CN113413864A - 一种用于吸附重金属离子的层状双金属氢氧化物复合体及其制备方法和应用 - Google Patents

一种用于吸附重金属离子的层状双金属氢氧化物复合体及其制备方法和应用 Download PDF

Info

Publication number
CN113413864A
CN113413864A CN202110870639.5A CN202110870639A CN113413864A CN 113413864 A CN113413864 A CN 113413864A CN 202110870639 A CN202110870639 A CN 202110870639A CN 113413864 A CN113413864 A CN 113413864A
Authority
CN
China
Prior art keywords
layered double
ldh
double hydroxide
mgal
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110870639.5A
Other languages
English (en)
Other versions
CN113413864B (zh
Inventor
姚惠琴
杨利肖
袁萌伟
楚梦琳
马淑兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Ningxia Medical University
Original Assignee
Beijing Normal University
Ningxia Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University, Ningxia Medical University filed Critical Beijing Normal University
Priority to CN202110870639.5A priority Critical patent/CN113413864B/zh
Publication of CN113413864A publication Critical patent/CN113413864A/zh
Application granted granted Critical
Publication of CN113413864B publication Critical patent/CN113413864B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0218Compounds of Cr, Mo, W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • B01J20/0266Compounds of S
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0296Nitrates of compounds other than those provided for in B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本申请提供了一种用于吸附重金属离子的层状双金属氢氧化物复合体,其包括钼硫化物和镁铝层状双金属氢氧化物,其中,所述钼硫化物Mo3S13 2‑插入镁铝层状双金属氢氧化物的层间。层状双金属氢氧化物(LDH)层板的良好分散能力,使位于层间的Mo3S13 2‑的Mo、S吸附位点充分暴露出来,提高了对Hg2+的捕获能力,吸附力达到594mg/g,且具有很高的吸附选择性;进一步,本申请的层状双金属氢氧化物复合体对铜离子和铅离子也具有高效吸附能力,是一种优秀的重金属吸附材料。

Description

一种用于吸附重金属离子的层状双金属氢氧化物复合体及其 制备方法和应用
技术领域
本申请涉及层状双金属氢氧化物复合体技术领域,特别是涉及一种用于吸附重金属离子的层状双金属氢氧化物复合体及其制备方法和应用。
背景技术
随着现代工业的发展,环境污染问题日益严重,其中厂矿企业所排放的污水中存在大量重金属离子,对人类生存环境造成严重威胁。去除生态系统和工业用水中有毒重金属离子成为一个重要环境问题。众多材料,例如沸石、活性炭、聚合物、生物材料和吸附树脂,已经被用来去除或捕获重金属离子,但仍然不能满足重金属离子去除的需求,还需寻找新的高效去除重金属离子的材料。
发明内容
本申请的目的在于提供一种用于吸附重金属离子的层状双金属氢氧化物复合体,以至少实现对汞离子和铜离子的高效吸附。
本申请第一方面提供了一种用于吸附重金属离子的层状双金属氢氧化物复合体,其包括钼硫化物和镁铝层状双金属氢氧化物,其中,所述钼硫化物Mo3S13 2-插入镁铝层状双金属氢氧化物的层间。
本申请第二方面提供了本申请第一方面的层状双金属氢氧化物复合体的制备方法,其通过(NH4)2Mo3S13·H2O和MgAl-NO3-LDH在N,N’-二甲基甲酰胺或二甲亚砜中反应得到。
本申请第三方面提供了一种重金属吸附材料,其包括本申请第一方面的层状双金属氢氧化物复合体。
本申请提供的层状双金属氢氧化物复合体,层状双金属氢氧化物(LDH)层板的良好分散能力,使位于层间的Mo3S13 2-的Mo、S吸附位点充分暴露出来,提高了对Hg2+的捕获能力,吸附量达到594mg/g,且具有很高的吸附选择性;进一步,本申请的层状双金属氢氧化物复合体对铜离子和铅离子也具有高效吸附能力,是一种优秀的重金属吸附材料。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一种实施方式,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的实施方式。
图1为(NH4)2Mo3S13、MgAl-NO3-LDH和MgAl-Mo3S13-LDH的红外吸收光谱图。
图2为MgAl-Mo3S13-LDH、MgAl-NO3-LDH和(NH4)2Mo3S13的XRD图谱。
图3显示了(NH4)2Mo3S13和MgAl-Mo3S13-LDH的拉曼光谱图。
图4为吸附400ppm汞离子前后MgAl-Mo3S13-LDH固体样品的SEM照片。
图5为MgAl-Mo3S13-LDH对Hg2+的吸附动力学曲线:其中(a)图为浓度-时间曲线;(b)图为去除率-时间曲线;(c)图为吸附量-时间曲线;(d)图为拟二级动力学拟合曲线。
具体实施方式
为使本发明的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。本领域普通技术人员基于本申请中的实施例所获得的所有其他实施例,都属于本申请保护的范围。
本申请第一方面提供了一种用于吸附重金属离子的层状双金属氢氧化物复合体(MgAl-Mo3S13-LDH),其包括钼硫化物和镁铝层状双金属氢氧化物,其中,所述钼硫化物Mo3S13 2-插入镁铝层状双金属氢氧化物的层间。
在一些实施方式中,所述重金属离子选自Hg2+、Cu2+或Pb2+中的至少一种。
在一些实施方式中,所述层状双金属氢氧化物复合体具有如下的化学组成式:Mg0.67Al0.33(OH)2(NO3)x(Mo3S13)y·mH2O,其中x=0.09-0.21,y=0.06-0.12,m=0.7-1.5。
在一些实施方式中,所述的层状双金属氢氧化物复合体具有六边形形貌。
本申请第二方面提供了本申请第一方面的层状双金属氢氧化物复合体的制备方法,其通过(NH4)2Mo3S13·H2O和MgAl-NO3-LDH在N,N’-二甲基甲酰胺或二甲亚砜中反应得到。
具体地,所述层状双金属氢氧化物复合体的制备方法可以包括:将(NH4)2Mo3S13·H2O溶解于N,N’-二甲基甲酰胺(DMF)或二甲亚砜(DMSO)中,将镁铝硝酸根型层状双氢氧化物(MgAl-NO3-LDH)投入其中,在隔绝空气的环境下,静置反应20-30小时,过滤,洗涤,得到钼硫化物层状双金属氢氧化物复合体沉淀。在此过程中,Mo3S13 2-通过与MgAl-NO3-LDH层间的NO3 ˉ发生离子交换插入镁铝层状双金属氢氧化物的层间。
本申请中,钼硫化物层状双金属氢氧化物复合体可在常温常压下进行,为避免空气中的二氧化碳进入反应体系,生成镁铝碳酸根型层状双氢氧化物,因此本申请的钼硫化物层状双金属氢氧化物复合体的合成过程需要在隔绝空气的环境下进行。
在一些实施方式中,所述(NH4)2Mo3S13·H2O与MgAl-NO3-LDH的质量比为(1.5-2):1。
在一些实施方式中,(NH4)2Mo3S13·H2O与N,N’-二甲基甲酰胺或二甲亚砜的质量体积比为0.25-0.5mg/ml。
在一些实施方式中,还包括将反应得到的产物在N,N’-二甲基甲酰胺或二甲亚砜中洗涤至滤液无色,再以丙酮洗涤。
本申请对(NH4)2Mo3S13·H2O的来源不做限定,可以通过市售获得或通过现有的合成方法获得,例如可以通过采用(NH4)6Mo7O24.4H2O、(NH4OH)·HCl和(NH4)2Sx反应获得。
本申请对MgAl-NO3-LDH的来源不做限定,可以通过市售获得或通过现有的合成方法获得,例如可以通过均匀沉淀法,通过Mg(NO3)2·6H2O、Al(NO3)3·9H2O通过均匀沉淀反应获得MgAl-CO3-LDH;再通过离子交换法合成MgAl-NO3-LDH。
本申请第三方面提供了一种重金属吸附材料,其包括本申请第一方面的层状双金属氢氧化物复合体。
以下,基于实施例对本申请进行具体地说明,但本申请并不限于这些实施例。
实施例1MgAl-Mo3S13-LDH的制备
1.MgAl-NO3-LDH的合成
采用均匀沉淀法合成MgAl-CO3-LDH前体:将3.21g Mg(NO3)2·6H2O、3.24g Al(NO3)3·9H2O、2.28g六次甲基四胺(HMT)和50mL去离子水加入反应釜中,放入干燥箱中,在140℃下反应24h,取出冷却至室温后,过滤并用蒸馏水洗涤多次,滤液为淡黄色,将固体置烘箱中40℃干燥,得到白色粉末MgAl-CO3-LDH。
采用酸盐(NaNO3+HNO3)离子交换法合成MgAl-NO3-LDH:将1.00gMgAl-CO3-LDH、100g NaNO3、0.36mL浓硝酸和煮沸排气的1000mL去离子水加入锥形瓶中,用塞子塞好后,再用封口膜封好,室温搅拌24h。立即过滤,用去离子水和丙酮洗涤多次,40℃真空干燥,得到白色粉末MgAl-NO3-LDH。
2.(NH4)2Mo3S13·H2O的合成
在20mL衬聚四氟乙烯内胆的不锈钢反应釜中,放入0.4g(NH4)6Mo7O24.4H2O、0.3g(NH4OH)·HCl和9ml(NH4)2Sx,220℃反应,过滤,用水、丙酮多次洗涤,干燥,得到0.55g深红色针状晶体(NH4)2Mo3S13·H2O。
3.MgAl-Mo3S13-LDH的合成
称0.078g(NH4)2Mo3S13·H2O于研钵中研磨成粉末状,放入烧杯中。分批次向烧杯中加入共300mL的DMF,搅拌,超声,使固体完全溶解,离心得到澄清深红色溶液。将0.05gMgAl-NO3-LDH白色粉末投入上述含(NH4)2Mo3S13的DMF溶液中,塞好塞子,封口膜密封,室温静置反应24h。反应后溶液依然为深红色,过滤,滤液澄清为浅红色,并用DMF洗涤固体至滤液基本无色(洗涤目的为去掉不溶或反应过程析出的部分(NH4)2Mo3S13),再用少量丙酮洗涤,得到棕红色固体沉淀0.60g。
MgAl-Mo3 S 13-LDH的表征
1.MgAl-Mo3S13-LDH组成的确定
取实施例1获得的MgAl-Mo3S13-LDH棕红色粉末0.01g,用硝酸溶解,定容至50mL,溶液呈淡黄色,取出6mL清液,通过电感耦合等离子体发射光谱(ICP)分析和CHN元素分析测试,获得各元素的质量百分含量,结果如表1所示,其中,N元素的质量含量为1.66%,说明层间还有一部分NO3 ;Mo元素的质量含量较高,说明Mo3S13 2-成功进入复合体。根据表1中各元素质量含量的测量值,以及层板正电荷和层间阴离子的电荷匹配的原则,可推算复合体的组成式为Mg0.67Al0.33(OH)2(NO3)0.19(Mo3S13)0.07·0.8H2O。根据该组成式,可计算得相对分子质量为134.44。然后据该组成式,计算得各元素质量分数的计算值,结果如表1所示。可见计算值与测量值基本一致,说明组成式推算合理。
表1.MgAl-Mo3S13-LDH中各元素质量百分含量的测量值和计算值
Mg Al H N Mo
测量值(Wt%) 11.45 6.90 2.70 1.66 14.11
计算值(Wt%) 11.96 6.63 2.67 1.98 14.99
2.红外吸收光谱分析
(NH4)2Mo3S13·H2O、MgAl-NO3-LDH和MgAl-Mo3S13-LDH的红外吸收光谱分析结果如图1所示,其中,(a)中的547和505cm-1处的吸收峰是(NH4)2Mo3S13的Mo-S振动吸收。(b)中,3540、3456cm-1的宽吸收峰属于结晶水的羟基(-OH)振动峰和M-OH的伸缩振动峰,其中M代表Mg或Al,1384cm-1处的峰为层间NO3 -的振动吸收,676和438cm–1处的吸收归属于LDH层板的M-O的振动。(c)中,1384cm-1处的特征吸收峰强度明显减弱,说明Mo3S13 2-与NO3 -交换进入层间,成功得到MgAl-Mo3S13-LDH。
3.X-射线粉末衍射分析
MgAl-Mo3S13-LDH、MgAl-NO3-LDH和(NH4)2Mo3S13的X-射线粉末衍射(XRD)分析结果如图2所示。从(a)中可以看出,MgAl-Mo3S13-LDH谱图基线平稳,在0.91、0.45nm出现衍射峰,层间距为0.91nm。与前体(NH4)2Mo3S13(c)相比,MgAl-Mo3S13-LDH(a)在0.87、0.82、0.54nm的衍射峰消失,说明复合体中不存在(NH4)2Mo3S13前体。MgAl-Mo3S13-LDH(a)与MgAl-NO3-LDH(b)相比,层间距由原来的0.89nm增大到0.91nm,说明体积较大的Mo3S13 2-进入层间。(a)中0.15nm处的峰对应LDH层板上(110)面的衍射,说明LDH层板得到保持,为拓扑的离子交换。
4.拉曼光谱分析
(NH4)2Mo3S13和MgAl-Mo3S13-LDH的拉曼光谱图分析结果如图3所示。从图中的(a)中可以看出,对于(NH4)2Mo3S13,550、513、454、387~285cm-1处的特征峰分别为(S-S)端基、(S-S)桥连、Mo3-S和Mo-S的伸缩振动峰;而对于MgAl-Mo3S13-LDH(b),相应的拉伸带出现在554、517、458、388~285cm-1处,蓝移可能是由于Mo3S13 2-和LDH中的Mo-S··HO氢相互作用导致的。
5.扫描电镜分析
MgAl-Mo3S13-LDH扫描电镜(SEM)照片如图4所示,其中(a)图为所合成的MgAl-Mo3S13-LDH样品,可见其为明显的六边形状,样品直径约4μm,且呈现超薄的纳米片结构。(b)图为吸附400ppm汞离子后的MgAl-Mo3S13-LDH样品SEM图,可见其大小和形貌变化不大,但有少许堆叠,基本保持六边形形貌。
MgAl-Mo3S13-LDH对重金属离子的吸附实验
1.MgAl-Mo3S13-LDH对Hg2+吸附性能
分别称取5份0.020g MgAl-Mo3S13-LDH于50mL离心管中,向各离心管中加入20mL具有不同浓度Hg2+的硝酸盐溶液(浓度见表2中C0),密封离心管,振荡24h。离心,转速15000r/min,静置,取清液,进行电感耦合原子发射光谱仪(ICP-AES)测试,得到MgAl-Mo3S13-LDH对Hg2+的吸附结果如表2所示。
表2.MgAl-Mo3S13-LDH对Hg2+的最大吸附量测定
Figure BDA0003188780820000061
从表2可以看出,在初始浓度C0在~10ppm(9.37ppm)时,吸附后Hg2+浓度Cf可低至0.006ppm(6ppb),Hg2+去除率高达99.93%。在Hg2+初始浓度为594ppm时,Hg2+去除率仍高达99.99%,可认为实现完全吸附,此时对应的最大吸附量qm为594mg/g。此高的吸附量说明本材料在吸附剧毒性Hg2+方面具有重要应用价值。此外,在10-600ppm浓度范围,本申请的MgAl-Mo3S13-LDH对汞离子吸附的分配系数Kd在106~107mL/g,说明本申请的MgAl-Mo3S13-LDH对高浓度、低浓度Hg2+环境均具有非常好的选择性吸附效果。
2.MgAl-Mo3S13-LDH对Hg2+的吸附动力学
分别称量6份0.02g MgAl-Mo3S13-LDH,加入到50mL离心管中,向各离心管加入20mLHg2+浓度约为10ppm的硝酸盐溶液,密封离心管,放在振荡器中分别震荡1、5、10、60、180和360min,震荡结束后,离心,然后取上清液进行ICP-AES测试。结果如表3所示。
表3.MgAl-Mo3S13-LDH对Hg2+的动力学吸附数据
Figure BDA0003188780820000071
从表3的数据可以发现,MgAl-Mo3S13-LDH对Hg2+吸附速率非常快。在10min内,Hg2+的去除率达到91.48%,Kd为1.07×104mL/g。在60min(1h)内,Hg2+去除率>99%(99.72%),Kd值>105mL/g。
为了更好地了解Hg2+在MgAl-Mo3S13-LDH上的吸附速率和速率控制步骤,采用拟一级(式1)和拟二级(式2)动力学方程对实验数据进行拟合。
拟一级吸附动力学模型:
ln(qe-qt)=lnqe-k1t (式1)
其中,qe(mg/g)为平衡时的吸附量,qt为接触时间t时的吸附量,k1(g·mg-1·min-1)为拟一级动力学模型中的速率常数。
拟二级吸附动力学模型:
Figure BDA0003188780820000081
其中,qe(mg/g)为平衡时的吸附量,qt为接触时间t时的吸附量,k2(g·mg-1·min-1)为拟二级动力学模型中的速率常数。
吸附Hg2+动力学数据及拟合曲线如图5所示,其中图(a)为浓度-时间曲线;(b)图为去除率-时间曲线;(c)图为吸附量-时间曲线;(d)图为拟二级动力学拟合曲线。采用拟二级吸附动力学模型拟合的动力学参数见表4,可见相关系数(R2)接近1(0.9999),表明该吸附过程符合拟二级模型,即该吸附过程符合形成强的金属-硫键(M-S)的假定。
表4.MgAl-Mo3S13-LDH对Hg2+的拟二级动力学模型吸附参数
Figure BDA0003188780820000082
3.MgAl-Mo3S13-LDH对Hg2+及竞争离子的吸附选择性
为检测竞争离子存在下MgAl-Mo3S13-LDH对Hg2+的吸附选择性,进行了对混合离子的吸附实验。取10mg MgAl-Mo3S13-LDH于50mL离心管中,向离心管中加入20mL含有浓度分别为10ppm的Co2+、Ni2+、Cu2+、Zn2+、Ag+、Pb2+、Cd2+、Hg2+八种金属离子的硝酸盐溶液,密封离心管,振荡24h。离心,转速15000r/min,静置,取上清液,ICP-AES法检测溶液中各金属离子的含量,结果如表5所示。
表5 MgAl-Mo3S13-LDH对八种金属离子混合溶液的吸附数据
Figure BDA0003188780820000083
Figure BDA0003188780820000091
一般,Kd值在104-105mL/g的材料被视作优良吸附剂。由表5可见,MgAl-Mo3S13-LDH对Ag+、Hg2+、Cu2+有较好的选择吸附效果,分配系数Kd分别为1.4×107、1.9×105、6.3×104mL/g,均大于104mL/g;此外,MgAl-Mo3S13-LDH对Pb2+也有一定吸附力。因此,本申请的MgAl-Mo3S13-LDH可实现重金属离子Hg2+、Cu2+、和Pb2+的共同吸附,达到一材多用的效果。发明人还意外地发现,四种过渡金属离子Co2+,Ni2+,Cu2+,Zn2+中,MgAl-Mo3S13-LDH只对Cu2+有很高的选择吸附性,可实现过渡金属中Cu2+的高效分离提取。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (9)

1.一种用于吸附重金属离子的层状双金属氢氧化物复合体,其包括钼硫化物和镁铝层状双金属氢氧化物,其中,所述钼硫化物Mo3S13 2-插入镁铝层状双金属氢氧化物的层间。
2.根据权利要求1所述的层状双金属氢氧化物复合体,其中,所述重金属离子选自Hg2+、Cu2+或Pb2+中的至少一种。
3.根据权利要求1所述的层状双金属氢氧化物复合体,其具有如下的化学组成式:Mg0.67Al0.33(OH)2(NO3)x(Mo3S13)y·mH2O,其中x=0.09-0.21,y=0.06-0.12,m=0.7-1.5。
4.根据权利要求1所述的层状双金属氢氧化物复合体,其具有六边形形貌。
5.权利要求1-4中任一项所述的层状双金属氢氧化物复合体的制备方法,其通过(NH4)2Mo3S13·H2O和MgAl-NO3-LDH在N,N’-二甲基甲酰胺或二甲亚砜中反应得到。
6.根据权利要求5所述的方法,其中,所述(NH4)2Mo3S13·H2O与MgAl-NO3-LDH的质量比为(1.5-2):1。
7.根据权利要求5所述的方法,其中,(NH4)2Mo3S13·H2O与N,N’-二甲基甲酰胺或二甲亚砜的质量体积比为0.25-0.5mg/ml。
8.根据权利要求5所述的方法,其还包括将反应得到的产物在N,N’-二甲基甲酰胺或二甲亚砜中洗涤至滤液无色,再以丙酮洗涤。
9.一种重金属吸附材料,其包括权利要求1-4中任一项所述的层状双金属氢氧化物复合体。
CN202110870639.5A 2021-07-30 2021-07-30 一种用于吸附重金属离子的层状双金属氢氧化物复合体及其制备方法和应用 Active CN113413864B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110870639.5A CN113413864B (zh) 2021-07-30 2021-07-30 一种用于吸附重金属离子的层状双金属氢氧化物复合体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110870639.5A CN113413864B (zh) 2021-07-30 2021-07-30 一种用于吸附重金属离子的层状双金属氢氧化物复合体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113413864A true CN113413864A (zh) 2021-09-21
CN113413864B CN113413864B (zh) 2023-01-24

Family

ID=77718567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110870639.5A Active CN113413864B (zh) 2021-07-30 2021-07-30 一种用于吸附重金属离子的层状双金属氢氧化物复合体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113413864B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558552A (zh) * 2022-04-06 2022-05-31 北京师范大学 Ldh复合材料及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110624518A (zh) * 2019-09-27 2019-12-31 宁夏医科大学 一种Ppy复合体及其制备方法和应用
KR20210009828A (ko) * 2019-07-18 2021-01-27 한국과학기술연구원 왕겨바이오차 금속이중층수산화물 복합체 및 그 제조방법
CN112871128A (zh) * 2021-01-19 2021-06-01 广西师范大学 阴离子插层的双金属氢氧化物吸附剂、其制备方法及应用
CN112915961A (zh) * 2021-01-25 2021-06-08 南昌航空大学 一种磷酸改性的层状双金属氢氧化物材料的制备方法及其应用
CN113145061A (zh) * 2021-03-18 2021-07-23 北京化工大学 双壳层核壳结构磁性复合金属氧化物吸附剂及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210009828A (ko) * 2019-07-18 2021-01-27 한국과학기술연구원 왕겨바이오차 금속이중층수산화물 복합체 및 그 제조방법
CN110624518A (zh) * 2019-09-27 2019-12-31 宁夏医科大学 一种Ppy复合体及其制备方法和应用
CN112871128A (zh) * 2021-01-19 2021-06-01 广西师范大学 阴离子插层的双金属氢氧化物吸附剂、其制备方法及应用
CN112915961A (zh) * 2021-01-25 2021-06-08 南昌航空大学 一种磷酸改性的层状双金属氢氧化物材料的制备方法及其应用
CN113145061A (zh) * 2021-03-18 2021-07-23 北京化工大学 双壳层核壳结构磁性复合金属氧化物吸附剂及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIJIAO MA ET AL.: "Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS42- Ion", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
MENGWEI YUAN ET AL.: "Polypyrrole-Mo3S13: An Efficient Sorbent for the Capture of Hg2+ and Highly Selective Extraction of Ag+ over Cu2+", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
SHULAN MA ET AL.: "Structural adjustment during intercalation of macrocyclic crown ether into LDH via swelling/restoration reaction: staging formation and mechanism insights", 《DALTON TRANSACTIONS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558552A (zh) * 2022-04-06 2022-05-31 北京师范大学 Ldh复合材料及其制备方法和用途

Also Published As

Publication number Publication date
CN113413864B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
Fu et al. Post-functionalization of UiO-66-NH2 by 2, 5-Dimercapto-1, 3, 4-thiadiazole for the high efficient removal of Hg (II) in water
Chaabane et al. Comparative studies on the adsorption of metal ions from aqueous solutions using various functionalized graphene oxide sheets as supported adsorbents
Torrejos et al. Synthesis and characterization of multi-walled carbon nanotubes-supported dibenzo-14-crown-4 ether with proton ionizable carboxyl sidearm as Li+ adsorbents
Zhang et al. A solid-state chemical method for synthesizing MgO nanoparticles with superior adsorption properties
US8633331B2 (en) Nanocomposite materials comprising metal-organic-framework units and methods of using same
Leus et al. Au@ UiO-66: a base free oxidation catalyst
Sahu et al. Synthesis of thorium–ethanolamine nanocomposite by the co-precipitation method and its application for Cr (vi) removal
Zhang et al. Polyacrylic acid-functionalized graphene oxide for high-performance adsorption of gallium from aqueous solution
Akbari et al. Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue
Beyki et al. Dual application of facilely synthesized Fe 3 O 4 nanoparticles: fast reduction of nitro compound and preparation of magnetic polyphenylthiourea nanocomposite for efficient adsorption of lead ions
Li et al. High performance cobalt nanoparticle catalysts supported by carbon for ozone decomposition: the effects of the cobalt particle size and hydrophobic carbon support
CN108543516B (zh) 一种锂离子选择性吸附剂、制备方法以及从卤水提锂的工艺
CN113413864B (zh) 一种用于吸附重金属离子的层状双金属氢氧化物复合体及其制备方法和应用
Oveisi et al. Effective removal of mercury from aqueous solution using thiol-functionalized magnetic nanoparticles
Kou et al. Properties and mechanism for selective adsorption of Au (III) on an ionic liquid adsorbent by grafting N-methyl imidazole onto chloromethylated polystyrene beads
Morsi et al. Polyaniline nanotubes: mercury and competative heavy metals uptake
Pakulski et al. High-sorption terpyridine–graphene oxide hybrid for the efficient removal of heavy metal ions from wastewater
Lv et al. A sulfur-containing fluorescent hybrid porous polymer for selective detection and adsorption of Hg 2+ ions
Su et al. High-yield synthesis of poly (m-phenylenediamine) hollow nanostructures by a diethanolamine-assisted method and their enhanced ability for Ag+ adsorption
Poursaberi et al. Application of Rh (III)-metalloporphyrin grafted Fe3O4 nanoparticles for the extraction of thiocyanate ions from aqueous solutions
CA2682725C (en) Porous iron oxide and method for producing the same and method for treating solutions
CN114733494B (zh) 一种铯离子吸附剂及其制备方法和应用
CN115197382B (zh) 一种阳离子共价有机框架的制备方法及其吸附金应用
US20240293795A1 (en) Zirconium-based metal organic framework for using as a heavy metal adsorbent in condensate and preparation method thereof
CN114225912B (zh) 一种吸附剂在吸附盐酸四环素和盐酸土霉素中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant