CN113413867A - 一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用 - Google Patents

一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用 Download PDF

Info

Publication number
CN113413867A
CN113413867A CN202110638500.8A CN202110638500A CN113413867A CN 113413867 A CN113413867 A CN 113413867A CN 202110638500 A CN202110638500 A CN 202110638500A CN 113413867 A CN113413867 A CN 113413867A
Authority
CN
China
Prior art keywords
natural hydrotalcite
desulfurizer
hydrotalcite
nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110638500.8A
Other languages
English (en)
Other versions
CN113413867B (zh
Inventor
胡丽芳
黄心阳
何杰
郑贤赟
朱继超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Institute of Environment Friendly Materials and Occupational Health of Anhui University of Sciece and Technology
Original Assignee
Anhui University of Science and Technology
Institute of Environment Friendly Materials and Occupational Health of Anhui University of Sciece and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology, Institute of Environment Friendly Materials and Occupational Health of Anhui University of Sciece and Technology filed Critical Anhui University of Science and Technology
Priority to CN202110638500.8A priority Critical patent/CN113413867B/zh
Publication of CN113413867A publication Critical patent/CN113413867A/zh
Application granted granted Critical
Publication of CN113413867B publication Critical patent/CN113413867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用,所述的脱硫剂通过将天然水滑石加入到乙醇水溶液中充分分散,再向其中加入金属盐溶液,搅拌使其充分反应,加热旋蒸除去液体,烘干、烧结、自然冷却至室温即得。本发明制得的脱硫剂制备工艺简单、成本低廉,可操作性强;具有独特的纳米夹层空间、结构记忆效应、大的比表面积,能够提供较多的吸附位点实现对硫化钠高吸附容量,回收简单,避免对水体的二次污染,可广泛应用于各类含硫化钠或其他含硫废水的处理。

Description

一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫 化钠污水的应用
技术领域
本发明涉及脱硫剂领域,尤其是涉及一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用。
背景技术
含硫化物(如Na2S等)废水是水体污染的重要污染源之一,其可以通过如印染、石油、焦化厂等企业直接产生,也可由硫氧化物(如硫酸盐、亚硫酸盐、硫代硫酸盐等)还原产生。硫化物易在酸性条件下产生硫化氢,并从水中扩散到大气中、产生臭鸡蛋的难闻气味,且毒性很大,可以通过多个途径如:呼吸道吸入、消化道摄入等进入人体,从而危害细胞、破坏生物体中多种酶活性,造成细胞组织的缺氧,甚至使生命安全受到威胁,因此一些不符合环境要求的工厂,会经常导致工厂里的工人硫化物中毒,有恶心、抽搐、腹痛等现象。大气中的硫化氢气体含量过高会形成酸雨,污染环境。因此,如何在水体中原位脱除硫化物是目前环境治理最重要的课题之一。
中国文献CN 104817211 B公开了一种硫化钠废水脱硫的方法,该发明公布了通过化学反应2Na2S+O2+2H2O=4NaOH+S来处理硫化钠废水,并指出如果这个反应中不停的提供溶解氧,同时适当控制溶液中pH(控制氢氧化钠浓度),便可以使反应不停的正向进行。不可否认的是在此反应进行的同时,反应Na2S+2H2O=2NaOH+H2S也同时发生,而且当减少NaOH的量使其向正向进行时,H2S的产率也将增多,导致水体污染变为大气污染。
吸附法处理含硫废水效果可靠、操作简便、相对经济,逐渐成为硫化物处理的首选方法。利用吸附法来处理水中硫化物的关键在于吸附材料的吸附效率及使用成本,而现有的常规吸附材料存在着吸附速率较慢、吸附容量低及使用成本较高的不足。
发明内容
有鉴于此,有必要提供一种能够原位吸附硫化物,提高其吸附速度和吸附量,减少硫化氢的溢出的天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用。
为了解决上述技术问题,本发明的一种技术方案是:一种天然水滑石负载纳米脱硫剂的制备方法,按以下步骤进行:
S1:将天然水滑石加入乙醇水溶液,搅拌使天然水滑石在乙醇水溶液中充分分散;
S2:再加入金属盐溶液,搅拌使其充分反应得到反应溶液体系;
S3:将反应溶液体系置于旋转蒸发仪进行加热旋蒸至无液体残留,得到固体产物;
S4:将固体产物依次干燥、烧结、自然冷却至室温后得到天然水滑石负载纳米脱硫剂。
进一步的,所述乙醇水溶液是由无水乙醇与蒸馏水混合而成,无水乙醇与蒸馏水的体积比为0.1-1:1。
进一步的,所述金属盐溶液中的金属盐为铜盐、铁盐、镍盐、锌盐或铈盐中的一种或多种。
进一步的,所述金属盐溶液中金属盐与天然水滑石的投料摩尔比为0-5:1。
进一步的,步骤S3中,反应溶液体系旋蒸的温度为50℃-100℃。
进一步的,步骤S3中,固体产物的干燥温度为105-150℃,烧结温度为160-600℃。
将天然水滑石加入到乙醇水溶液中,充分分散,使得天然水滑石在乙醇水溶液中溶胀平衡,增大天然水滑石层间距离并增加比表面积。金属盐溶液与混有天然水滑石的乙醇水溶液充分混合,金属离子由于自身的扩散作用,在搅拌情况下,其在乙醇水溶液中各个部分的浓度基本相同。另外,由于金属离子的动力学直径很小,其很容易进入天然水滑石的层间或者在天然水滑石表面,通过离子之间的相互静电吸附,在旋转蒸发仪中加热蒸去溶剂(乙醇和水),使得金属盐充分固定在天然水滑石的内外表面,经过干燥和高温烧结,金属盐分解成金属氧化物纳米簇或晶体锚定在水滑石层间和表面,而且,高温烧结使得水滑石结构发生变化,原本层间阴离子同样分解消失。当遇到水中的硫化物时,硫化物与水滑石层间和表面的氧化物纳米簇或晶体通过S-M(M指金属)相互作用而吸附,另外,水滑石具有结构记忆效应,其在硫化物水体中会使得硫化物与水滑石相互作用,恢复层状结构,硫离子在层间补偿电荷。
本发明制备的天然水滑石负载纳米脱硫剂是以天然水滑石为载体,通过溶胀后将金属离子吸附在水滑石的层间和表面,再经过旋蒸、干燥、烧结等步骤后将负载了金属纳米簇或晶体的天然水滑石装入吸附装置,当含硫污水通过吸附装置的氧化纳米簇或晶体材料时,由于S-M相互作用和结构记忆效应,负载金属盐的天然水滑石会选择性的高效吸附水溶液中的硫化物,随着水滑石一同沉淀,从而可以有效去除水中的硫化物。
为了解决上述技术问题,本发明的另一种技术方案是: 一种天然水滑石负载纳米脱硫剂在处理含硫化钠污水的应用,该应用使用如上所述的制备方法制备出的天然水滑石负载纳米脱硫剂。
进一步的,所述含硫化钠污水中的硫化钠的浓度为2-750 mg/L。
进一步的,所述含硫化钠污水的pH值为7-12。
与现有技术相比,本发明具有以下有益效果:
1、本发明烧结后的脱硫剂内外表面金属吸附位点充分暴露,容易与硫化物形成S-M吸附,增强了其对硫化物的吸附性能。
2、本发明烧结后的脱硫剂具有结构记忆效应,可以通过恢复层状结构的方式将硫化物引入层间,增强其对硫化物的吸附性能。
3、本发明烧结后的脱硫剂具有大比表面积,能够提供较多的活性位点实现对硫化物的高吸附容量,可广泛应用于含硫地表水净化处理、含硫污水处理等方面。
4、本发明烧结后的脱硫剂中金属离子吸附水中的硫化物后被固定在水滑石的表面,避免其对水体的二次污染。
5、本发明烧结后的脱硫剂吸附硫化物达到饱和后,通过简单的洗涤过程即可回收硫化物并使得脱硫剂可重复使用,其操作简单。
6、本发明脱硫剂的制备方法是在常压下进行制备,工艺简单,安全可靠,设备投资少,操作容易,易于实现大规模制备。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明。
附图说明
图1为本发明使用的天然水滑石、制备的未加金属盐的负载纳米脱硫剂以及在硫化物溶液中吸附12小时后的纳米脱硫剂的X射线衍射谱图。
图2是本发明制备的添加不同金属盐在不同实施例下制备的脱硫剂的X射线衍射谱图。图3是本发明制备的脱硫剂进行硫化物吸附的吸附效果图。
具体实施方式
为更进一步阐述本发明为实现预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效作详细说明。
实施例一
一种未加金属盐的天然水滑石负载纳米脱硫剂的制备方法:
S1:将3克天然水滑石(其XRD图如图1中的1号曲线所示)加入60 毫升乙醇水溶液,乙醇水溶液中乙醇和蒸馏水的体积比为1:1,强烈搅拌4小时,搅拌使得天然水滑石充分溶胀后得到混合溶液;
S2:将混合溶液置于旋转蒸发仪上进行95℃加热旋蒸,直至溶液蒸干得到固体产物;
S3:将固体产物置于105℃温度环境内干燥3小时,后于500℃温度环境内烧结3小时,最后自然冷却至室温即得天然水滑石负载纳米脱硫剂(其XRD图如图1中2号曲线所示)。
将制备的未加金属盐的天然水滑石负载纳米脱硫剂置于含硫化物溶液中(硫化物浓度为750mg/L,pH=7)吸附12小时,即得天然水滑石负载纳米脱硫剂吸附硫化钠样品(其XRD图如图1中3号曲线所示)。
通过XRD图中三条曲线的比较,非常明显的得出天然水滑石在硫化钠溶液中的结构记忆效应。
实施例二
一种天然水滑石负载纳米脱硫剂的制备方法:
S1:将3克天然水滑石加入60 毫升乙醇水溶液,乙醇水溶液中乙醇和蒸馏水的体积比为1:1,强烈搅拌4小时,搅拌使得天然水滑石充分溶胀后得到混合溶液;
S2:向混合溶液中加入硝酸铜溶液,硝酸铜溶液中的硝酸铜与天然水滑石的摩尔比为1:100,搅拌60分钟,使其充分反应后得到反应溶液体系;
S3:将反应溶液体系置于旋转蒸发仪上进行95℃加热旋蒸,直至溶液蒸干得到固体产物;
S4:将固体产物置于105℃温度环境内进行干燥3小时,后于500℃温度环境内进行烧结3小时,最后自然冷却至室温即得天然水滑石负载纳米脱硫剂(其XRD图如图2中1号曲线所示)。
将上述制备的天然水滑石负载纳米脱硫剂置于含硫化物溶液中(硫化物浓度为250mg/L,pH=10)所测得的吸附效果如图3中1号曲线所示。
实施例三
一种天然水滑石负载纳米脱硫剂的制备方法:
S1:将3克天然水滑石加入60 ml乙醇水溶液,乙醇水溶液中乙醇和蒸馏水的体积比为1:5,强烈搅拌4小时,搅拌使得天然水滑石充分溶胀后得到混合溶液;
S2:向混合溶液中加入硝酸铜溶液,硝酸铜溶液中的硝酸铜与天然水滑石的摩尔比为1:10,搅拌60分钟,使其充分反应后得到反应溶液体系;
S3:将反应溶液体系置于旋转蒸发仪上进行95℃加热旋蒸,直至溶液蒸干得到固体产物;
S4:将固体产物置于105℃温度环境内干燥3小时,后于300℃温度环境内烧结3小时,最后自然冷却至室温即得天然水滑石负载纳米脱硫剂(其XRD图如图2中2号曲线所示)。
将上述制备的天然水滑石负载纳米脱硫剂置于含硫化物溶液中(硫化物浓度为500mg/L,pH=8)所测得的吸附效果如图3中2号曲线所示。
实施例四
一种天然水滑石负载纳米脱硫剂的制备方法:
S1:将3克天然水滑石加入60 ml乙醇水溶液,乙醇水溶液中乙醇和蒸馏水的体积比为1:10,强烈搅拌4小时,搅拌使得天然水滑石充分溶胀后得到混合溶液;
S2:向混合溶液中加入硝酸铁溶液,硝酸铁溶液中的硝酸铁与天然水滑石的摩尔比为1:5,搅拌60分钟,使其充分反应后得到反应溶液体系;
S3:将反应溶液体系置于旋转蒸发仪上进行60℃加热旋蒸,直至溶液蒸干得到固体产物;
S4:将固体产物置于105℃温度环境内干燥3小时,后于400℃温度环境内烧结3小时,最后自然冷却至室温即得天然水滑石负载纳米脱硫剂(其XRD图如图2中3号曲线所示)。
将上述制备的天然水滑石负载纳米脱硫剂置于含硫化物溶液中(硫化物浓度为25mg/L,pH=11)所测得的吸附效果如图3中3号曲线所示。
实施例五
一种天然水滑石负载纳米脱硫剂的制备方法:
S1:将3克天然水滑石加入60 ml乙醇水溶液,乙醇水溶液中乙醇和蒸馏水的体积比为1:2,强烈搅拌4小时,搅拌使得天然水滑石充分溶胀后得到混合溶液;
S2:向混合溶液中加入硝酸镍溶液,硝酸镍溶液中的硝酸镍与天然水滑石的摩尔比为1:50,搅拌60分钟,使其充分反应后得到反应溶液体系;
S3:将反应溶液体系置于旋转蒸发仪上进行75℃加热旋蒸,直至溶液蒸干得到固体产物;
S4:将固体产物置于105℃温度环境内干燥3小时,后于200℃温度环境内烧结3小时,最后自然冷却至室温即得天然水滑石负载纳米脱硫剂(XRD图如图2中4号曲线所示)。
将上述制备的天然水滑石负载纳米脱硫剂置于含硫化物溶液中(硫化物浓度为50mg/L,pH=12)所测得的吸附效果如图3中4号曲线所示。
实施例六
一种天然水滑石负载纳米脱硫剂的制备方法:
S1:将3克天然水滑石加入60 ml乙醇水溶液,乙醇水溶液中乙醇和蒸馏水的体积比为1:3,强烈搅拌4小时,搅拌使得天然水滑石充分溶胀后得到混合溶液;
S2:向混合溶液中加入硝酸锌溶液,硝酸锌溶液中的硝酸锌与天然水滑石的摩尔比为1:2,搅拌60分钟,使其充分反应后得到反应溶液体系;
S3:将反应溶液体系置于旋转蒸发仪上进行80℃加热旋蒸,直至溶液蒸干得到固体产物;
S4:将固体产物置于105℃温度环境内干燥3小时,后于200℃温度环境内烧结3小时,最后自然冷却至室温即得天然水滑石负载纳米脱硫剂(其XRD图如图2中5号曲线所示)。
将上述制备的天然水滑石负载纳米脱硫剂置于含硫化物溶液中(硫化物浓度为10mg/L,pH=9)所测得的吸附效果如图3中5号曲线所示。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

1.一种天然水滑石负载纳米脱硫剂的制备方法,其特征在于,按以下步骤进行:
S1:将天然水滑石加入乙醇水溶液,搅拌使天然水滑石在乙醇水溶液中充分分散;
S2:再加入金属盐溶液,搅拌使其充分反应得到反应溶液体系;
S3:将反应溶液体系置于旋转蒸发仪进行加热旋蒸至无液体残留,得到固体产物;
S4:将固体产物依次干燥、烧结、自然冷却至室温后得到天然水滑石负载纳米脱硫剂。
2.根据权利要求1所述的天然水滑石负载纳米脱硫剂的制备方法,其特征在于:所述乙醇水溶液是由无水乙醇与蒸馏水混合而成,无水乙醇与蒸馏水的体积比为0.1-1:1。
3.根据权利要求1所述的天然水滑石负载纳米脱硫剂的制备方法,其特征在于:所述金属盐溶液中的金属盐为铜盐、铁盐、镍盐、锌盐或铈盐中的一种或多种。
4.根据权利要求1所述的天然水滑石负载纳米脱硫剂的制备方法,其特征在于:所述金属盐溶液中金属盐与天然水滑石的投料摩尔比为0-5:1。
5.根据权利要求1所述的天然水滑石负载纳米脱硫剂的制备方法,其特征在于:步骤S3中,反应溶液体系旋蒸的温度为50℃-100℃。
6.根据权利要求1所述的天然水滑石负载纳米脱硫剂的制备方法,其特征在于:步骤S3中,固体产物的干燥温度为105-150℃,烧结温度为160-600℃。
7.一种天然水滑石负载纳米脱硫剂在处理含硫化钠污水的应用,其特征在于:该应用使用如权利要求1至6中任意一项所述的制备方法制备出的天然水滑石负载纳米脱硫剂。
8.根据权利要求7所述的天然水滑石负载纳米脱硫剂在处理含硫化钠污水的应用,其特征在于:所述含硫化钠污水中的硫化钠的浓度为2-750 mg/L。
9.根据权利要求7所述的天然水滑石负载纳米脱硫剂在处理含硫化钠污水的应用,其特征在于:所述含硫化钠污水的pH值为7-12。
CN202110638500.8A 2021-06-08 2021-06-08 一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用 Active CN113413867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110638500.8A CN113413867B (zh) 2021-06-08 2021-06-08 一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110638500.8A CN113413867B (zh) 2021-06-08 2021-06-08 一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用

Publications (2)

Publication Number Publication Date
CN113413867A true CN113413867A (zh) 2021-09-21
CN113413867B CN113413867B (zh) 2022-11-01

Family

ID=77787994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110638500.8A Active CN113413867B (zh) 2021-06-08 2021-06-08 一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用

Country Status (1)

Country Link
CN (1) CN113413867B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752397A (en) * 1986-06-30 1988-06-21 Aluminum Company Of America Process for removing heavy metal ions from solutions using adsorbents containing activated hydrotalcite
US5360547A (en) * 1992-03-28 1994-11-01 Unilever Patent Holdings B.V. Sorbing agents
US20070034552A1 (en) * 2005-08-15 2007-02-15 Sub-Chemie Inc. Process for sulfur adsorption using copper-containing catalyst
WO2009003709A1 (en) * 2007-07-04 2009-01-08 Süd-Chemie AG Preparation of new hydrotalcite-like adsorbents useful for the adsorption of anionic materials
US20110237430A1 (en) * 2008-11-13 2011-09-29 Beijing University Of Chemical Technology Process for preparing catalyst comprising palladium supported on carrier with high dispersion
US20140348736A1 (en) * 2013-05-27 2014-11-27 King Saud University Adsorbent material, process for its preparation and use thereof
US20160325226A1 (en) * 2013-12-31 2016-11-10 Beijing Sj Environmental Protection And New Material Co., Ltd. Desulfurizer For Conversion And Absorption Of High-Concentration Carbonyl Sulfide And A Desulfurizer For Catalytic Conversion And Absorption Of Carbon Disulfide And Their Preparation Methods
CN109529795A (zh) * 2018-11-30 2019-03-29 昆明理工大学 一种硫化氢吸附剂及其制备方法
CN111250048A (zh) * 2020-03-02 2020-06-09 东营科尔特新材料有限公司 一种铜锌铝基类水滑石脱硫吸附剂及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752397A (en) * 1986-06-30 1988-06-21 Aluminum Company Of America Process for removing heavy metal ions from solutions using adsorbents containing activated hydrotalcite
US5360547A (en) * 1992-03-28 1994-11-01 Unilever Patent Holdings B.V. Sorbing agents
US20070034552A1 (en) * 2005-08-15 2007-02-15 Sub-Chemie Inc. Process for sulfur adsorption using copper-containing catalyst
WO2009003709A1 (en) * 2007-07-04 2009-01-08 Süd-Chemie AG Preparation of new hydrotalcite-like adsorbents useful for the adsorption of anionic materials
US20110237430A1 (en) * 2008-11-13 2011-09-29 Beijing University Of Chemical Technology Process for preparing catalyst comprising palladium supported on carrier with high dispersion
US20140348736A1 (en) * 2013-05-27 2014-11-27 King Saud University Adsorbent material, process for its preparation and use thereof
US20160325226A1 (en) * 2013-12-31 2016-11-10 Beijing Sj Environmental Protection And New Material Co., Ltd. Desulfurizer For Conversion And Absorption Of High-Concentration Carbonyl Sulfide And A Desulfurizer For Catalytic Conversion And Absorption Of Carbon Disulfide And Their Preparation Methods
CN109529795A (zh) * 2018-11-30 2019-03-29 昆明理工大学 一种硫化氢吸附剂及其制备方法
CN111250048A (zh) * 2020-03-02 2020-06-09 东营科尔特新材料有限公司 一种铜锌铝基类水滑石脱硫吸附剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙德智等: "Zn-Al类水滑石吸附污泥脱水液中磷的研究", 《北京林业大学学报》 *

Also Published As

Publication number Publication date
CN113413867B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Xu et al. A review on modification methods of adsorbents for elemental mercury from flue gas
Jia et al. Self-grown oxygen vacancies-rich CeO2/BiOBr Z-scheme heterojunction decorated with rGO as charge transfer channel for enhanced photocatalytic oxidation of elemental mercury
Yin et al. Sulfur-functional group tunning on biochar through sodium thiosulfate modified molten salt process for efficient heavy metal adsorption
Liu et al. Sorbents for hydrogen sulfide capture from biogas at low temperature: a review
Jia et al. Nanosized ZnIn2S4 supported on facet-engineered CeO2 nanorods for efficient gaseous elemental mercury immobilization
Wen et al. Biochar as the effective adsorbent to combustion gaseous pollutants: preparation, activation, functionalization and the adsorption mechanisms
CN102553523B (zh) 一种负载纳米零价铁的活性碳纤维及其制备方法和用途
Liu et al. SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury
CN111530414A (zh) 一种球磨生物炭载硫化纳米零价铁复合材料及其制备方法和应用
CN113231004A (zh) 一种金属硒化物汞吸附剂的常温常压制备方法和应用
Liu et al. Dual 2-dimensional CuSe/g-C3N4 nano-heterostructure for boosting immobilization of elemental mercury in flue gas
CN103920461A (zh) 磁性生物炭量子点复合物吸附剂及其制备和使用方法
Liu et al. Rational design via surface engineering on dual 2-dimensional ZnSe/g-C3N4 heterojunction for efficient sequestration of elemental mercury
CN111921363B (zh) 一种煤气干法净化用高效脱硫剂及其制备方法和应用
Wu et al. Hierarchically porous biochar templated by in situ formed ZnO for rapid Pb2+ and Cd2+ adsorption in wastewater: Experiment and molecular dynamics study
CN107486133A (zh) 一种天然气脱汞吸附剂及制备方法
Li et al. Selenium uptake and simultaneous catalysis of sulfite oxidation in ammonia-based desulfurization
Tanweer et al. Advanced 2D Nanomaterial Composites: Applications in Adsorption of Water Pollutants and Toxic Gases
Yuan et al. CaCO3-ZnO loaded scrap rice-derived biochar for H2S removal at room-temperature: Characterization, performance and mechanism
Liu et al. Unveiling the interfacial and coordinatively unsaturated effect in iron diselenide-based hierarchical heterojunction for enhanced Hg0 removal
Xu et al. Covalent organic framework modified vermiculite for total Cr removal and subsequent recycling for efficient ciprofloxacin and NO photooxidation
CN113413867B (zh) 一种天然水滑石负载纳米脱硫剂的制备方法及其在处理含硫化钠污水的应用
CN111644148B (zh) 一种超高效污水除磷吸附剂的制备方法
CN113713757A (zh) 一种用于废气液高效汞吸附剂的制备方法及产品
CN102836634B (zh) 一种脱硫脱硝的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant