失效等现象,造成刀具的急剧磨损。同时钛合金切削过程中由于润滑冷却不足,易产生加工硬化,降低切削效率,刀具磨损剧烈,严重影响切削表面质量和加工精度;加工时易形成TiN和/或TiC及氧化物硬化层,刀具磨损剧烈;弹性模量小,已加工表面易回弹,零件易变形,难保证加工精度。另外已经有研究微量润滑方式喷射切削液润滑冷却钛合金切削过程。但是,在微量润滑中依靠普通切削液依然不能很好地解决钛合金充分润滑冷却的问题。因此亟需一种能够在钛合金切削过程中能发挥优秀的润滑冷却效果的切削液。
发明内容
本发明的目的在于克服现有技术的不足之处,提供一种纳米颗粒微量润滑切削增效的切削液及其制备方法。
本发明的上述目的通过如下技术方案来实现:
一种纳米颗粒微量润滑切削增效的切削液,其特征在于,切削液的组分及各组分的质量百分比如下:酯油基水溶性切削油3~11%、20nm纳米颗粒0.1~2%、表面活性剂3~14%,其余为去离子水。
进一步的:酯油基水溶性切削油4~10%;20nm纳米颗粒采用石墨纳米颗粒,其质量百分比为0.5~1%;表面活性剂采用三乙醇胺油酸皂,其质量百分比为3~12%,其余为去离子水。
进一步的:酯油基水溶性切削油4~10%;20nm纳米颗粒采用二硫化钼纳米颗粒,其质量百分比为0.5~1%;表面活性剂采用三乙醇胺油酸皂,其质量百分比为3~12%,其余为去离子水。
进一步的:酯油基水溶性切削油3~11%;20nm纳米颗粒采用二硫化钼纳米颗粒,其质量百分比为0.1~2%;表面活性剂采用脂肪醇聚氧乙烯醚AEO-3,其质量百分比为4~14%,其余为去离子水。
进一步的:酯油基水溶性切削油采用巴索切削液。
一种纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于,包括如下步骤:
步骤1、将配制切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2、按照对应的质量百分比将去离子水倒入混合容器中,作为配制切削液的基液;
步骤3、按照对应的质量百分比向混合容器中加入酯油基水溶性切削油,利用超声波清洗机振动设定时间,使离子水和酯油基水溶性切削油均匀混合,形成切削乳液;
步骤4、按照对应的质量百分比向混合容器中加入表面活性剂,利用超声波清洗机振动设定时间;
步骤5、按照对应的质量百分比向混合容器中加入20nm纳米颗粒,利用超声波清洗机振动设定时间;
步骤6、取出超声波清洗机内的混合容器,静置设定时间后,制备好切削液。可将混合容器内配制的切削液倒出至储存罐中备用。
进一步的:步骤3中的设定时间为10~20min。
进一步的:在表面活性剂采用三乙醇胺油酸皂的情况下,步骤4中的设定时间为20~60min;在表面活性剂采用脂肪醇聚氧乙烯醚AEO-3的情况下,步骤4中的设定时间为为30~80min。
进一步的:步骤5中的设定时间为20~100min;
进一步的:步骤6中的静置时间为10~120min。
本发明具有的优点和积极效果:
(1)本发明的微量润滑切削液具有低粘度,高渗透性,较好的表面附着系数,以及高温稳定性。
(2)本发明的微量润滑切削液添加纳米颗粒可吸附于加工表面以及待加工表面,实现固体润滑,有效降低了切屑与刀具、刀具与工件的摩擦,降低切削力,二硫化钼尤其在较高温度下有很好的润滑效果。
(3)本发明的微量润滑切削液为水基切削液,水基无毒无臭来源丰富,并且水基具有冷却性好、低污染、难燃、环保等诸多优点。
(4)本发明的微量润滑切削液使用的酯油基水溶性切削油是一款不含氟、硼、甲醛和锌等物质,拥有优异的切削性能,适用于难加工材料,如钛合金、镍合金、钴铬合金等,同时也适用于铸铁、钢、铝合金等的重负荷加工,另外,适合于软水和硬水。
(5)本发明微量润滑切削液使用的AEO-3为无色透明粘稠液体,亲油性,易溶于油和有机溶剂,可分散到水中,可使纳米颗粒均匀悬浮于切削液中,其可作为水消泡剂,具有很好的生物降解性,对皮肤的低刺激特性,生物稳定好,具有良好的去污、净洗性能。
(6)本发明微量润滑切削液使用的三乙醇胺油酸皂具有亲水性,溶于水,对介质中的物质有分散作用,使纳米颗粒均匀悬浮于切削液中,其还具有良好的润滑、冷却和防锈特性,对机油、石蜡、润滑油等具有良好的清洗能力,同时具有良好的润滑性能,并有很好的冷却和防锈功能。
(7)本发明切削液中的去离子水,一方面与酯油基水溶性切削油混合形成切削乳液,另一方面可避免纳米颗粒团聚,使纳米颗粒均匀悬浮于切削乳液中。
(8)本发明切削液在制备过程中操作简单,对车间工人的操作技术无太高的要求,适用的操作人员的范围比较广,制造成本低。
具体实施方式
以下通过实施例对本发明的结构作进一步说明。需要说明的是本实施例是叙述性的,而不是限定性的。
一种纳米颗粒微量润滑切削增效的切削液,其发明点为:切削液的组分及各组分的质量百分比如下:酯油基水溶性切削油3~11%、20nm纳米颗粒0.1~2%、表面活性剂3~14%,其余为去离子水。其中,酯油基水溶性切削油为切削液的主体成分,起到主体润滑作用,可采用但不限于巴索切削液。表面活性剂的主要作用是:使纳米颗粒均匀悬浮于切削液中,起到均匀分散纳米颗粒的作用。纳米颗粒起到固体润滑作用,可有效降低切屑与刀具、刀具与工件之间的摩擦,从而降低对刀具的磨损及保证工件切削表面质量和加工精度。
以下面三个实施例对本发明详细说明如下:
实施例1:
一种纳米颗粒微量润滑切削增效的切削液,包含以下重量份数组分:
酯油基水溶性切削油:5g;
20nm石墨纳米颗粒:0.5g;
三乙醇胺油酸皂:6g;
去离子水88.5g。
按以下步骤制备:
步骤1,将配制纳米颗粒切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2,将88.5g去离子水倒入混合容器中,作为配制切削液的基液;
步骤3,向混合容器中加入5g酯油基水溶性切削油,利用超声波清洗机振动11min;
步骤4,向混合容器中加入6g三乙醇胺油酸皂,利用超声波清洗机振动20min;
步骤5,向混合容器中加入0.5g20nm的石墨纳米颗粒,利用超声波清洗机振动60min;
步骤6,取出超声波清洗机内的混合容器,静置40min后,制备好切削液。
实施例2:
一种纳米颗粒微量润滑切削增效的切削液,包含以下重量份数组分:
酯油基水溶性切削油:5g;
20nm二硫化钼纳米颗粒:0.5g;
三乙醇胺油酸皂:6g;
去离子水88.5g
按以下步骤制备:
步骤1,将配制纳米颗粒切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2,将88.5g去离子水倒入混合容器中,作为配制切削液的基液;
步骤3,向混合容器中加入5g酯油基水溶性切削油,利用超声波清洗机振动11min;
步骤4,向混合容器中加入6g三乙醇胺油酸皂,利用超声波清洗机振动20min;
步骤5,向混合容器中加入0.5g20nm的二硫化钼纳米颗粒,利用超声波清洗机振动60min;
步骤6,取出超声波清洗机内的混合容器,静置40min后,制备好切削液。
实施例3:
一种纳米颗粒微量润滑切削增效的切削液,包含以下重量份数组分:
酯油基水溶性切削油:5g;
20nm二硫化钼纳米颗粒:0.5g;
脂肪醇聚氧乙烯醚AEO-3:10g;
去离子水84.5g。
按以下步骤制备:
步骤1,将配制纳米颗粒切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2,将84.5g去离子水倒入混合容器中,作为配制切削液的基液;
步骤3,向混合容器中加入5g酯油基水溶性切削油,利用超声波清洗机振动11min;
步骤4,向混合容器中加入10g脂肪醇聚氧乙烯醚AEO-3,利用超声波清洗机振动65min;
步骤5,向混合容器中加入0.5g20nm的二硫化钼纳米颗粒,利用超声波清洗机振动85min;
步骤6,取出超声波清洗机内的混合容器,静置30min后,制备好切削液。
利用上述实施例配制的切削液分别进行切削试验,切削试验中采取单一变量法,除切削液不同外,其余各项参数均相同。样件为钛合金(Ti-6Al-4V)棒料,尺寸φ50×150mm,切削参数为主轴转速333r/min,切削深度0.15mm,进给速度0.2mm/r,样件加工直径尺寸为φ39±0.1mm,长度尺寸为120mm。待切削试验结束后清洗试验件后,利用便携式粗糙度仪计量各个切削试验中试件的已加工表面的粗糙度,利用显微镜观测刀具的磨损程度。
下表是实施例的切削试验效果。
实施例1切削试验 | 实施例2切削试验 | 实施例3切削试验 | |
已加工表面粗糙度 | Ra2.1 | Ra1.6 | Ra1.2 |
刀具磨损程度 | 轻度 | 轻度 | 轻度 |
尽管为说明目的公开了本发明的实施例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神范围内,各种替换、变化和修改都是可以的,因此,本发明的范围不局限于实施例和附图所公开的内容。
Claims (10)
1.一种纳米颗粒微量润滑切削增效的切削液,其特征在于,切削液的组分及各组分的质量百分比如下:酯油基水溶性切削油3~11%、20nm纳米颗粒0.1~2%、表面活性剂3~14%,其余为去离子水。
2.根据权利要求1所述的纳米颗粒微量润滑切削增效的切削液,其特征在于:酯油基水溶性切削油4~10%;20nm纳米颗粒采用石墨纳米颗粒,其质量百分比为0.5~1%;表面活性剂采用三乙醇胺油酸皂,其质量百分比为3~12%,其余为去离子水。
3.根据权利要求1所述的纳米颗粒微量润滑切削增效的切削液,其特征在于:酯油基水溶性切削油4~10%;20nm纳米颗粒采用二硫化钼纳米颗粒,其质量百分比为0.5~1%;表面活性剂采用三乙醇胺油酸皂,其质量百分比为3~12%,其余为去离子水。
4.根据权利要求1所述的纳米颗粒微量润滑切削增效的切削液,其特征在于:酯油基水溶性切削油3~11%;20nm纳米颗粒采用二硫化钼纳米颗粒,其质量百分比为0.1~2%;表面活性剂采用脂肪醇聚氧乙烯醚AEO-3,其质量百分比为4~14%,其余为去离子水。
5.根据权利要求1所述的纳米颗粒微量润滑切削增效的切削液,其特征在于:酯油基水溶性切削油采用巴索切削液。
6.一种纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于,包括如下步骤:
步骤1、将配制切削液所需的仪器及量具清洗、擦拭干净,晾干备用;
步骤2、按照对应的质量百分比将去离子水倒入混合容器中,作为配制切削液的基液;
步骤3、按照对应的质量百分比向混合容器中加入酯油基水溶性切削油,利用超声波清洗机振动设定时间,使离子水和酯油基水溶性切削油均匀混合,形成切削乳液;
步骤4、按照对应的质量百分比向混合容器中加入表面活性剂,利用超声波清洗机振动设定时间;
步骤5、按照对应的质量百分比向混合容器中加入20nm纳米颗粒,利用超声波清洗机振动设定时间;
步骤6、取出超声波清洗机内的混合容器,静置设定时间后,制备好切削液。
7.根据权利要求6纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于:步骤3中的设定时间为10~20min。
8.根据权利要求6纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于:在表面活性剂采用三乙醇胺油酸皂的情况下,步骤4中的设定时间为20~60min;在表面活性剂采用脂肪醇聚氧乙烯醚AEO-3的情况下,步骤4中的设定时间为为30~80min。
9.根据权利要求6纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于:步骤5中的设定时间为20~100min。
10.根据权利要求6纳米颗粒微量润滑切削增效的切削液的制备方法,其特征在于:步骤6中的静置时间为10~120min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110698177.3A CN113430038A (zh) | 2021-06-23 | 2021-06-23 | 一种纳米颗粒微量润滑切削增效的切削液及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110698177.3A CN113430038A (zh) | 2021-06-23 | 2021-06-23 | 一种纳米颗粒微量润滑切削增效的切削液及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113430038A true CN113430038A (zh) | 2021-09-24 |
Family
ID=77755202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110698177.3A Pending CN113430038A (zh) | 2021-06-23 | 2021-06-23 | 一种纳米颗粒微量润滑切削增效的切削液及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113430038A (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2058629A (en) * | 1979-08-15 | 1981-04-15 | Kobe Steel Ltd | Lubrication in Metal-working Processes |
CN104293456A (zh) * | 2014-08-29 | 2015-01-21 | 安徽乐达精密合金有限公司 | 一种添加二硫化钼的润滑性好的不锈钢拉丝液及其制备方法 |
CN106398850A (zh) * | 2016-08-31 | 2017-02-15 | 湖南金化科技集团有限公司 | 一种水基石墨防锈切削液的制备方法 |
CN106433941A (zh) * | 2016-08-31 | 2017-02-22 | 湖南金化科技集团有限公司 | 一种水基石墨防锈切削液 |
CN108383201A (zh) * | 2018-03-14 | 2018-08-10 | 江南大学 | 一种水包油型乳状液的快速破乳和再稳定方法 |
CN108602670A (zh) * | 2016-01-05 | 2018-09-28 | 纳米技术工业解决方案公司 | 水基纳米颗粒分散体 |
CN108865388A (zh) * | 2018-07-24 | 2018-11-23 | 上海应用技术大学 | 一种含纳米颗粒硫化钼的合成型切削液及其制备方法 |
CN110699157A (zh) * | 2019-10-18 | 2020-01-17 | 中科孚迪科技发展有限公司 | 一种用于钛合金加工的切削油及其制备方法 |
CN111378520A (zh) * | 2019-12-01 | 2020-07-07 | 苏州福瑞斯德新材料科技有限公司 | 一种含MoS2的水溶性微量润滑液 |
-
2021
- 2021-06-23 CN CN202110698177.3A patent/CN113430038A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2058629A (en) * | 1979-08-15 | 1981-04-15 | Kobe Steel Ltd | Lubrication in Metal-working Processes |
CN104293456A (zh) * | 2014-08-29 | 2015-01-21 | 安徽乐达精密合金有限公司 | 一种添加二硫化钼的润滑性好的不锈钢拉丝液及其制备方法 |
CN108602670A (zh) * | 2016-01-05 | 2018-09-28 | 纳米技术工业解决方案公司 | 水基纳米颗粒分散体 |
CN106398850A (zh) * | 2016-08-31 | 2017-02-15 | 湖南金化科技集团有限公司 | 一种水基石墨防锈切削液的制备方法 |
CN106433941A (zh) * | 2016-08-31 | 2017-02-22 | 湖南金化科技集团有限公司 | 一种水基石墨防锈切削液 |
CN108383201A (zh) * | 2018-03-14 | 2018-08-10 | 江南大学 | 一种水包油型乳状液的快速破乳和再稳定方法 |
CN108865388A (zh) * | 2018-07-24 | 2018-11-23 | 上海应用技术大学 | 一种含纳米颗粒硫化钼的合成型切削液及其制备方法 |
CN110699157A (zh) * | 2019-10-18 | 2020-01-17 | 中科孚迪科技发展有限公司 | 一种用于钛合金加工的切削油及其制备方法 |
CN111378520A (zh) * | 2019-12-01 | 2020-07-07 | 苏州福瑞斯德新材料科技有限公司 | 一种含MoS2的水溶性微量润滑液 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yuan et al. | Experimental investigation on the compatibility of nanoparticles with vegetable oils for nanofluid minimum quantity lubrication machining | |
Lv et al. | Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nano-lubricants as cutting fluids | |
Khanafer et al. | Toward sustainable micro-drilling of Inconel 718 superalloy using MQL-Nanofluid | |
Ze et al. | Performance of the self-lubricating textured tools in dry cutting of Ti-6Al-4V | |
Amrita et al. | Experimental investigation on application of emulsifier oil based nano cutting fluids in metal cutting process | |
Virdi et al. | Performance Evaluation of Inconel 718 under vegetable oils based nanofluids using Minimum Quantity Lubrication Grinding | |
CN110129118A (zh) | Elid磨削铝基复合材料专用磨削液及其制备方法 | |
Thakur et al. | Performance evaluation of different environmental conditions on output characteristics during turning of EN-24 steel | |
Gong et al. | Surface integrity evaluation when turning Inconel 718 alloy using sustainable lubricating-cooling approaches | |
CN108517251A (zh) | 一种水性环保切削液及制备方法 | |
Luan et al. | Machining characteristics of Ti6Al4V alloy in laser-assisted machining under minimum quantity lubricant | |
Cao et al. | Cutting performance of tool with continuous lubrication at tool-chip interface | |
CN113430038A (zh) | 一种纳米颗粒微量润滑切削增效的切削液及其制备方法 | |
Gugulothu et al. | Performance evaluation of CNT/MoS2 hybrid nanofluid in machining for surface roughness | |
Du et al. | Probing the tribology and drilling performance of high performance cutting fluid on Inconel 690 superalloy by minimum quantity lubrication technology | |
CN104877737B (zh) | 航空航天设备特种材料用乳化切削液及制备方法和用途 | |
Wickramasinghe et al. | Surface quality evaluation of 0.2% C and AISI 304 steels in turning with sustainable lubricating condition | |
CN101791786B (zh) | 渗浸砂轮用渗浸剂及其在渗浸砂轮制备中的应用 | |
Pandey et al. | Machinability of Inconel 825 under nano-Al2O3 based nanofluid minimum quantity lubrication | |
CN103834460B (zh) | 一种乳化型金属极压防锈切削液及其制备方法和用途 | |
CN104140876A (zh) | 金属加工用润滑剂 | |
Mondragón et al. | Tribological Analysis and Operation Issues of SiO2 Nanolubricants for MQL Machining Operations | |
James et al. | Experimental study on high-speed saw cutting of hybrid composite stacks using nanoparticle-enhanced minimum quantity lubrication | |
CN106190517A (zh) | 一种环保型水基金属加工切削液 | |
Samykano et al. | Characterisation, Performance and Optimisation of Nanocellulose Metalworking Fluid (MWF) for Green Machining Process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210924 |
|
RJ01 | Rejection of invention patent application after publication |