CN113406388A - 光电探测器频率响应测试装置及其测试方法 - Google Patents

光电探测器频率响应测试装置及其测试方法 Download PDF

Info

Publication number
CN113406388A
CN113406388A CN202110698092.5A CN202110698092A CN113406388A CN 113406388 A CN113406388 A CN 113406388A CN 202110698092 A CN202110698092 A CN 202110698092A CN 113406388 A CN113406388 A CN 113406388A
Authority
CN
China
Prior art keywords
frequency
light
intensity modulator
optical coupler
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110698092.5A
Other languages
English (en)
Other versions
CN113406388B (zh
Inventor
孙甲政
许博蕊
袁海庆
文花顺
祝宁华
李明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN202110698092.5A priority Critical patent/CN113406388B/zh
Publication of CN113406388A publication Critical patent/CN113406388A/zh
Application granted granted Critical
Publication of CN113406388B publication Critical patent/CN113406388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/14Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/17Spectrum analysis; Fourier analysis with optical or acoustical auxiliary devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/175Spectrum analysis; Fourier analysis by delay means, e.g. tapped delay lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/18Spectrum analysis; Fourier analysis with provision for recording frequency spectrum

Abstract

本发明提供一种光电探测器频率响应测试方法,包括:波形发生器向可调谐激光器提供方波调谐信号;可调谐激光器接收方波调谐信号,产生波长分别为λ1和λ2的激光;波长为λ1的激光经光耦合器输出频率为f1的光A;波长为λ2的激光经可调延时光纤输出频率为f2的光B;光A与光B的频率差Δf=f2‑f1;强度调制器同时接收光A与光B;微波信号源向强度调制器提供调制信号fm;强度调制器产生频率为f1±fm的±1阶边带和频率为f1+Δf±fm的±1阶边带;待测光电探测器对频率为f1+fm的+1阶边带与频率为f1+Δf‑fm的‑1阶边带拍频;待测光电探测器对频率为f1‑fm的‑1阶边带与频率为f1+Δf+fm的+1阶边带拍频;分别记录频率为2fm+Δf和频率为|Δf‑2fm|的谱线对应的功率,得到待测光电探测器在频率2fm+Δf和|Δf‑2fm|对应的频率响应。

Description

光电探测器频率响应测试装置及其测试方法
技术领域
本公开涉及光电器件频率响应测试技术领域,尤其涉及一种光电探测器频率响应测试装置及其测试方法。
背景技术
光电探测器是一类将光信号转化为电信号的光电器件,在各类光电系统中发挥着不可替代的作用,尤其是在光通信领域,随着5G技术的普及,光通信不断向着高速率、大容量、低延时的方向发展,这也对光电探测器的性能提出了更高的要求。
带宽作为光电探测器的重要指标,表征了探测器对于高频信号的响应能力,带宽越大其所能传输的信号速率越快。探测器的带宽可以通过测试从直流电(DC)到高频处不同频率下的待测器件的频率响应的方法得到,目前探测器的带宽已经可以达到几十甚至上百GHz,这给器件的频响测试带来了巨大的挑战。探测器带宽频域上的主要测试方法包括:矢量网络分析仪扫频法和激光器光外差法。其中,扫频法由于在链路中引入了调制器,导致探测器频率响应测试结果实际包含了调制器的频率响应测试结果,因此该方法限制了探测器的频率响应测试范围,只有当调制器带宽远大于测试频率范围时才能认为调制器带宽对探测器的频率响应测试结果没有影响;外差法由于需要两个激光器作为光源进行拍频,而环境的变化引起的波长功率变化会引起拍频信号频率和幅度的漂移,导致该方法对两个独立光源的频率匹配和频率稳定性要求很严格。
因此,迫切需要一种突破调制器带宽的限制且对光源稳定性没有苛刻要求的宽范围、高效率光电探测器频率响应测试方案。
发明内容
有鉴于此,为了提供一种宽范围、高效率光电探测器频率响应测试方案,本发明提供一种光电探测器频率响应测试装置及其测试方法。
一种光电探测器频率响应测试方法,该测试方法包括:波形发生器向可调谐激光器周期性提供频率为f且低电平固定为V1和高电平固定为V2的方波调谐信号,其中,周期为2Δt;可调谐激光器接收方波调谐信号,产生波长分别为λ1和λ2的周期性变化的激光;其中,波长为λ1的激光与波长为λ2的激光的切换时间间隔为Δt;波长为λ1的激光由光耦合器的第一输入端口进入光耦合器,由光耦合器的第一输出端口输出频率为f1的光A;波长为λ2的激光由光耦合器的第一输入端口进入光耦合器,经过光耦合器的第二输出端口、可调延时光纤、光耦合器的第二输入端口,由第一输出端口输出频率为f2的光B;其中,光A与光B的频率差为Δf=f2-f1;可调延时光纤用于将光B按照相对于光A的时延量为Td的时长进行延时处理;强度调制器同时接收频率为f1的光A与频率为f1+Δf的光B;微波信号源与强度调制器的射频输入端口相连接,向强度调制器提供调制信号fm;强度调制器接收调制信号fm,并产生频率为f1±fm的±1阶微波调制边带和频率为f1+Δf±fm的±1阶微波调制边带;待测光电探测器对强度调制器产生的频率为f1+fm的+1阶微波调制边带与频率为f1+Δf-fm的-1阶微波调制边带拍频,得到频率为|Δf-2fm|的谱线;待测光电探测器对强度调制器产生的频率为f1-fm的-1阶微波调制边带与频率为f1+Δf+fm的+1阶微波调制边带拍频,得到频率为2fm+Δf的谱线;利用频谱分析仪分别记录频率为2fm+Δf的谱线对应的功率和频率为|Δf-2fm|的谱线对应的功率,得到待测光电探测器在频率2fm+Δf和|Δf-2fm|对应的频率响应。
在一些实施例中,该测试方法还包括:改变调制信号fm,记录在不同的调制信号fm的调制下,频率为2fm+Δf和|Δf-2fm|的谱线对应的功率,得到待测光电探测器在频率2fm+Δf和|Δf-2fm|对应的频率响应;其中,最大频率为2fm(max)+Δf,fm(max)为fm的最大值。
在一些实施例中,可调谐激光器为包含有相区的三段式或四段式可调谐激光器。
在一些实施例中,可调延时光纤的时延量Td=(2n+1)×Δt,其中n为大于等于0的整数。
在一些实施例中,当Δf-2fm(max)<0,得到待测光电探测器对直流电的频率响应。
在一些实施例中,待测光电探测器频率响应的频率范围为直流电到2fm(max)+Δf。
在一些实施例中,强度调制器工作在载波抑制双边带调制状态,且调制所得+1阶微波调制边带强度与-1阶微波调制边带强度相等。
在一些实施例中,调制信号fm处于所述强度调制器带宽f3dB平坦范围内,即fm<f3dB
在一些实施例中,Δf<2f3dB
本发明还提供一种用于实现上述的光电探测器频率响应测试方法的测试装置,用于测试待测光电探测器对频率的响应,包括:驱动电源、可调谐激光器、光耦合器、强度调制器、波形发生器、可调延时光纤、微波信号源、频谱分析仪;其中,可调谐激光器、光耦合器的第一输入端口、光耦合器的第一输出端口、强度调制器、待测光电探测器及频谱分析仪依次连接;驱动电源与可调谐激光器偏置电极相连接,用于向可调谐激光器偏置电极提供偏置电流;波形发生器与可调谐激光器相区调谐电极相连接,用于向可调谐激光器相区调谐电极提供方波调谐信号;可调谐激光器用于接收方波调谐信号,产生波长分别为λ1和波长为λ2的激光,其中波长为λ1的激光与波长为λ2的激光的切换时间间隔为Δt;光耦合器的第一输入端口用于接收波长为λ1的激光,光耦合器的第一输出端口用于输出频率为f1的光A;光耦合器的第一输入端口、光耦合器的第二输出端口、可调延时光纤、光耦合器的第二输入端口、光耦合器的第一输出端口构成一环路,可调延时光纤用于将光B按照相对于光A的时延量为Td的时长进行延时处理;上述环路用于输出频率为f2的光B,其中光A与光B的频率差为Δf=f2-f1;强度调制器用于同时接收频率为f1的光A与频率为f1+Δf的光B;微波信号源与强度调制器的射频输入端口相连接,用于向强度调制器提供调制信号fm;强度调制器用于接收调制信号fm,并产生频率为f1±fm的±1阶微波调制边带和频率为f1+Δf±fm的±1阶微波调制边带;待测光电探测器用于对强度调制器产生的频率为f1+fm的+1阶微波调制边带与频率为f1+Δf-fm的-1阶微波调制边带拍频,得到频率为|Δf-2fm|的谱线;待测光电探测器用于对强度调制器产生的频率f1-fm的-1阶微波调制边带与频率为f1+Δf+fm的+1阶微波调制边带拍频,得到频率为2fm+Δf的谱线;频谱分析仪用于接收待测光电探测器拍频后的谱线。
本发明通过周期性调制可调谐激光器的相区产生具有周期性波长变化的载波,利用可调延时光纤使两波长在时域上重叠从而产生一种双波长光源,并通过载波抑制双边带调制后边带间的拍频,可以同时获得待测光电探测器在|Δf-2fm|和Δf+2fm两个频率处的频谱响应,提高了测试效率。
本发明通过将强度调制器的调制频率fm设置为处于其带宽范围内平坦的部分,减小了强度调制器频率响应对待测光电探测器频率响应测试结果的影响。
本发明中待测光电探测器的频率响应测试范围为DC~2fm(max)+Δf,拓宽了待测光电探测器的频率响应测试范围。
本发明中由于两个光信号是由同一可调谐激光器得到的,因此外界环境对于两个光信号的扰动一致,拍频所得频率差恒定,提高了系统稳定性。
附图说明
图1为本发明实施例提供的待测光电探测器频率响应测试方法的流程示意图;
图2为本发明实施例提供的可调谐激光器驱动电压与激射波长对应关系示意图;
图3为本发明实施例提供的可调延时光纤的延时结果示意图;
图4为本发明实施例提供的待测光电探测器频率响应测试方法原理示意图;
图5为本发明实施例提供的待测光电探测器频率响应测试装置的结构示意图。
【附图标记说明】
1-驱动电源;2-可调谐激光器;3-光耦合器;4-强度调制器;5-待测光电探测器;6-波形发生器;7-可调延时光纤;8-微波信号源;9-频谱分析仪;①-光耦合器的第一输入端口;②-光耦合器的第二输入端口;③-光耦合器的第一输出端口;④-光耦合器的第二输出端口。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明提供了一种光电探测器的频率响应测试方法,该方法通过周期性调制可调谐激光器的相区产生具有周期性波长变化的载波,利用可调延时光纤使两波长在时域上重叠从而产生一种双波长光源,并通过载波抑制双边带调制后边带间的拍频,突破了强度调制器带宽的限制,将待测光电探测器频率响应的测量范围由fm(max)提升为2fm(max)+Δf,实现了对待测光电探测器频率响应宽范围、高效率的测试。
图1为本发明实施例提供的待测光电探测器频率响应测试方法的流程示意图。
如图1所示,该测试方法包括操作S101~S109。
在操作S101中,波形发生器6向可调谐激光器2周期性提供频率为f且低电平固定为V1和高电平固定为V2的方波调谐信号,其中,周期为2Δt。
根据本发明的实施例,可调谐激光器2为包含有相区的三段式或四段式可调谐激光器,可通过改变相区电流来改变可调谐激光器2的工作波长。
在操作S102中,可调谐激光器2接收方波调谐信号,产生波长分别为λ1和λ2的周期性变化的激光;其中,波长为λ1的激光与波长为λ2的激光的切换时间间隔为Δt,其中:
Figure BDA0003128615970000051
图2为本发明实施例提供的可调谐激光器驱动电压与激射波长对应关系示意图。
如图2(a)所示,可调谐激光器2相区施加的电信号为任意波形发生器6产生的频率为f且低电平为V1、高电平为V2的方波调谐信号。如图2(b)所示,其中V1信号对应的激射波长为λ1,V2信号对应的激射波长为λ2,两波长间的频率差为Δf,其中:
Figure BDA0003128615970000052
在操作S103中,波长为λ1的激光由光耦合器3的第一输入端口①进入光耦合器3,由光耦合器3的第一输出端口③输出频率为f1的光A。
根据本发明的实施例,光耦合器3的分光比可以为1:1。
在操作S104中,波长为λ2的激光由光耦合器3的第一输入端口①进入光耦合器3,经过光耦合器3的第二输出端口④、可调延时光纤7、光耦合器3的第二输入端口②,由光耦合器3的第一输出端口③输出频率为f2的光B;其中,光A与光B的频率差为Δf=f2-f1;可调延时光纤7用于将光B按照相对于光A的时延量为Td的时长进行延时处理。
根据本发明的实施例,可调延时光纤的时延量Td=(2n+1)×Δt,其中n为大于等于0的整数,例如n可以为0、1、4、7、8。
图3为本发明实施例提供的可调延时光纤的延时结果示意图。
图4为本发明实施例提供的待测光电探测器频率响应测试方法原理示意图。
如图3和图4所示,经可调延时光纤7后从光耦合器3的第一输出端口③输出的频率为f2=f1+Δf的光B与直接从第一输出端口③输出的频率为f1的光A在时域上完全重叠,形成如图4(a)所示的双波长光载波,可表示为:
Figure BDA0003128615970000061
其中,E1和E2分别为光λ1和光λ2的幅度。
在操作S105中,强度调制器4同时接收频率为f1的光A与频率为f1+Δf的光B。
在操作S106中,微波信号源8与强度调制器4的射频输入端口相连接,向强度调制器4提供调制信号fm;强度调制器4接收调制信号fm,并产生频率为f1±fm的±1阶微波调制边带和频率为f1+Δf±fm的±1阶微波调制边带。
根据本发明的实施例,强度调制器4工作在载波抑制双边带调制状态,且调制所得+1阶边带与-1阶边带强度相等。
根据本发明的实施例,调节强度调制器4使其工作在最小传输点,将接收到的频率为fm的调制信号以载波抑制双边带调制的方式调制到光载波上,得到如图4(b)所示的调制光,调制光可表示为:
Figure BDA0003128615970000062
其中,J1(β)为一阶贝塞尔函数,β为调制系数。
根据本发明的实施例,调制信号fm处于所述强度调制器带宽f3dB平坦范围内,即fm<f3dB
根据本发明的实施例,强度调制器4的带宽可以为35GHz,可以认为其在0~20GHz范围内频率响应平坦。
在操作S107中,待测光电探测器5对强度调制器4产生的频率为f1+fm的+1阶微波调制边带与频率为f1+Δf-fm的-1阶微波调制边带拍频。
在操作S108中,待测光电探测器5对强度调制器4产生的频率f1-fm的-1阶微波调制边带与频率为f1+Δf+fm的+1阶微波调制边带拍频。
根据本发明的实施例,将调制后的光信号输入到待测光电探测器5中进行拍频可得光电流:
Figure BDA0003128615970000071
其中R(f)待测光电探测器5在不同频率的频率响应度。为由公式(3)可得
Figure BDA0003128615970000072
Figure BDA0003128615970000073
由式(4)、(5)及图4(c)可知,所得调制后的光A的-1阶边带与光B的+1阶边带拍频得到Δf+2fm的频率分量,所得调制后的光A的+1阶边带与光B的-1阶边带拍频得到|Δf-2fm|的频率分量。
在操作S109中,利用频谱分析仪9分别记录频率为2fm+Δf的谱线对应的功率和频率为|Δf-2fm|的谱线对应的功率,得到待测光电探测器在频率2fm+Δf和|Δf-2fm|对应的频率响应。
根据本发明的实施例,分别记录频谱分析仪9上Δf+2fm和|Δf-2fm|处的谱线对应的功率P(Δf+2fm)和P(|Δf-2fm|)。
根据本发明的实施例,该测试方法还包括:改变调制信号fm,记录在不同的调制信号fm的调制下,频率为2fm+Δf和|Δf-2fm|的谱线对应的功率,得到待测光电探测器在频率2fm+Δf和|Δf-2fm|对应的频率响应;其中,最大频率为2fm(max)+Δf,fm(max)为fm的最大值。
根据本发明的实施例,改变fm,重复操作S108和S109,由于存在
Figure BDA0003128615970000081
其中RL为负载电阻,所以上述两频率在频谱分析仪9上的功率只与探测器5对应的频率响应度有关,故记录不同fm下Δf+2fm和|Δf-2fm|处的功率,即可得到探测器5从DC到Δf+2fm(max)频率范围内的频率响应曲线,其中fm(max)为调制频率所能采用的最大频率。
根据本发明的实施例,当Δf-2fm(max)<0,得到待测光电探测器对直流电的频率响应。
根据本发明的实施例,待测光电探测器频率响应的频率范围为直流电到2fm(max)+Δf。
根据本发明的实施例,Δf<2f3dB
本发明还提供一种用于实现上述的光电探测器频率响应测试方法的测试装置,用于测试待测光电探测器5对频率的响应。
图5为本发明实施例提供的待测光电探测器频率响应测试装置的结构示意图。
如图5所示,该测试装置包括:驱动电源1、可调谐激光器2、光耦合器3、强度调制器4、波形发生器6、可调延时光纤7、微波信号源8、频谱分析仪9;其中,可调谐激光器2、光耦合器3的第一输入端口①、光耦合器3的第一输出端口③、强度调制器4、待测光电探测器5及频谱分析仪9依次连接;驱动电源1与可调谐激光器2的偏置电极相连接,用于向可调谐激光器2的偏置电极提供偏置电流;波形发生器6与可调谐激光器2相区调谐电极相连接,用于向可调谐激光器2相区调谐电极提供方波调谐信号;可调谐激光器2用于接收方波调谐信号,产生波长分别为λ1和波长为λ2的激光,其中波长为λ1的激光与波长为λ2的激光的切换时间间隔为Δt;光耦合器3的第一输入端口①用于接收波长为λ1的激光,光耦合器3的第一输出端口③用于输出频率为f1的光A;光耦合器3的第一输入端口①、光耦合器3的第二输出端口④、可调延时光纤7、光耦合器3的第二输入端口②、光耦合器的第一输出端口③构成一环路,可调延时光纤7用于将光B按照相对于光A的时延量为Td的时长进行延时处理;上述环路用于输出频率为f2的光B,其中光A与光B的频率差为Δf=f2-f1;强度调制器4用于同时接收频率为f1的光A与频率为f1+Δf的光B;微波信号源8与强度调制器4的射频输入端口相连接,用于向强度调制器4提供调制信号fm;强度调制器4用于接收调制信号fm,并产生频率为f1±fm的±1阶微波调制边带和频率为f1+Δf±fm的±1阶微波调制边带;待测光电探测器5用于对强度调制器4产生的频率为f1+fm的+1阶微波调制边带与频率为f1+Δf-fm的-1阶微波调制边带拍频;待测光电探测器5用于对强度调制器4产生的频率为f1-fm的-1阶微波调制边带与频率为f1+Δf+fm的+1阶微波调制边带拍频;频谱分析仪9接收待测光电探测器5拍频后的谱线。
本发明的实施例通过周期性调制可调谐激光器的相区产生具有周期性波长变化的载波,利用可调延时光纤使两波长在时域上重叠从而产生一种双波长光源,并通过载波抑制双边带调制后边带间的拍频,可以同时获得待测光电探测器在|Δf-2fm|和Δf+2fm两个频率处的频谱响应,提高了测试效率。
本发明的实施例通过将强度调制器的调制频率fm设置为处于其带宽范围内平坦的部分,减小了强度调制器频率响应对待测光电探测器频率响应测试结果的影响。
本发明的实施例中待测光电探测器的频率响应测试范围为DC~2fm(max)+Δf,拓宽了待测光电探测器的频率响应测试范围。
本发明的实施例中由于两个光信号是由同一可调谐激光器得到的,因此外界环境对于两个光信号的扰动一致,拍频所得频率差恒定,提高了系统稳定性。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光电探测器频率响应测试方法,其特征在于,包括:
波形发生器向可调谐激光器周期性提供频率为f且低电平固定为V1和高电平固定为V2的方波调谐信号,其中,周期为2Δt;
所述可调谐激光器接收所述方波调谐信号,产生波长分别为λ1和λ2的周期性变化的激光;
其中,所述波长为λ1的激光与所述波长为λ2的激光的切换时间间隔为Δt;
所述波长为λ1的激光由所述光耦合器的第一输入端口进入所述光耦合器,由所述光耦合器的第一输出端口输出频率为f1的光A;
所述波长为λ2的激光由所述光耦合器的第一输入端口进入所述光耦合器,经过所述光耦合器的第二输出端口、可调延时光纤、所述光耦合器的第二输入端口,由所述第一输出端口输出频率为f2的光B;其中,所述光A与所述光B的频率差为Δf=f2-f1;所述可调延时光纤用于将所述光B按照相对于所述光A的时延量为Td的时长进行延时处理;
所述强度调制器同时接收所述频率为f1的光A与所述频率为f1+Δf的光B;
微波信号源与所述强度调制器的射频输入端口相连接,向所述强度调制器提供调制信号fm
所述强度调制器接收所述调制信号fm,并产生频率为f1±fm的±1阶微波调制边带和频率为f1+Δf±fm的±1阶微波调制边带;
所述待测光电探测器对所述强度调制器产生的频率为f1+fm的+1阶微波调制边带与所述频率为f1+Δf-fm的-1阶微波调制边带拍频,得到频率为|Δf-2fm|的谱线;
所述待测光电探测器对所述强度调制器产生的频率f1-fm的-1阶微波调制边带与所述频率为f1+Δf+fm的+1阶微波调制边带拍频,得到频率为2fm+Δf的谱线;
利用所述频谱分析仪分别记录所述频率为2fm+Δf的谱线对应的功率和所述频率为|Δf-2fm|的谱线对应的功率,得到所述待测光电探测器在频率2fm+Δf和|Δf-2fm|对应的频率响应。
2.根据权利要求1所述的测试方法,其特征在于,还包括:改变所述调制信号fm,记录在不同的所述调制信号fm的调制下,所述频率为2fm+Δf和|Δf-2fm|的谱线对应的功率,得到所述待测光电探测器在频率2fm+Δf和|Δf-2fm|对应的频率响应;其中,最大频率为2fm(max)+Δf,fm(max)为fm的最大值。
3.根据权利要求1所述的测试方法,其特征在于,所述可调谐激光器为包含有相区的三段式或四段式可调谐激光器。
4.根据权利要求1所述的测试方法,其特征在于,所述可调延时光纤的时延量Td=(2n+1)×Δt,其中n为大于等于0的整数。
5.根据权利要求2所述的测试方法,其特征在于,当Δf-2fm(max)<0,得到所述待测光电探测器对直流电的频率响应。
6.根据权利要求5所述的测试方法,其特征在于,所述待测光电探测器频率响应的频率范围为直流电到2fm(max)+Δf。
7.根据权利要求1所述的测试方法,其特征在于,所述强度调制器工作在载波抑制双边带调制状态,且调制所得+1阶微波调制边带强度与-1阶微波调制边带强度相等。
8.根据权利要求5所述的测试方法,其特征在于,所述调制信号fm处于所述强度调制器带宽f3dB平坦范围内,即fm<f3dB
9.根据权利要求8所述的测试方法,其特征在于,Δf<2f3dB
10.一种用于实现权利要求1~9中任一项所述的光电探测器频率响应测试方法的测试装置,用于测试待测光电探测器对频率的响应,其特征在于,包括:驱动电源、可调谐激光器、光耦合器、强度调制器、波形发生器、可调延时光纤、微波信号源、频谱分析仪;
其中,所述可调谐激光器、所述光耦合器的第一输入端口、所述光耦合器的第一输出端口、所述强度调制器、所述待测光电探测器及所述频谱分析仪依次连接;
所述驱动电源与所述可调谐激光器偏置电极相连接,用于向所述可调谐激光器偏置电极提供偏置电流;
所述波形发生器与所述可调谐激光器相区调谐电极相连接,用于向所述可调谐激光器相区调谐电极提供方波调谐信号;
所述可调谐激光器用于接收所述方波调谐信号,产生波长分别为λ1和波长为λ2的激光,其中所述波长为λ1的激光与波长为λ2的激光的切换时间间隔为Δt;
所述光耦合器的第一输入端口用于接收所述波长为λ1的激光,所述光耦合器的第一输出端口用于输出频率为f1的光A;
所述光耦合器的第一输入端口、所述光耦合器的第二输出端口、所述可调延时光纤、所述光耦合器的第二输入端口、所述光耦合器的第一输出端口构成一环路,所述可调延时光纤用于将所述光B按照相对于所述光A的时延量为Td的时长进行延时处理;
所述环路用于输出频率为f2的光B,其中所述光A与所述光B的频率差为Δf=f2-f1
所述强度调制器用于同时接收所述频率为f1的光A与所述频率为f1+Δf的光B;
所述微波信号源与所述强度调制器的射频输入端口相连接,用于向所述强度调制器提供调制信号fm
所述强度调制器用于接收所述调制信号fm,并产生频率为f1±fm的±1阶微波调制边带和频率为f1+Δf±fm的±1阶微波调制边带;
所述待测光电探测器用于对所述强度调制器产生的频率为f1+fm的+1阶微波调制边带与所述频率为f1+Δf-fm的-1阶微波调制边带拍频;
所述待测光电探测器用于对所述强度调制器产生的频率f1-fm的-1阶微波调制边带与所述频率为f1+Δf+fm的+1阶微波调制边带拍频;
所述频谱分析仪用于接收所述待测光电探测器拍频后的谱线。
CN202110698092.5A 2021-06-23 2021-06-23 光电探测器频率响应测试装置及其测试方法 Active CN113406388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110698092.5A CN113406388B (zh) 2021-06-23 2021-06-23 光电探测器频率响应测试装置及其测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110698092.5A CN113406388B (zh) 2021-06-23 2021-06-23 光电探测器频率响应测试装置及其测试方法

Publications (2)

Publication Number Publication Date
CN113406388A true CN113406388A (zh) 2021-09-17
CN113406388B CN113406388B (zh) 2022-12-23

Family

ID=77682617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110698092.5A Active CN113406388B (zh) 2021-06-23 2021-06-23 光电探测器频率响应测试装置及其测试方法

Country Status (1)

Country Link
CN (1) CN113406388B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145846A (ja) * 1994-11-17 1996-06-07 Nippon Telegr & Teleph Corp <Ntt> 光周波数領域反射測定方法及び測定回路
CN102636694A (zh) * 2012-05-11 2012-08-15 厦门大学 基于单响应微波光子滤波器的频率测量装置和测量方法
CN103837188A (zh) * 2013-01-16 2014-06-04 电子科技大学 一种光电探测器频率响应测量装置及其测量方法
CN105606345A (zh) * 2016-03-16 2016-05-25 中国科学院半导体研究所 基于波长编码技术光电探测器频响的测试装置及测试方法
CN107741525A (zh) * 2017-10-13 2018-02-27 南京航空航天大学 光电探测器频率响应测量方法及装置
CN110601754A (zh) * 2019-09-02 2019-12-20 东南大学 一种基于微波光子下变频的光器件光谱响应测试装置及方法
CN110632388A (zh) * 2019-09-27 2019-12-31 南京航空航天大学 一种基于混频的光电探测器频响测量方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145846A (ja) * 1994-11-17 1996-06-07 Nippon Telegr & Teleph Corp <Ntt> 光周波数領域反射測定方法及び測定回路
CN102636694A (zh) * 2012-05-11 2012-08-15 厦门大学 基于单响应微波光子滤波器的频率测量装置和测量方法
CN103837188A (zh) * 2013-01-16 2014-06-04 电子科技大学 一种光电探测器频率响应测量装置及其测量方法
CN105606345A (zh) * 2016-03-16 2016-05-25 中国科学院半导体研究所 基于波长编码技术光电探测器频响的测试装置及测试方法
CN107741525A (zh) * 2017-10-13 2018-02-27 南京航空航天大学 光电探测器频率响应测量方法及装置
CN110601754A (zh) * 2019-09-02 2019-12-20 东南大学 一种基于微波光子下变频的光器件光谱响应测试装置及方法
CN110632388A (zh) * 2019-09-27 2019-12-31 南京航空航天大学 一种基于混频的光电探测器频响测量方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
温继敏等: "高速光探测器频率响应的精确表征", 《半导体学报》 *

Also Published As

Publication number Publication date
CN113406388B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN107528638B (zh) 基于微波光子滤波的宽带微波信号到达角估计方法
US7023887B2 (en) Method and system for controlling optical wavelength based on optical frequency pulling
CN109813961B (zh) 基于光学频率梳的微波瞬时测频装置
JPH02504555A (ja) レーダー雑音検査装置
JPH01291141A (ja) 光ファイバ分散特性測定方式
CN109286124B (zh) 激光线宽压缩方法及系统
McKinney et al. Sub-10-dB noise figure in a multiple-GHz analog optical link
JP2006337833A (ja) 波長可変光周波数コム発生装置
JP5697192B2 (ja) 2トーン信号による光検出器の特性評価方法
CN113406388B (zh) 光电探测器频率响应测试装置及其测试方法
JP4008617B2 (ja) 光源の周波数安定化装置
CN113922883A (zh) 一种基于级联调制光注入半导体激光器产生平坦宽带微波频率梳的装置及方法
CN111025000B (zh) 一种相位调制器的半波电压测量方法和测试系统
JP4442946B2 (ja) 光周波数グリッド発生装置
CN116742465B (zh) 一种线性调频激光的生成方法及芯片
Bui et al. Parallel all-optical instantaneous frequency measurement system using channel labeling
CN113300760B (zh) 基于微波光子滤波器的分辨率可调光学传感解调装置及方法
Campbell et al. Measurement of the modulation efficiency of an optical phase modulator using a self-homodyne receiver
JPH0653590A (ja) 光fsk周波数変位量安定化方式
RU208857U1 (ru) Устройство определения доплеровского измерения частоты отраженного радиолокационного сигнала
JPH11271179A (ja) 光ファイバの波長分散測定装置
Han et al. Low-Power RF Signal Detection with High Gain Using a Tunable Optoelectronic Oscillator
KR20240008173A (ko) 테라파 생성기 및 이를 포함하는 테라헤르츠 시스템
CN116436515A (zh) 一种多路光频域反射仪的检测方法及系统
JP2016021032A (ja) 高周波逓倍装置及び逓倍方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant