CN113403639B - 一种红磷光电极及其制备方法和应用 - Google Patents

一种红磷光电极及其制备方法和应用 Download PDF

Info

Publication number
CN113403639B
CN113403639B CN202110531578.XA CN202110531578A CN113403639B CN 113403639 B CN113403639 B CN 113403639B CN 202110531578 A CN202110531578 A CN 202110531578A CN 113403639 B CN113403639 B CN 113403639B
Authority
CN
China
Prior art keywords
red phosphorus
photoelectrode
substrate
tungsten
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110531578.XA
Other languages
English (en)
Other versions
CN113403639A (zh
Inventor
胡卓锋
卢映龙
刘铭浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110531578.XA priority Critical patent/CN113403639B/zh
Publication of CN113403639A publication Critical patent/CN113403639A/zh
Application granted granted Critical
Publication of CN113403639B publication Critical patent/CN113403639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/28Deposition of only one other non-metal element
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Cells (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种红磷光电极及其制备方法和应用,本发明的红磷光电极组成简单,原料红磷价廉,有利于广泛推广,应用于光电催化中的阳极材料时,能产生电能和/或氢能,产生最高为8.0mA/cm2的光电流和达到每小时1.89mL的氢气产量。本发明的红磷光电极制备方法简单,成本低。

Description

一种红磷光电极及其制备方法和应用
技术领域
本发明属于光电催化能量转换领域,尤其涉及一种红磷光电极及其制备方法和应用。
背景技术
能源问题是当今人类面临的一大挑战。太阳光能是可再生的可持续发展的能源。如何开发和利用太阳光能是当今的重要研究课题。光电催化技术是一种结合光催化和电催化技术的高效利用太阳光能的技术。光电池由阳极和阴极组成。在光和电的驱动下,光照下一般由半导体组成的光阳极发产生光生正电极(空穴)和光生负电极(电子),电子会迁移到阴极,这个过程会产生电流和电能。而光阳极表面发生氧化反应,一般氧化水成为氧气。光阴极上电子会还原水产生清洁能源氢气。
目前,寻找与制备高效的光阳极材料是研究的重点,传统的金属氧化物或硫化物光阳极材料吸光范围窄,吸能吸收紫外光或一部分可见面。而且它们中电子与空穴的复合严重,产生的电流往往比较少(小于2mA/cm2)。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明第一个方面提出一种红磷光电极,能够产生电能和/或氢能。
本发明的第二个方面提出了一种上述红磷光电极的制备方法。
本发明的第三个方面提出了一种上述红磷光电极的应用。
根据本发明的第一个方面,提出了一种红磷光电极,包括基底,所述基底表面负载有结晶相红磷。
在本发明的一些实施方式中,所述红磷为纳米棒。
在本发明的一些优选的实施方式中,所述纳米棒的直径为100nm~1.0μm。
在本发明的一些优选的实施方式中,所述红磷的负载量为10mg~1000mg;进一步优选为0.01mg/cm2~10mg/cm2
在本发明的一些优选的实施方式中,所述基底的长度为1.0cm~20.0cm,宽度为0.1cm~2.0cm。
在本发明的一些更优选的实施方式中,所述基底选自碳片、碳布、钨片、钼片、钨网中的任意一种。
根据本发明的第二个方面,提出了一种红磷光电极的制备方法,包括如下步骤:获取基底,在基底的表面上生长红磷。
在本发明的一些实施方式中,所述红磷采用热化学气相沉积法生长在基底上;所述热化学气相沉积法的过程为:将基底在真空下升温,进行红磷生长,生长完成后降温至室温。
本发明中,采用热化学气相沉积法将红磷先升华再凝华,使其在基底上生长出结晶相红磷纳米棒。
在本发明的一些优选的实施方式中,所述热化学气相沉积法在石英管中进行。
在本发明的一些优选的实施方式中,所述石英管的厚度为0.1mm~0.3mm,长度为10cm~30cm。
在本发明的一些更优选的实施方式中,所述热化学气相沉积法的过程中,将基底在真空下升温至500℃~600℃。
在本发明的一些更优选的实施方式中,所述升温的速率为(1~20)℃/min。
在本发明的一些更优选的实施方式中,所述降温的速率为(0.1~1.0)℃/min。
根据本发明的第三个方面,提出了一种红磷光电极在光电催化阳极材料的应用。
本发明中的红磷光电极作为光电催化中的阳极材料时,能产生光电流和/或氢能,具体来说,能产生最高为8mA/cm2的光电流和达到每小时1.89mL的氢气产量。
本发明的有益效果为:
1.本发明的红磷光电极组成简单,原料红磷价廉,有利于广泛推广。
2.本发明的红磷光电极制备方法简单,成本低。
3.本发明的红磷光电极应用于光电催化中的阳极材料时,能同时产生电能和氢能,产生最高为8.0mA/cm2的光电流和达到每小时1.89mL的氢气产量。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1中热处理前和热处理后石英管的照片及光电极电镜扫描图。
图2为本发明实施例1制得的钨网基底的结晶相红磷光电极的电镜扫描图。
图3为本发明实施例1制得的钨网基底的结晶相红磷光电极在光催化下产生电流的电流-电压关系图。
图4为本发明实施例1制得的钨网基底的结晶相红磷光电极在0.9V电压下的有光照和无光照下的电流图。
图5为实施例3制得的钨片基底的结晶相红磷光电极的电镜扫描图(b)及在光催化下产生电流的电流-电压关系图(a)。
图6为实施例4制得的钼片基底的结晶相红磷光电极的电镜扫描图(b)及在光催化下产生电流的电流-电压关系图(a)。
图7为实施例5制得的钛片基底的结晶相红磷光电极的电镜扫描图(a)及在光催化下产生电流的电流-电压关系图(a)。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种钨网基底的结晶相红磷光电极(CP/W),具体过程为:
称取200mg红磷和一个1.0cm宽、20.0cm长的金属钨网基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以1.0℃/min升温速度升到550℃左右,保护15个小时后以0.1℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
图1为热处理前和热处理后的石英管照片及电镜扫描图。从图1可看出,热处理后红磷沉积于钨网上。
对热处理后的红磷光电极进行电镜扫描,结果如图2所示。从图2可看出,生长于钨网上的红磷为纳米棒结构,直径为0.1μm~0.5μm,长为1.0μm~10.0μm。
实施例2
本实施例制备了一种钨片基底的结晶相红磷光电极(CP/W plate),具体过程为:
称取200mg红磷和一个1.0cm宽、3.0cm长、0.2cm厚的金属钨片基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以1.0℃/min升温速度升到550℃左右,保护15个小时后以0.1℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
实施例3
本实施例制备了一种钼片基底的结晶相红磷光电极(CP/Mo plate),具体过程为:
称取200mg红磷和一个1.0cm宽、3.0cm长、0.2cm厚的金属钼片基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以1.0℃/min升温速度升到550℃左右,保护15个小时后以0.1℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
实施例4
本实施例制备了一种钛片基底的结晶相红磷光电极(CP/Ti plate),具体过程为:
称取200mg红磷和一个1.0cm宽、3.0cm长、0.2cm厚的金属钛片基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以1.0℃/min升温速度升到550℃左右,保护15个小时后以0.1℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
对比例1
本实施例制备了一种钨网基底的无定形红磷光电极(AP/W),具体过程为:
称取200mg红磷和一个1.0cm宽、20.0cm长的金属钨网基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以5.0℃/min升温速度升到550℃左右,保护15个小时后以10.0℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
对比例2
本实施例制备了一种FTO导电玻璃(掺杂氟的SnO2导电玻璃)基底的无定形红磷光电极(AP/FTO),具体过程为:
称取200mg红磷和一个1.0cm宽、20.0cm长的FTO导电玻璃基底,把它们密封在石英官中,抽真空。然后将石英管放进炉子中,以5.0℃/min升温速度升到550℃左右,保护15个小时后以10.0℃/min的速率降到常温。然后将石英管打破,取出基底,然后用水和乙醇洗干净,就制备出红磷光电极。
试验例1
本试验例测试实施例1制得的钨网基底的结晶相红磷光电极(CP/W)、对比例1制得的钨网基底的无定形红磷光电极(AP/W)、对比例2制得的FTO导电玻璃基底的无定形红磷光电极(AP/FTO)在光电催化下产生电流的电流电压关系,各红磷光电极具体测试方法为:
把红磷光电极放置于H型电解池的一边,另外一边放对电极(铂片电极或石墨电极)和参比电极(银氯化银电极或饱和甘汞电极)。H型电解池中间用Nafion膜隔开。然后给用一个300W的氙灯照射红磷光电极,通过给红磷光电极拖加0.2V~2.0V的电压,以100s为周期交替对红磷光电极光照处理下和无光照处理,测试电压大小对电极产生的氢气量的影响。光电流的大小可以通过电流表或电化学工作站测量。而氢气将通过用岛津公司GC2014C气相色谱仪(带TCD热导检测器)来测量。结果如图3所示。
为进一步测试光照对实施例1制得的钨网基底的结晶相红磷光电极(CP/W)、对比例1制得的钨网基底的无定形红磷光电极(AP/W)、对比例2制得的FTO导电玻璃基底的无定形红磷光电极(AP/FTO)产生的影响电流情况,各红磷光电极采用前述方法,给红磷光电极施加0.9V的电压,以100s为周期对红磷光电极在光照处理下和无光照处理下产生电流的情况进行测试,结果如图4所示。
从图3可看出,实施例1制得的钨网基底的结晶相红磷光电极产生的电流达到8.0mA/cm2,比很多传统的金属氧化物光阳极都大。而有光处理时,光电极产生电流上升,无光处理时,光电极电流下降。
从图3~4可看出,相对于钨网上生长的无定形红磷(AP/W),钨网上生长的结晶相红磷(CP/W)的性能得到显著的提升,说明制备结晶相红磷是性能提升的关键。相对于FTO导电玻璃上生长的红磷(AP/FTO),钨网上生长的红磷性能也更高,说明选用钨等基底是制备高效红磷光电极的关键。
试验例2
本试验例测试实施例2~5制得的红磷光电极在不同电压下对电极产生电流情况,具体测试方法与试验例1相同,实施例2~5制得的红磷光电极的电镜扫描图和不同电压下对电极产生电流情况分别对应如图5~图7所示。
从图5~图7可看出,除了钨网外,钨片、钼片和钛片等都可以用得红磷生长的基底,并得到良好的性能。尤其是相对于钛片,钨片和钼性上生长的红磷光电极性能更好。
试验例3
本试验例测试实施例1制得的钨网基底的结晶相红磷光电极(CP/W)的产氢能力,以红磷光电极为阳极,铂片对电极为阴极。通过将反应器和带有热导检测器的气相色谱(岛津GC-2014)连接,可以检查在铂片阴极上产生氢气的量。
经检测,实施例1制得的钨网基底的结晶相红磷光电极(CP/W)作为阳极时,在铂片阴极上产生氢气的量达到每小时1.89mL。
上面对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (4)

1.一种红磷光电极在光电催化阳极材料的应用,其特征在于:所述红磷光电极包括基底,所述基底表面负载有结晶相红磷;所述结晶相红磷的负载量为0.01mg/cm2~10mg/cm2;所述基底选自碳片、碳布、钨片、钼片、钨网中的任意一种;
所述红磷光电极由如下步骤制备:将基底在真空下以升温的速率为(1~20)℃/min升温至500℃~600℃,进行红磷生长,生长完成后以降温的速率为(0.1~1.0)℃/min降温至室温。
2.根据权利要求1所述的红磷光电极在光电催化阳极材料的应用,其特征在于:所述结晶相红磷为纳米棒。
3.根据权利要求2所述的红磷光电极在光电催化阳极材料的应用,其特征在于:所述纳米棒的直径为100nm~1.0μm。
4.根据权利要求1所述的红磷光电极在光电催化阳极材料的应用,其特征在于:所述基底的长度为1.0cm~20.0cm,宽度为0.1cm~2.0cm。
CN202110531578.XA 2021-05-17 2021-05-17 一种红磷光电极及其制备方法和应用 Active CN113403639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110531578.XA CN113403639B (zh) 2021-05-17 2021-05-17 一种红磷光电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110531578.XA CN113403639B (zh) 2021-05-17 2021-05-17 一种红磷光电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113403639A CN113403639A (zh) 2021-09-17
CN113403639B true CN113403639B (zh) 2023-01-17

Family

ID=77678654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110531578.XA Active CN113403639B (zh) 2021-05-17 2021-05-17 一种红磷光电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113403639B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957524A (zh) * 2021-11-02 2022-01-21 陕西科技大学 一种晶体红磷纤维及其高效制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630822B (zh) * 2015-01-14 2017-03-22 太原理工大学 一种泡沫过渡金属固/气态磷化自支撑析氢电极及其制备方法
CN109759097B (zh) * 2019-03-06 2021-11-19 郑州大学 一种纳米红磷光催化材料及其制备方法和应用
CN111646442B (zh) * 2020-06-12 2021-09-07 深圳先进技术研究院 一种红磷制备方法及晶态红磷
CN112774703A (zh) * 2021-02-01 2021-05-11 北京工业大学 一种高效光催化分解水制氢的单质红磷负载的二氧化钛复合催化剂

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957524A (zh) * 2021-11-02 2022-01-21 陕西科技大学 一种晶体红磷纤维及其高效制备方法

Also Published As

Publication number Publication date
CN113403639A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
Wu et al. A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production
Jang et al. Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction
Bak et al. Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions
Li et al. Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production
Oh et al. Improved photostability of a CuO photoelectrode with Ni-doped seed layer
Wu et al. Co/Se and Ni/Se nanocomposite films prepared by magnetron sputtering as counter electrodes for dye-sensitized solar cells
Liu et al. A dendritic Sb 2 Se 3/In 2 S 3 heterojunction nanorod array photocathode decorated with a MoS x catalyst for efficient solar hydrogen evolution
CN113249751B (zh) 一种二维碳化钛支撑的稳定双相二硒化钼复合材料及制备方法和应用
Zhu et al. Bifunctional NiCuO x photoelectrodes to promote pseudocapacitive charge storage by in situ photocharging
Freeman et al. Strategies for the deposition of LaFeO 3 photocathodes: improving the photocurrent with a polymer template
CN111375408A (zh) 一种氧化铱纳米粒子催化剂的制备方法及其应用
Huang et al. The effect of the photochemical environment on photoanodes for photoelectrochemical water splitting
Li et al. Efficient photocathode performance of lithium ion doped LaFeO 3 nanorod arrays in hydrogen evolution
CN109119540B (zh) 在F掺杂SnO2透明导电薄膜基体上原位制备SnO2电子传输层的方法
Wang et al. A solution processed Sb 2 S 3-based photocathode with enhanced photocatalytic performance via constructing an ultrathin TiO 2 overlayer and noble metal modification
CN110205638B (zh) 一种Z型CuBi2O4/SnO2光电阴极薄膜及其制备方法和应用
Zhang et al. Hydrogel Enabled Dual‐Shielding Improves Efficiency and Stability of BiVO4 Based Photoanode for Solar Water Splitting
CN111763954B (zh) 一种层片状wo3光阳极材料的制备方法及其在光电催化中的应用
CN111334812B (zh) 基于水合羟基氧化铁的非晶硅薄膜光电极及其制备方法
CN113403639B (zh) 一种红磷光电极及其制备方法和应用
CN111509243A (zh) 一种CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极在光催化燃料电池中的应用
CN111482150A (zh) 一种可见光响应的全铜基串联光电催化装置及其制备方法
Cai et al. Porous acetylene-black spheres as the cathode materials of dye-sensitized solar cells
CN114481192B (zh) 一种Cd掺杂的二氧化钛/硫化铟锌光阳极及其制备方法
CN115679371A (zh) 一种双阴极并联光驱动分解水制氢电极系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant