CN113414383A - 一种高频高饱和复合材料、制备方法及共模电感 - Google Patents

一种高频高饱和复合材料、制备方法及共模电感 Download PDF

Info

Publication number
CN113414383A
CN113414383A CN202110722641.8A CN202110722641A CN113414383A CN 113414383 A CN113414383 A CN 113414383A CN 202110722641 A CN202110722641 A CN 202110722641A CN 113414383 A CN113414383 A CN 113414383A
Authority
CN
China
Prior art keywords
frequency
composite material
saturation
temperature
mode inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110722641.8A
Other languages
English (en)
Other versions
CN113414383B (zh
Inventor
孟超雄
练坚友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Precision Dragon Electronic Technology Co ltd
Original Assignee
Guangdong Precision Dragon Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Precision Dragon Electronic Technology Co ltd filed Critical Guangdong Precision Dragon Electronic Technology Co ltd
Priority to CN202110722641.8A priority Critical patent/CN113414383B/zh
Publication of CN113414383A publication Critical patent/CN113414383A/zh
Application granted granted Critical
Publication of CN113414383B publication Critical patent/CN113414383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0872Cooling after atomisation by water
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开一种高频高饱和复合材料、制备方法及共模电感。本发明方法获得的高频高饱和复合材料及其制成的共模电感,高频高饱和复合材料包含Nb、B、Cr、C形成多元合金体系,降低熔炼喷雾冷却需要的非晶化的温度,从而更容易达到非晶化的效果,并通过表面化学沉积氧化铝层、氧化硅层、氧化铋层包覆层,降低颗粒间的导热系数使非晶在热处理过程中能形成更稳定和均一的纳米晶和非晶的混合组织,并防止颗粒间因模压成型造成较大的颗粒间涡流,并形成均匀的非磁性间隙提高使用频率和饱和性能,而纳米晶和非晶的混合组织的均一化进一步提升的材料的使用频率和饱和性能,充分满足应用需求。

Description

一种高频高饱和复合材料、制备方法及共模电感
技术领域
本发明涉及电感技术领域,尤其涉及一种高频高饱和复合材料、制备方法及共模电感。
背景技术
随着电子技术的发展,开关电源由于体积小、效率高等特点得到了广泛应用。然而由于其高频性,功率开关器件在开通和关断的过程中产生较大变化率的电压和电流,导致严重的EMI噪声。严重的电磁干扰不仅影响开关电源的工作还会导致周边器件无法正常工作。为了降低EMI噪声,必须使用共模电感进行抑制。虽然共模噪声的电流很小,几乎不能造成磁芯饱和,但随着电子器件的功耗增加,使用的温度环境持续上升,导致共模电感的工作环境温度高,而器件的饱和特性非常容易受到温度的影响而劣化,导致在实际工作过程中噪声抑制效果降低。而磁芯材料的饱和性能是导致其产生的主要原因。而铁氧体材料由于其Bs较低导致直流叠加性能较差,而合金材料由于电阻率低导致高频性能高频差。
因此,现有技术存在缺陷,需要改进。
发明内容
本发明要解决的技术问题:提供一种高频高饱和复合材料、制备方法及共模电感,满足高频的使用需求。
本发明的技术方案如下:提供一种高频高饱和复合材料的制备方法,包括以下步骤。
S1:将原材料合金在高温下熔炼成金属液,对金属液进行雾化,然后对雾化后的金属液快速冷却,形成不定形粉末;其中原材料合金的材料组成为:84-94.8wt%Fe、3.5-7.5wt%Si、0.5-3.0wt%Cr、1.0-4.0wt%B、0.1-1.0wt%Nb、0.1-0.5wt%C。优选的,原材料合金在高频炉中熔炼形成金属液。具体的,可以采用高速的冷却水冲击雾化后的金属液来快速冷却。
S2:取粒径为0.1-40um的不定形粉末,在160℃-400℃的真空下,在粒径为0.1-40um的不定形粉末表面化学气相沉积1-3um的氧化铝层、氧化硅层、氧化铋层中的一种或至少两种的组合,获得沉积粉末。
S3:将沉积粉末在400-1100℃的保护气氛下处理0.5-8小时,获得高频高饱和复合材料。优选的,保护气氛为氮气或氩气。
通过加入Nb、B、Cr、C形成多元合金体系,降低熔炼喷雾冷却需要的非晶化的温度,从而更容易达到非晶化的效果,并通过表面化学沉积氧化铝层、氧化硅层、氧化铋层包覆层,降低颗粒间的导热系数使非晶在热处理过程中能形成更稳定和均一的纳米晶和非晶的混合组织,并防止颗粒间因模压成型造成较大的颗粒间涡流,并形成均匀的非磁性间隙提高使用频率和饱和性能,而纳米晶和非晶的混合组织的均一化进一步提升的材料的使用频率和饱和性能。
本发明还提供一种高频高饱和复合材料,采用前述的高频高饱和复合材料的制备方法制成。
本发明还提供一种共模电感,采用前述的高频高饱和复合材料,向高频高饱和复合材料中添加其重量的0.01%-0.5%的粘结树脂,混合均匀,然后在40-90℃的真空下干燥0.5-6小时,得到烧结材料;其中,所述粘结树脂在600℃以上温度灼烧后的C残留量小于1000ppm;将烧结材料在温度80℃-270℃的模具内使用200MPa-500MPa压制制得电感胚体,然后将电感胚体在700-1600℃下烧结1-12小时得到共模电感。
高频高饱和复合材料与粘结树脂的混合采用混合机混合10-60min。
所述粘结树脂为环氧树脂或丙烯酸树脂或纤维素醚或聚乙烯醇缩丁醛。粘结树脂需要与溶剂配成液体状。
采用上述方案,本发明提供一种高频高饱和复合材料、制备方法及共模电感,通过加入Nb、B、Cr、C形成多元合金体系,降低熔炼喷雾冷却需要的非晶化的温度,从而更容易达到非晶化的效果,并通过表面化学沉积氧化铝层、氧化硅层、氧化铋层包覆层,降低颗粒间的导热系数使非晶在热处理过程中能形成更稳定和均一的纳米晶和非晶的混合组织,并防止颗粒间因模压成型造成较大的颗粒间涡流,并形成均匀的非磁性间隙提高使用频率和饱和性能,而纳米晶和非晶的混合组织的均一化进一步提升的材料的使用频率和饱和性能,充分满足应用需求。
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
实施例1
本实施例提供一种高频高饱和复合材料的制备方法,包括以下步骤。
S1:将原材料合金在高温下熔炼成金属液,对金属液进行雾化,然后对雾化后的金属液快速冷却,形成不定形粉末;其中原材料合金的材料组成为:84wt%Fe、7.5wt%Si、3.0wt%Cr、4.0wt%B、1.0wt%Nb、0.5wt%C。在本实施例中,原材料合金在高频炉中熔炼形成金属液。在本实施例中,采用高速的冷却水冲击雾化后的金属液来快速冷却。
S2:取粒径为0.1-40um的不定形粉末,在200℃的真空下,在粒径为0.1-40um的不定形粉末表面化学气相沉积1um的氧化铝层,获得沉积粉末。
S3:将沉积粉末在700℃的保护气氛下处理1小时,获得高频高饱和复合材料。在本实施例中,保护气氛为氮气。
本实施例还提供一种共模电感,采用前述的高频高饱和复合材料,向高频高饱和复合材料中添加其重量的0.01%的粘结树脂,混合均匀,然后在50℃的真空下干燥3小时,得到烧结材料;其中,所述粘结树脂为环氧树脂;所述粘结树脂在600℃以上温度灼烧后的C残留量小于1000ppm;高频高饱和复合材料与粘结树脂的混合采用混合机混合60min。将烧结材料在温度130℃的模具内使用500MPa压制制得电感胚体,然后将电感胚体在1000℃下烧结4小时得到共模电感。所述共模电感中包含的点焊线圈参数具体为:双线并绕,线经0.05mm,绕线中柱为方形中柱,其中中柱的截面为长1.2mm宽0.6mm的方柱截面,匝数9.5,电感尺寸为2mm×1.2mm×1.2mm。共模阻抗使用阻抗分析仪E4991测试,测试频率为100MHz,截止频率使用阻抗分析仪E4991测试。额定电流使用精密电磁分析仪3260B测试,测试频率10MHz。测试结果如表1。
实施例2
本实施例提供一种高频高饱和复合材料的制备方法,包括以下步骤。
S1:将原材料合金在高温下熔炼成金属液,对金属液进行雾化,然后对雾化后的金属液快速冷却,形成不定形粉末;其中原材料合金的材料组成为:94.8wt%Fe、3.5wt%Si、0.5wt%Cr、1.0wt%B、0.1wt%Nb、0.1wt%C。在本实施例中,原材料合金在高频炉中熔炼形成金属液。在本实施例中,采用高速的冷却水冲击雾化后的金属液来快速冷却。
S2:取粒径为0.1-40um的不定形粉末,在300℃的真空下,在粒径为0.1-40um的不定形粉末表面化学气相沉积3um的氧化铝层,获得沉积粉末。
S3:将沉积粉末在900℃的保护气氛下处理1小时,获得高频高饱和复合材料。在本实施例中,保护气氛为氮气。
本实施例还提供一种共模电感,采用前述的高频高饱和复合材料,向高频高饱和复合材料中添加其重量的0.1%的粘结树脂,混合均匀,然后在80℃的真空下干燥1小时,得到烧结材料;其中,所述粘结树脂为环氧树脂;所述粘结树脂在600℃以上温度灼烧后的C残留量小于1000ppm;高频高饱和复合材料与粘结树脂的混合采用混合机混合40min。将烧结材料在温度200℃的模具内使用200MPa压制制得电感胚体,然后将电感胚体在1400℃下烧结2小时得到共模电感。所述共模电感中包含的点焊线圈参数具体为:双线并绕,线经0.05mm,绕线中柱为方形中柱,其中中柱的截面为长1.2mm宽0.6mm的方柱截面,匝数9.5,电感尺寸为2mm×1.2mm×1.2mm。共模阻抗使用阻抗分析仪E4991测试,测试频率为100MHz,截止频率使用阻抗分析仪E4991测试。额定电流使用精密电磁分析仪3260B测试,测试频率10MHz。测试结果如表1。
实施例3
本实施例提供一种高频高饱和复合材料的制备方法,包括以下步骤。
S1:将原材料合金在高温下熔炼成金属液,对金属液进行雾化,然后对雾化后的金属液快速冷却,形成不定形粉末;其中原材料合金的材料组成为:90.0wt%Fe、5.0wt%Si、1.5wt%Cr、3.0wt%B、0.25wt%Nb、0.25wt%C。在本实施例中,原材料合金在高频炉中熔炼形成金属液。在本实施例中,采用高速的冷却水冲击雾化后的金属液来快速冷却。
S2:取粒径为0.1-40um的不定形粉末,在250℃的真空下,在粒径为0.1-40um的不定形粉末表面化学气相沉积2um的氧化硅层,获得沉积粉末。
S3:将沉积粉末在800℃的保护气氛下处理1小时,获得高频高饱和复合材料。在本实施例中,保护气氛为氩气。
本实施例还提供一种共模电感,采用前述的高频高饱和复合材料,向高频高饱和复合材料中添加其重量的0.05%的粘结树脂,混合均匀,然后在65℃的真空下干燥2.5小时,得到烧结材料;其中,所述粘结树脂为丙烯酸树脂;所述粘结树脂在600℃以上温度灼烧后的C残留量小于1000ppm;高频高饱和复合材料与粘结树脂的混合采用混合机混合50min。将烧结材料在温度160℃的模具内使用240MPa压制制得电感胚体,然后将电感胚体在1200℃下烧结3小时得到共模电感。所述共模电感中包含的点焊线圈参数具体为:双线并绕,线经0.05mm,绕线中柱为方形中柱,其中中柱的截面为长1.2mm宽0.6mm的方柱截面,匝数9.5,电感尺寸为2mm×1.2mm×1.2mm。共模阻抗使用阻抗分析仪E4991测试,测试频率为100MHz,截止频率使用阻抗分析仪E4991测试。额定电流使用精密电磁分析仪3260B测试,测试频率10MHz。测试结果如表1。
实施例4
本实施例提供一种高频高饱和复合材料的制备方法,包括以下步骤。
S1:将原材料合金在高温下熔炼成金属液,对金属液进行雾化,然后对雾化后的金属液快速冷却,形成不定形粉末;其中原材料合金的材料组成为:92.0wt%Fe、4.5wt%Si、1.6wt%Cr、3.1wt%B、0.55wt%Nb、0.25wt%C。在本实施例中,原材料合金在高频炉中熔炼形成金属液。在本实施例中,采用高速的冷却水冲击雾化后的金属液来快速冷却。
S2:取粒径为0.1-40um的不定形粉末,在250℃的真空下,在粒径为0.1-40um的不定形粉末表面化学气相沉积1um的氧化铝层和1um氧化铋层和0.5um的氧化硅层,获得沉积粉末。
S3:将沉积粉末在850℃的保护气氛下处理1.5小时,获得高频高饱和复合材料。在本实施例中,保护气氛为氩气。
本实施例还提供一种共模电感,采用前述的高频高饱和复合材料,向高频高饱和复合材料中添加其重量的0.07%的粘结树脂,混合均匀,然后在70℃的真空下干燥2.5小时,得到烧结材料;其中,所述粘结树脂为聚乙烯醇缩丁醛;所述粘结树脂在600℃以上温度灼烧后的C残留量小于1000ppm;高频高饱和复合材料与粘结树脂的混合采用混合机混合45min。将烧结材料在温度180℃的模具内使用310MPa压制制得电感胚体,然后将电感胚体在1250℃下烧结2.5小时得到共模电感。所述共模电感中包含的点焊线圈参数具体为:双线并绕,线经0.05mm,绕线中柱为方形中柱,其中中柱的截面为长1.2mm宽0.6mm的方柱截面,匝数9.5,电感尺寸为2mm×1.2mm×1.2mm。共模阻抗使用阻抗分析仪E4991测试,测试频率为100MHz,截止频率使用阻抗分析仪E4991测试。额定电流使用精密电磁分析仪3260B测试,测试频率10MHz。测试结果如表1。
对比例1
材料成分为市售铁氧体材料(其中氧化铁含量为55-67wt%,氧化锌为6-10wt%,氧化镍为21-25wt%,氧化铜为6-10wt%)。将市售铁氧体材料添加粉末重量的0.07wt%的环氧树脂,在混合机中混合45min,然后在70℃的真空下干燥2.5小时,得到电感材料粉末,其中环氧树脂在600℃温度灼烧后的C残留量小于830ppm。将得到的电感材料粉末在温度180℃的模具内使用310MPa压制制得电感胚体,并将电感胚体在1100℃下烧结2.5小时得到共模电感。其中所述共模电感中包含的点焊线圈参数具体为:双线并绕,线经0.05mm,绕线中柱为方形中柱,其中中柱的截面为长1.2mm宽0.6mm的方柱截面,匝数9.5,电感尺寸为2mm×1.2mm×1.2mm。共模阻抗使用阻抗分析仪E4991测试,测试频率为100MHz,截止频率使用阻抗分析仪E4991测试。额定电流使用精密电磁分析仪3260B测试,测试频率10MHz。测试结果如表1。
对比例2
材料成分为市售非晶材料(其中Fe为81-92.7wt%,Si为4-10wt%,B为3-8wt%,C为0.3-1.0wt%)。将非晶材料粉末添加粉末重量0.07wt%的环氧树脂溶液,在混合机中混合45min,然后在70℃的真空下干燥2.5小时,得到电感材料粉末,其中环氧树脂在600℃温度灼烧后的C残留量小于830ppm。将得到的电感材料粉末在温度180℃的模具内使用310MPa压制制得电感胚体,并将电感胚体在1100℃下烧结2.5小时得到共模电感。其中所述共模电感中包含的点焊线圈参数具体为:双线并绕,线经0.05mm,绕线中柱为方形中柱,其中中柱的截面为长1.2mm宽0.6mm的方柱截面,匝数9.5,电感尺寸为2mm×1.2mm×1.2mm。共模阻抗使用阻抗分析仪E4991测试,测试频率为100MHz,截止频率使用阻抗分析仪E4991测试。额定电流使用精密电磁分析仪3260B测试,测试频率10MHz。测试结果如表1。
表1
Figure BDA0003137024670000081
请参阅表1,实施例1-4得到的材料制作的共模电感在额定电流(饱和电流)性能要优于对比例1、对比例2得到的材料制作的共模电感,因此,本发明在实际的大电流应用中更具有优势,且实施例1-4随着温度的变化共模电感的额定电流变化率更小,说明在高频高温下在信号电流通过时的阻抗更加稳定,说明本发明在恶劣环境下的稳定性更优。
综上所述,本发明提供一种高频高饱和复合材料、制备方法及共模电感,通过加入Nb、B、Cr、C形成多元合金体系,降低熔炼喷雾冷却需要的非晶化的温度,从而更容易达到非晶化的效果,并通过表面化学沉积氧化铝层、氧化硅层、氧化铋层包覆层,降低颗粒间的导热系数使非晶在热处理过程中能形成更稳定和均一的纳米晶和非晶的混合组织,并防止颗粒间因模压成型造成较大的颗粒间涡流,并形成均匀的非磁性间隙提高使用频率和饱和性能,而纳米晶和非晶的混合组织的均一化进一步提升的材料的使用频率和饱和性能,充分满足应用需求。
以上仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种高频高饱和复合材料的制备方法,其特征在于,包括以下步骤:
S1:将原材料合金在高温下熔炼成金属液,对金属液进行雾化,然后对雾化后的金属液快速冷却,形成不定形粉末;其中原材料合金的材料组成为:84-94.8wt%Fe、3.5-7.5wt%Si、0.5-3.0wt%Cr、1.0-4.0wt%B、0.1-1.0wt%Nb、0.1-0.5wt%C;
S2:取粒径为0.1-40um的不定形粉末,在160℃-400℃的真空下,在粒径为0.1-40um的不定形粉末表面化学气相沉积1-3um的氧化铝层、氧化硅层、氧化铋层中的一种或至少两种的组合,获得沉积粉末;
S3:将沉积粉末在400-1100℃的保护气氛下处理0.5-8小时,获得高频高饱和复合材料。
2.根据权利要求1所述的一种高频高饱和复合材料的制备方法,其特征在于,在步骤S1中,原材料合金在高频炉中熔炼形成金属液。
3.根据权利要求1所述的一种高频高饱和复合材料的制备方法,其特征在于,在步骤S3中,保护气氛为氮气或氩气。
4.一种高频高饱和复合材料,其特征在于,采用权利要求1-3任一项所述的高频高饱和复合材料的制备方法制成。
5.一种共模电感,其特征在于,采用权利要求4所述的高频高饱和复合材料,向高频高饱和复合材料中添加其重量的0.01%-0.5%的粘结树脂,混合均匀,然后在40-90℃的真空下干燥0.5-6小时,得到烧结材料;其中,所述粘结树脂在600℃以上温度灼烧后的C残留量小于1000ppm;将烧结材料在温度80℃-270℃的模具内使用200MPa-500MPa压制制得电感胚体,然后将电感胚体在700-1600℃下烧结1-12小时得到共模电感。
6.根据权利要求5所述的一种共模电感,其特征在于,高频高饱和复合材料与粘结树脂的混合采用混合机混合10-60min。
7.根据权利要求5所述的一种共模电感,其特征在于,所述粘结树脂为环氧树脂或丙烯酸树脂或纤维素醚或聚乙烯醇缩丁醛。
CN202110722641.8A 2021-06-28 2021-06-28 一种高频高饱和复合材料、制备方法及共模电感 Active CN113414383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110722641.8A CN113414383B (zh) 2021-06-28 2021-06-28 一种高频高饱和复合材料、制备方法及共模电感

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110722641.8A CN113414383B (zh) 2021-06-28 2021-06-28 一种高频高饱和复合材料、制备方法及共模电感

Publications (2)

Publication Number Publication Date
CN113414383A true CN113414383A (zh) 2021-09-21
CN113414383B CN113414383B (zh) 2022-04-19

Family

ID=77716919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110722641.8A Active CN113414383B (zh) 2021-06-28 2021-06-28 一种高频高饱和复合材料、制备方法及共模电感

Country Status (1)

Country Link
CN (1) CN113414383B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115121794A (zh) * 2022-07-27 2022-09-30 厦门慧金盟磁电有限公司 一种高绝缘合金材料及其制备方法
CN117831907A (zh) * 2024-01-13 2024-04-05 百斯特电子(广东)有限公司 高电阻率电感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294847A (ja) * 1988-05-23 1989-11-28 Toshiba Corp 軟磁性合金
CN101034609A (zh) * 2006-02-02 2007-09-12 Nec东金株式会社 非晶质软磁合金和使用这种合金的电感部件
US20130306205A1 (en) * 2012-04-12 2013-11-21 Iowa State University Research Foundation, Inc. Stability of gas atomized reactive powders through multiple step in-situ passivation
CN104036904A (zh) * 2014-05-28 2014-09-10 浙江大学 高饱和磁感应强度铁基非晶软磁复合材料及其制备方法
CN110172650A (zh) * 2019-06-18 2019-08-27 河海大学 一种低损耗高耐蚀变压器铁芯用铁基非晶/碳纳米管复合材料及其制备方法和应用
CN110767441A (zh) * 2019-11-06 2020-02-07 安徽工业大学 一种FeSiBCr/SiO2纳米晶软磁复合铁芯的制备方法
CN112530655A (zh) * 2020-11-25 2021-03-19 广东泛瑞新材料有限公司 一种低功耗软磁合金材料及其制备方法和应用
CN113012886A (zh) * 2021-03-02 2021-06-22 深圳顺络电子股份有限公司 高抗直流叠加低功耗的一体成型电感材料及其制备方法
CN113025927A (zh) * 2020-12-29 2021-06-25 湖南特种金属材料有限责任公司 铁基非晶复合材料及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294847A (ja) * 1988-05-23 1989-11-28 Toshiba Corp 軟磁性合金
CN101034609A (zh) * 2006-02-02 2007-09-12 Nec东金株式会社 非晶质软磁合金和使用这种合金的电感部件
US20130306205A1 (en) * 2012-04-12 2013-11-21 Iowa State University Research Foundation, Inc. Stability of gas atomized reactive powders through multiple step in-situ passivation
CN104036904A (zh) * 2014-05-28 2014-09-10 浙江大学 高饱和磁感应强度铁基非晶软磁复合材料及其制备方法
CN110172650A (zh) * 2019-06-18 2019-08-27 河海大学 一种低损耗高耐蚀变压器铁芯用铁基非晶/碳纳米管复合材料及其制备方法和应用
CN110767441A (zh) * 2019-11-06 2020-02-07 安徽工业大学 一种FeSiBCr/SiO2纳米晶软磁复合铁芯的制备方法
CN112530655A (zh) * 2020-11-25 2021-03-19 广东泛瑞新材料有限公司 一种低功耗软磁合金材料及其制备方法和应用
CN113025927A (zh) * 2020-12-29 2021-06-25 湖南特种金属材料有限责任公司 铁基非晶复合材料及其制备方法和应用
CN113012886A (zh) * 2021-03-02 2021-06-22 深圳顺络电子股份有限公司 高抗直流叠加低功耗的一体成型电感材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115121794A (zh) * 2022-07-27 2022-09-30 厦门慧金盟磁电有限公司 一种高绝缘合金材料及其制备方法
CN115121794B (zh) * 2022-07-27 2024-04-02 厦门慧金盟磁电有限公司 一种高绝缘合金材料的制备方法
CN117831907A (zh) * 2024-01-13 2024-04-05 百斯特电子(广东)有限公司 高电阻率电感器
CN117831907B (zh) * 2024-01-13 2024-05-24 百斯特电子(广东)有限公司 高电阻率电感器

Also Published As

Publication number Publication date
CN113414383B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN113414383B (zh) 一种高频高饱和复合材料、制备方法及共模电感
JP5419302B2 (ja) Fe基非晶質合金、及び前記Fe基非晶質合金を用いた圧粉コア、ならびにコイル封入圧粉コア
CN100519013C (zh) Fe-Ni50系合金粉末及磁粉芯制造方法
JP2008135674A (ja) 軟磁性合金粉末、圧粉体及びインダクタンス素子
CN114823032B (zh) 一种合金磁芯及其制备方法和应用
JP2010272604A (ja) 軟磁性粉末及びそれを用いた圧粉磁芯、インダクタ並びにその製造方法
EP0383035B1 (en) Iron-silicon alloy powder magnetic cores and method of manufacturing the same
JP2923268B2 (ja) 低温焼成用高周波軟磁性材料およびそれを用いたインダクターの製造方法
CN103107013A (zh) 一种合金软磁粉芯的制备工艺
CN107527701B (zh) 软磁性金属粉末、软磁性金属烧结体及线圈型电子部件
CN103680818B (zh) 一种非晶共模电感
KR102144824B1 (ko) 연자성 금속 분말 및 압분 자심
CN104036903A (zh) 一种铁硅镍磁粉芯的制备方法
CN109192430B (zh) 提高金属软磁粉芯高频有效磁导率的制备方法及产品
CN114133231A (zh) 镍锌铁氧体材料及其制造方法
CN109599240B (zh) 一种铁氧体类软磁粉芯及其制备方法
CN113292330B (zh) 高截止频率复合材料、制备方法及共模电感
CN109148070A (zh) 一种新型复合磁粉芯及其制造方法
CN115121794B (zh) 一种高绝缘合金材料的制备方法
CN116313470B (zh) 一种电感磁体的制备方法、电感的制备方法及共模电感
CN116206840B (zh) 一种低损耗铁镍钼磁粉芯及其制备方法
JP7059314B2 (ja) 軟磁性金属粉末
CN106971804A (zh) 一种FeSiB非晶磁粉芯及其制备方法
CN115020074A (zh) 一种储能电感及其制备方法
CN117174465A (zh) 一种高q值的功率电感

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant