CN113411944A - 一种调整耦合线圈位置实现引出粒子密度调节的装置 - Google Patents

一种调整耦合线圈位置实现引出粒子密度调节的装置 Download PDF

Info

Publication number
CN113411944A
CN113411944A CN202110666882.5A CN202110666882A CN113411944A CN 113411944 A CN113411944 A CN 113411944A CN 202110666882 A CN202110666882 A CN 202110666882A CN 113411944 A CN113411944 A CN 113411944A
Authority
CN
China
Prior art keywords
coil
coupling coil
discharge cavity
stepping motor
transition flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110666882.5A
Other languages
English (en)
Other versions
CN113411944B (zh
Inventor
梁立振
刘伟
时超
李超
王昊明
屈浩
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN202110666882.5A priority Critical patent/CN113411944B/zh
Publication of CN113411944A publication Critical patent/CN113411944A/zh
Application granted granted Critical
Publication of CN113411944B publication Critical patent/CN113411944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

本发明公开一种调整耦合线圈位置实现引出粒子密度调节的装置,包含放电腔体、上过渡法兰、下过渡法兰、耦合线圈、绝缘部件、线圈支架、步进电机及齿轮组、滑轨、柔性电缆、射频功率源和和阻抗匹配网络。耦合线圈与放电腔体相对位置不固定,耦合线圈通过绝缘部件连接线圈支架,线圈支架同时容纳步进电机及齿轮组的安装位置,通过控制步进电机在滑轨上的运动来调节耦合线圈在放电腔体的轴向上进行运动,调整下过渡法兰附近的等离子体密度,实现引出粒子密度调节。耦合线圈与阻抗匹配网络之间通过柔性电缆连接。本发明降低了对射频功率源调整响应的要求,降低阻抗匹配网络所需要的调节范围,增强射频等离子体放电的稳定性,降低系统操作的复杂程度。

Description

一种调整耦合线圈位置实现引出粒子密度调节的装置
技术领域
本发明涉及一种调整耦合线圈位置实现引出粒子密度调节的装置,属于等离子体引出技术领域。
背景技术
感性耦合射频离子源在材料科学、医疗器械以及磁约束核聚变等领域有着广泛的应用。在中性束注入(NBI)系统中,射频功率通过耦合线圈产生电磁场,加速电子与其他粒子发生碰撞,使得气体电离形成等离子体。等离子体中的带电粒子,如带负电的电子和负离子以及带正电的正离子可以通过引出电极被加速引出,被引出的粒子经过加速电极的加速构成粒子束,可用于磁约束核聚变装置的等离子体加热和电流驱动,相同的原理也被用在质子治疗仪等设备上。当前射频离子源耦合线圈和放电腔体之间是相对固定的,通过改变射频功率的方法来改变引出粒子的密度,从而达到改变束能量的目的。
该结构主要缺点有:
(1)耦合线圈的与放电腔体之间相对固定,没有调节位置的能力,缺乏灵活性;
(2)只有改变射频放电参数(射频功率或放电气压)或引出电压两种方式来改变引出粒子密度,放电参数或引出电压的频繁变动不利于系统的稳定工作;
(3)改变射频放电参数调节引出粒子密度会导致耦合线圈等效阻抗的变化,导致阻抗匹配网络设计难度较大,成本较高;
(4)要求射频功率源有较宽的功率调节范围与响应速度;
(5)通过调整放电参数或引出电压来调整引出粒子密度会提高设备造作的复杂性,要求操作员有丰富的射频等离子体放电与引出经验和坚实的射频等离子体物理学基础,设备操作的普适性降低。
发明内容
本发明目的是,提供一种调整耦合线圈位置实现引出粒子密度调节的装置,用于解决目前设备上引出粒子密度调节不便的问题,能够调整感性耦合射频等离子体放电的中心区域相对引出电极的位置,从而实现引出粒子密度调节;能够减少感性耦合射频等离子体放电过程中对射频功率与放电气压的调整更有利于实现平稳放电;降低对射频功率源功率调节响应的要求,有利于降低系统复杂性,提高可靠度;降低匹配网络的调整频率和调节范围要求,提高系统的稳定性和可操作性。
本发明解决其技术问题所采用的技术方案如下:
一种调整耦合线圈位置实现引出粒子密度调节的装置,所述装置包括放电腔体1、上过渡法兰2、下过渡法兰3、耦合线圈4、绝缘部件5、线圈支架6、步进电机及齿轮组7、滑轨8、柔性电缆9、射频功率源和阻抗匹配网络;等离子体主要在放电腔体1中产生,上过渡法兰2与下过渡法兰3与放电腔体1紧密接触,放电腔体1内部与外部空气隔绝;耦合线圈4与绝缘部件5之间紧密连接;绝缘部件5与线圈支架6之间紧密连接;线圈支架6同时容纳步进电机及齿轮组7,控制步进电机带动齿轮组再带动线圈支架6在滑轨8上进行移动,从而控制耦合线圈4相对放电腔体1在放电腔体1的轴向上运动,改变下过渡法兰3附近的等离子体密度;放电腔体1的位置调整需要远程控制,以保证操作的安全性。耦合线圈4与阻抗匹配网络采用柔性电缆9连接。射频功率源与阻抗匹配网络之间为配合使用关系,通过线缆连接。
进一步地,所述的放电腔体1内部与外部空气隔绝包括,在耦合线圈与放电腔体之间保留间隙,滑轨8与放电腔体1轴线平行排布,耦合线圈4运动过程中不会迫使放电腔体1发生位移,保证其密闭性。
进一步地,所述的紧密连接包括,线圈支架6和绝缘部件5采用刚性材料,保证步进电机驱动的有效性和实时性。
进一步地,所述的在滑轨8上进行移动包括,将步进电机安装在线圈支架6上、将滑轨8安装在线圈支架6上,或步进电机固定在其他物体上、将滑轨8与步进电机替换成螺杆与电机的组合,线圈支架在螺杆上运动。
进一步地,所述的耦合线圈4相对放电腔体1在放电腔体1轴向上运动包括,使用耦合线圈4与阻抗匹配网络采用柔性电缆9连接,或其他可变形机械结构保证耦合线圈4运动过程中射频功率的正常传输。
进一步地,所述的远程控制包括,控制步进电机的信号通过光纤传输至步进电机,防止射频电磁场的干扰。
具体地,一种调整耦合线圈位置实现引出粒子密度调节的装置,包括放电腔体1、上过渡法兰2、下过渡法兰3、耦合线圈4、绝缘部件5、线圈支架6、步进电机及齿轮组7、滑轨8、柔性电缆9、射频功率源和阻抗匹配网络。等离子体在放电腔体1中产生,上过渡法兰2为仪控和进气接口,下过渡法兰3为粒子引出接口,耦合线圈4通过线圈支架6与步进电机固定到一起,步进电机通过齿轮组与滑轨相连接,通过远控系统控制步进电机在滑轨上的位置来控制耦合线圈4与放电腔体1之间的相对位置,从而调整下过渡法兰3附近的等离子体密度,耦合线圈4与线圈支架6之间通过绝缘部件5相连接,射频功率通过柔性电缆9连接耦合线圈4。
本发明的有益效果是:能够通过远控系统远程控制耦合线圈相对放电腔体的位置,进而实现引出粒子密度的调节,调节引出粒子密度过程中不再需要调节射频功率或者放电气压,或者能够降低射频功率和放电气压所需要的调节范围,避免了上述参数调整对阻抗匹配网络以及射频功率源可能造成的冲击,降低了对射频功率源调整响应的要求,降低了阻抗匹配网络所需要的调节范围,能够在一定程度上降低成本,增强射频等离子体放电的稳定性,极大程度的降低系统操作的复杂程度。
附图说明
图1线圈位置可调感性耦合射频离子源示意图。
图中,1-放电腔体,2-上过渡法兰,3-下过渡法兰,4-耦合线圈,5-绝缘部件,6-为线圈支架,7-步进电机及齿轮组,8-滑轨,9-柔性电缆。
具体实施方式
下面结合附图及具体实施例详细介绍本发明。但以下的实施例仅限于解释本发明,本发明的保护范围应包括权利要求的全部内容,而且通过以下实施例的叙述,本领域的技术人员是可以完全实现本发明权利要求的全部内容。
图1为线圈位置可调感性耦合射频离子源示意图。如图1所示,线圈位置可调感性耦合射频离子源包括放电腔体1、上过渡法兰2、下过渡法兰3、耦合线圈4、绝缘部件5、线圈支架6、步进电机及齿轮组7、滑轨8、柔性电缆9、射频功率源和阻抗匹配网络等。等离子体主要在放电腔体1中产生。放电腔体1的上端设置有上过渡法兰2,下端设置有下过渡法兰3,上过渡法兰2与下过渡法兰3均与放电腔体1紧密接触,放电腔体1内部与外部空气隔绝。上过渡法兰2为仪控和进气接口,下过渡法兰3为粒子引出接口。耦合线圈4具有若干匝,缠绕在放电腔体1外壁上。耦合线圈4的一端与一个绝缘部件5紧密连接,耦合线圈4的另一端与另一个绝缘部件5紧密连接。每个绝缘部件5均与线圈支架6之间紧密连接。耦合线圈4与阻抗匹配网络采用柔性电缆9连接。耦合线圈4通过线圈支架6与步进电机固定到一起,步进电机通过齿轮组与滑轨8相连接,线圈支架6同时容纳步进电机及齿轮组7,控制步进电机带动齿轮组再带动线圈支架6在滑轨8上进行移动,从而控制耦合线圈4相对放电腔体1在放电腔体1的轴向上运动,改变下过渡法兰3附近的等离子体密度。放电腔体1的位置调整需要远程控制,以保证操作的安全性。射频功率源和阻抗匹配网络之间为配合使用关系,通过线缆连接。
在耦合线圈4与放电腔体1之间保留一定间隙,滑轨8与放电腔体1轴线平行排布,耦合线圈4运动过程中不会迫使放电腔体1发生位移,保证其密闭性。
线圈支架6和绝缘部件5采用刚性材料,保证步进电机驱动的有效性和实时性。
所述在滑轨8上进行移动包括但不限于将步进电机安装在线圈支架6上、将滑轨8安装在线圈支架6上。或将步进电机固定在其他物体上、将滑轨8与步进电机替换成螺杆与电机的组合,线圈支架6在螺杆上运动。
所述的耦合线圈4相对放电腔体1在放电腔体1轴向上运动,包括但不限于使用耦合线圈4与阻抗匹配网络采用柔性电缆连接,或其他可变形机械结构保证耦合线圈运动过程中射频功率的正常传输。
所述的远程控制包括控制步进电机的信号通过光纤传输至步进电机,防止射频电磁场的干扰。
图1中,放电腔体1,是射频等离子体放电的主要区域,等离子体主要集中在放电腔体与耦合线圈的几何圆心重合处。上过渡法兰2,下过渡法兰3,是粒子引出的出口。耦合线圈4与放电腔体11之间不固定。绝缘部件5,起到刚性连接耦合线圈4和线圈支架6的作用,防止耦合线圈4上的射频功率影响步进电机与控制系统。线圈支架6,起到固定线圈位置和容纳步进电机及齿轮组7的作用。步进电机及齿轮组7,为耦合线圈位置的调节提供动力。滑轨8,通常固定在实验设备的支架上,齿轮在在滑轨8上的运动能够调节线圈4位置。柔性电缆9,连接阻抗匹配网络与耦合线圈,在保证射频功率传输不受影响的前提下给与耦合线圈4活动空间。
装置的原理及使用方法为:在感性耦合射频等离子体放电及引出的过程中,下过渡法兰3附近的等离子体密度对引出粒子的密度有着决定性影响,下过渡法兰3附近的等离子体密度与耦合线圈4距离下过渡法兰3的距离呈负相关,当需要调节引出粒子密度时,通过远控系统控制步进电机的转动,步进电机带动齿轮组在滑轨8上运动,从而带动耦合线圈4在箭头所示方向(放电腔体1的轴向)上运动,调整引出粒密度。
以上所述的实施例仅是对本发明的优选实施方式进行描述,优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (6)

1.一种调整耦合线圈位置实现引出粒子密度调节的装置,其特征在于,所述装置包括放电腔体(1)、上过渡法兰(2)、下过渡法兰(3)、耦合线圈(4)、绝缘部件(5)、线圈支架(6)、步进电机及齿轮组(7)、滑轨(8)、柔性电缆(9)、射频功率源和阻抗匹配网络;等离子体主要在放电腔体(1)中产生,上过渡法兰(2)与下过渡法兰(3)与放电腔体(1)紧密接触,放电腔体(1)内部与外部空气隔绝;耦合线圈(4)与绝缘部件(5)之间紧密连接;绝缘部件(5)与线圈支架(6)之间紧密连接;线圈支架(6)同时容纳步进电机及齿轮组(7),控制步进电机带动齿轮组再带动线圈支架(6)在滑轨(8)上进行移动,从而控制耦合线圈(4)相对放电腔体(1)在放电腔体(1)的轴向上运动,改变下过渡法兰(3)附近的等离子体密度;放电腔体(1)的位置调整需要远程控制,以保证操作的安全性;耦合线圈(4)与阻抗匹配网络采用柔性电缆(9)连接;射频功率源和阻抗匹配网络之间为配合使用关系,通过线缆连接。
2.根据权利要求1所述的装置,其特征在于,所述的放电腔体(1)内部与外部空气隔绝包括,在耦合线圈与放电腔体之间保留间隙,滑轨(8)与放电腔体(1)轴线平行排布,耦合线圈(4)运动过程中不会迫使放电腔体(1)发生位移,保证其密闭性。
3.根据权利要求1所述的装置,其特征在于,所述的紧密连接包括,线圈支架(6)和绝缘部件(5)采用刚性材料,保证步进电机驱动的有效性和实时性。
4.根据权利要求1所述的装置,其特征在于,所述的在滑轨(8)上进行移动包括将步进电机安装在线圈支架(6)上、将滑轨(8)安装在线圈支架(6)上,或步进电机固定在其他物体上、将滑轨(8)与步进电机替换成螺杆与电机的组合,线圈支架在螺杆上运动。
5.根据权利要求1所述的装置,其特征在于,所述的耦合线圈(4)相对放电腔体(1)在放电腔体(1)轴向上运动包括,使用耦合线圈(4)与阻抗匹配网络采用柔性电缆(9)连接,或其他可变形机械结构保证耦合线圈(4)运动过程中射频功率的正常传输。
6.根据权利要求1所述的装置,其特征在于,所述的远程控制包括,控制步进电机的信号通过光纤传输至步进电机,防止射频电磁场的干扰。
CN202110666882.5A 2021-06-16 2021-06-16 一种调整耦合线圈位置实现引出粒子密度调节的装置 Active CN113411944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110666882.5A CN113411944B (zh) 2021-06-16 2021-06-16 一种调整耦合线圈位置实现引出粒子密度调节的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110666882.5A CN113411944B (zh) 2021-06-16 2021-06-16 一种调整耦合线圈位置实现引出粒子密度调节的装置

Publications (2)

Publication Number Publication Date
CN113411944A true CN113411944A (zh) 2021-09-17
CN113411944B CN113411944B (zh) 2023-08-01

Family

ID=77684270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110666882.5A Active CN113411944B (zh) 2021-06-16 2021-06-16 一种调整耦合线圈位置实现引出粒子密度调节的装置

Country Status (1)

Country Link
CN (1) CN113411944B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284128A (zh) * 2021-12-27 2022-04-05 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种控制离子源引出粒子密度的调节装置及其控制方法
CN115397087A (zh) * 2022-10-27 2022-11-25 合肥中科离子医学技术装备有限公司 线圈调节装置及回旋加速器
CN115988725A (zh) * 2023-02-17 2023-04-18 哈尔滨工业大学 一种用于高真空等离子体环境的磁体位置调节机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2320597A1 (en) * 2000-01-06 2001-07-06 Blacklight Power, Inc. Ion cyclotron power converter and radio and microwave generator
CN101582322A (zh) * 2008-05-12 2009-11-18 北京北方微电子基地设备工艺研究中心有限责任公司 一种电感耦合线圈及采用该耦合线圈的等离子体处理装置
DE102014010324B3 (de) * 2014-05-23 2015-02-05 Krohne Ag Kernmagnetisches Durchflussmessgerät und Verfahren zum Betreiben eines kernmagnetischen Durchflussmessgeräts
CN104507250A (zh) * 2014-12-31 2015-04-08 中国科学院空间科学与应用研究中心 一种等离子体光子晶体的产生装置
CN110062516A (zh) * 2019-04-15 2019-07-26 中国科学院合肥物质科学研究院 一种微波等离子体高温热处理丝状材料的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2320597A1 (en) * 2000-01-06 2001-07-06 Blacklight Power, Inc. Ion cyclotron power converter and radio and microwave generator
US20100209335A1 (en) * 2000-01-06 2010-08-19 Mills Randell L Ion cyclotron power converter and radio microwave generator
CN101582322A (zh) * 2008-05-12 2009-11-18 北京北方微电子基地设备工艺研究中心有限责任公司 一种电感耦合线圈及采用该耦合线圈的等离子体处理装置
DE102014010324B3 (de) * 2014-05-23 2015-02-05 Krohne Ag Kernmagnetisches Durchflussmessgerät und Verfahren zum Betreiben eines kernmagnetischen Durchflussmessgeräts
CN105091960A (zh) * 2014-05-23 2015-11-25 克洛纳有限公司 核磁式流量测量仪和用于运行核磁式流量测量仪的方法
CN104507250A (zh) * 2014-12-31 2015-04-08 中国科学院空间科学与应用研究中心 一种等离子体光子晶体的产生装置
CN110062516A (zh) * 2019-04-15 2019-07-26 中国科学院合肥物质科学研究院 一种微波等离子体高温热处理丝状材料的装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284128A (zh) * 2021-12-27 2022-04-05 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种控制离子源引出粒子密度的调节装置及其控制方法
CN114284128B (zh) * 2021-12-27 2024-01-26 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种控制离子源引出粒子密度的调节装置及其控制方法
CN115397087A (zh) * 2022-10-27 2022-11-25 合肥中科离子医学技术装备有限公司 线圈调节装置及回旋加速器
CN115397087B (zh) * 2022-10-27 2023-03-14 合肥中科离子医学技术装备有限公司 线圈调节装置及回旋加速器
CN115988725A (zh) * 2023-02-17 2023-04-18 哈尔滨工业大学 一种用于高真空等离子体环境的磁体位置调节机构

Also Published As

Publication number Publication date
CN113411944B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN113411944A (zh) 一种调整耦合线圈位置实现引出粒子密度调节的装置
CN109786205B (zh) 电子回旋共振离子源
US20150084548A1 (en) Circular accelerator
CN109202072B (zh) 一种同轴送粉的电子枪装置
US6975072B2 (en) Ion source with external RF antenna
US7005809B2 (en) Energy switch for particle accelerator
WO2000019786A2 (en) Method and system for minimizing the magnet size in a cyclotron
AU4865196A (en) X-ray source
CN107946159A (zh) 一种可调式离子源及静电约束聚变反应器
CN104822221A (zh) 驻波电子直线加速器
CN113382529A (zh) 一种超导离子环形同步加速器
JPS6086746A (ja) 電子銃
US20020180364A1 (en) Device and method for ion beam acceleration and electron beam pulse formation and amplification
JPS63141300A (ja) シンクロトロン加速装置
JP2020135958A (ja) イオン源、およびこれを用いた円形加速器ならびに粒子線治療システム
CN114738219A (zh) 一种微牛级推力ecr离子推力器栅极组件
CN114974897A (zh) 容值快速转换真空电容器
CN204616188U (zh) 驻波电子直线加速器
JP4078307B2 (ja) 電子ビーム管装置
KR101470779B1 (ko) 플라즈마 점화장치 및 플라즈마 점화방법
CN114284128B (zh) 一种控制离子源引出粒子密度的调节装置及其控制方法
CN117177428B (zh) 超导回旋质子加速器
EP4297061A1 (en) Ion source apparatus with adjustable plasma density
US20060202606A1 (en) Inductive output tube tuning arrangement
US20230134262A1 (en) Resonator, linear accelerator, and ion implanter having adjustable pickup loop

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant