CN113403552A - 一种热作模具钢材料及其制备方法 - Google Patents

一种热作模具钢材料及其制备方法 Download PDF

Info

Publication number
CN113403552A
CN113403552A CN202110658683.XA CN202110658683A CN113403552A CN 113403552 A CN113403552 A CN 113403552A CN 202110658683 A CN202110658683 A CN 202110658683A CN 113403552 A CN113403552 A CN 113403552A
Authority
CN
China
Prior art keywords
temperature
mixed
steel
quenching liquid
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110658683.XA
Other languages
English (en)
Inventor
许建松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Shuangshun Technology Development Co ltd
Original Assignee
Shanghai Shuangshun Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Shuangshun Technology Development Co ltd filed Critical Shanghai Shuangshun Technology Development Co ltd
Priority to CN202110658683.XA priority Critical patent/CN113403552A/zh
Publication of CN113403552A publication Critical patent/CN113403552A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Abstract

本发明公开了一种热作模具钢材料及其制备方法,具体涉及钢材加工领域,其中所使用的原料(按重量百分比计)包括碳0.4wt%‑0.7wt%、铬1.1wt%‑3.5wt%、钒0.2wt%‑1.5wt%、钨0.3wt%‑0.8wt%、钼0.7wt%‑1.2wt%、铜0.7wt%‑2.1wt%、锰2.3wt%‑5.5wt%、镍0.7wt%‑1.1wt%、硅0.3wt%‑0.5wt%、余量为铁。本发明通过碳、铬、钒、钨、钼、铜、锰、镍、硅以及铁制备热作模具钢,然后进行均匀化处理,通过混合淬火液对模具钢锭进行多次降温淬火,使热作模具钢的硬度更高,同时在高温下其硬度下降的速率更低。

Description

一种热作模具钢材料及其制备方法
技术领域
本发明实施例涉及钢材加工领域,具体涉及一种热作模具钢材料及其制备方法。
背景技术
热作模具钢是指适宜于制作对金属进行热变形加工的模具用的合金工具钢,如热锻模、热挤压模、压铸模、热镦模等,由于热作模具长时间处于高温高压条件下工作,因此,要求模具材料具有高的强度、硬度及热稳定性,特别是应有高热强性、热疲劳性、韧性和耐磨性。
但是,现有的热作模具钢材料在使用时,当其使用温度超过600℃后,其硬度会大幅降低,影响热作模具钢的使用效果。
发明内容
为此,本发明实施例提供一种热作模具钢材料及其制备方法,本发明通过碳、铬、钒、钨、钼、铜、锰、镍、硅以及铁制备热作模具钢,使热作模具钢的硬度更高,同时在高温下其硬度下降的速率更低,以解决现有技术中高温下热作模具钢硬度大幅下降的问题。
为了实现上述目的,本发明实施例提供如下技术方案:一种热作模具钢材料,其中所使用的原料(按重量百分比计)包括碳0.4wt%-0.7wt%、铬1.1wt%-3.5wt%、钒0.2wt%-1.5wt%、钨0.3wt%-0.8wt%、钼0.7wt%-1.2wt%、铜0.7wt%-2.1wt%、锰2.3wt%-5.5wt%、镍0.7wt%-1.1wt%、硅0.3wt%-0.5wt%、余量为铁。
一种热作模具钢材料的制备方法,具体制备步骤为:
步骤1、初炼:按照原料配比将铁和碳放入中频感应炉中进行熔炼,获取基底钢液,然后将基底钢液转入真空精炼炉中进行真空精炼,制备精炼钢液;
步骤2、混炼:将精炼钢液转入中频感应炉中,然后按照原料配比依次向中频感应炉中加入铬、钒、钨、钼、铜、锰、镍、硅,熔炼并搅拌混合,制备混合钢液A;
步骤3、成分调整:取样混合钢液,分析混合钢液的成分比并与原料比进行对比,补充缺失,对混合钢液的成分进行调整,然后搅拌混合均匀,制备混合钢液B;
步骤4、铸造:将混合钢液B注入预热后铸造模型中,保温3h,然后在空气中冷却至常温,随后脱模,制备模具钢锭;
步骤5、均匀化:将模具钢锭加热至850-1100℃,然后并保温4-6h,对模具钢锭进行均匀化处理,使模具钢锭内部成分均匀化,然后随炉冷却至250-290℃,最后室温冷却至常温;
步骤6、配置淬火液:将水和聚丙烯酸钠以8:1的质量比混合均匀,制备淬火液A,将水和氯化钠以7:2的质量比混合均匀,制备淬火液B,然后将淬火液A和淬火液B以3:2的质量比混合均匀,制备混合淬火液;
步骤7、热处理:将模具钢锭加热至奥氏体化温度范围,然后保温5h,然后将模具钢锭置入混合淬火液中进行淬火处理。
优选的,所述步骤1中,中频感应炉中的熔炼温度设置为1200℃,所述真空精炼炉的精炼温度设置为1400℃。
优选的,所述步骤2中,首先将中频感应炉加热至1300℃,向精炼钢液中加入铬、钒、钨熔炼并搅拌混合均匀,然后升温至1450℃,并向精炼钢液中加入钼、铜并搅拌混合均匀,然后保温30min,随后降温至1380℃,并向精炼钢液中加入锰、镍、硅并搅拌均匀,然后保温1.5h,制成混合钢液A。
优选的,所述步骤3中,成分调整时,维持混合钢液温度在1330℃,持续时间设置为2h。
优选的,所述步骤5中,首先以250℃/h的升温速度将模具钢锭升温至600℃,然后以200℃/h的升温速度将模具钢锭升温至850-1100℃。
优选的,所述步骤6中,还可以通过水和氯化钙的混合物或者水、氯化钙和氯化钠的混合物制备淬火液B,所述水和氯化钙的质量比为7:2,所述水、氯化钙和氯化钠的质量比为7:1:1。
优选的,所述步骤7中,首先将模具钢锭置入混合淬火液中,维持混合淬火液的温度在60摄氏度以下,模具钢锭温度降低至500℃左右时,取出模具钢锭空冷至400℃左右,再次将模具钢锭置入混合淬火液中,待模具钢锭温度减低至250℃,再次取出模具钢锭空冷至180℃,最后将模具钢锭置入混合淬火液中冷却至常温,然后将模具钢锭置入清水中清洗,最后将取出模具钢锭,将清洗液倒入混合淬火液中,对混合淬火液进行补充。
本发明实施例具有如下优点:
1、本发明通过碳、铬、钒、钨、钼、铜、锰、镍、硅以及铁制备热作模具钢,通过混合熔炼,制备模具钢锭,然后进行两次升温,结束后保温,进行均匀化处理,然后通过混合淬火液对模具钢锭进行多次降温淬火,使热作模具钢的硬度更高,同时在高温下其硬度下降的速率更低;
2、通过聚丙烯酸钠、氯化钙、氯化钠和水制备混合淬火液,对热作模具钢进行淬火,使热作模具钢拥有更高的硬度,同时混合淬火液中的原料损耗低,使混合淬火液的利用率更高,减小淬火成本。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种热作模具钢材料,其中所使用的原料(按重量百分比计)包括碳0.4wt%、铬1.1wt%、钒0.2wt%、钨0.3wt%、钼0.7wt%、铜0.7wt%、锰2.3wt%、镍0.7wt%、硅0.3wt%、铁93.3wt%。
一种热作模具钢材料的制备方法,具体制备步骤为:
步骤1、初炼:按照原料配比将铁和碳放入中频感应炉中进行熔炼,获取基底钢液,然后将基底钢液转入真空精炼炉中进行真空精炼,制备精炼钢液;
步骤2、混炼:将精炼钢液转入中频感应炉中,然后按照原料配比依次向中频感应炉中加入铬、钒、钨、钼、铜、锰、镍、硅,熔炼并搅拌混合,制备混合钢液A;
步骤3、成分调整:取样混合钢液,分析混合钢液的成分比并与原料比进行对比,补充缺失,对混合钢液的成分进行调整,然后搅拌混合均匀,制备混合钢液B;
步骤4、铸造:将混合钢液B注入预热后铸造模型中,保温3h,然后在空气中冷却至常温,随后脱模,制备模具钢锭;
步骤5、均匀化:将模具钢锭加热至850℃,然后并保温4h,对模具钢锭进行均匀化处理,使模具钢锭内部成分均匀化,然后随炉冷却至250℃,最后室温冷却至常温;
步骤6、配置淬火液:将水和聚丙烯酸钠以8:1的质量比混合均匀,制备淬火液A,将水和氯化钠以7:2的质量比混合均匀,制备淬火液B,然后将淬火液A和淬火液B以3:2的质量比混合均匀,制备混合淬火液;
步骤7、热处理:将模具钢锭加热至奥氏体化温度范围,然后保温5h,然后将模具钢锭置入混合淬火液中进行淬火处理。
进一步的,在上述技术方案中,所述步骤1中,中频感应炉中的熔炼温度设置为1200℃,所述真空精炼炉的精炼温度设置为1400℃。
进一步的,在上述技术方案中,所述步骤2中,首先将中频感应炉加热至1300℃,向精炼钢液中加入铬、钒、钨熔炼并搅拌混合均匀,然后升温至1450℃,并向精炼钢液中加入钼、铜并搅拌混合均匀,然后保温30min,随后降温至1380℃,并向精炼钢液中加入锰、镍、硅并搅拌均匀,然后保温1.5h,制成混合钢液A。
进一步的,在上述技术方案中,所述步骤3中,成分调整时,维持混合钢液温度在1330℃,持续时间设置为2h。
进一步的,在上述技术方案中,所述步骤5中,首先以250℃/h的升温速度将模具钢锭升温至600℃,然后以200℃/h的升温速度将模具钢锭升温至850℃。
进一步的,在上述技术方案中,所述步骤7中,首先将模具钢锭置入混合淬火液中,维持混合淬火液的温度在60摄氏度以下,模具钢锭温度降低至500℃左右时,取出模具钢锭空冷至400℃左右,再次将模具钢锭置入混合淬火液中,待模具钢锭温度减低至250℃,再次取出模具钢锭空冷至180℃,最后将模具钢锭置入混合淬火液中冷却至常温,然后将模具钢锭置入清水中清洗,最后将取出模具钢锭,将清洗液倒入混合淬火液中,对混合淬火液进行补充。
实施例2
一种热作模具钢材料,其中所使用的原料(按重量百分比计)包括碳0.6wt%、铬2.3wt%、钒0.8wt%、钨0.5wt%、钼0.9wt%、铜1.3wt%、锰4.4wt%、镍0.9wt%、硅0.4wt%、铁87.9wt%。
一种热作模具钢材料的制备方法,具体制备步骤为:
步骤1、初炼:按照原料配比将铁和碳放入中频感应炉中进行熔炼,获取基底钢液,然后将基底钢液转入真空精炼炉中进行真空精炼,制备精炼钢液;
步骤2、混炼:将精炼钢液转入中频感应炉中,然后按照原料配比依次向中频感应炉中加入铬、钒、钨、钼、铜、锰、镍、硅,熔炼并搅拌混合,制备混合钢液A;
步骤3、成分调整:取样混合钢液,分析混合钢液的成分比并与原料比进行对比,补充缺失,对混合钢液的成分进行调整,然后搅拌混合均匀,制备混合钢液B;
步骤4、铸造:将混合钢液B注入预热后铸造模型中,保温3h,然后在空气中冷却至常温,随后脱模,制备模具钢锭;
步骤5、均匀化:将模具钢锭加热至850℃,然后并保温4h,对模具钢锭进行均匀化处理,使模具钢锭内部成分均匀化,然后随炉冷却至250℃,最后室温冷却至常温;
步骤6、配置淬火液:将水和聚丙烯酸钠以8:1的质量比混合均匀,制备淬火液A,将水和氯化钠以7:2的质量比混合均匀,制备淬火液B,然后将淬火液A和淬火液B以3:2的质量比混合均匀,制备混合淬火液;
步骤7、热处理:将模具钢锭加热至奥氏体化温度范围,然后保温5h,然后将模具钢锭置入混合淬火液中进行淬火处理。
进一步的,在上述技术方案中,所述步骤1中,中频感应炉中的熔炼温度设置为1200℃,所述真空精炼炉的精炼温度设置为1400℃。
进一步的,在上述技术方案中,所述步骤2中,首先将中频感应炉加热至1300℃,向精炼钢液中加入铬、钒、钨熔炼并搅拌混合均匀,然后升温至1450℃,并向精炼钢液中加入钼、铜并搅拌混合均匀,然后保温30min,随后降温至1380℃,并向精炼钢液中加入锰、镍、硅并搅拌均匀,然后保温1.5h,制成混合钢液A。
进一步的,在上述技术方案中,所述步骤3中,成分调整时,维持混合钢液温度在1330℃,持续时间设置为2h。
进一步的,在上述技术方案中,所述步骤5中,首先以250℃/h的升温速度将模具钢锭升温至600℃,然后以200℃/h的升温速度将模具钢锭升温至850℃。
进一步的,在上述技术方案中,所述步骤7中,首先将模具钢锭置入混合淬火液中,维持混合淬火液的温度在60摄氏度以下,模具钢锭温度降低至500℃左右时,取出模具钢锭空冷至400℃左右,再次将模具钢锭置入混合淬火液中,待模具钢锭温度减低至250℃,再次取出模具钢锭空冷至180℃,最后将模具钢锭置入混合淬火液中冷却至常温,然后将模具钢锭置入清水中清洗,最后将取出模具钢锭,将清洗液倒入混合淬火液中,对混合淬火液进行补充。
实施例3
一种热作模具钢材料,其中所使用的原料(按重量百分比计)包括碳0.7wt%、铬3.5wt%、钒1.5wt%、钨0.8wt%、钼1.2wt%、铜2.1wt%、锰5.5wt%、镍1.1wt%、硅0.5wt%、铁83.1wt%。
一种热作模具钢材料的制备方法,具体制备步骤为:
步骤1、初炼:按照原料配比将铁和碳放入中频感应炉中进行熔炼,获取基底钢液,然后将基底钢液转入真空精炼炉中进行真空精炼,制备精炼钢液;
步骤2、混炼:将精炼钢液转入中频感应炉中,然后按照原料配比依次向中频感应炉中加入铬、钒、钨、钼、铜、锰、镍、硅,熔炼并搅拌混合,制备混合钢液A;
步骤3、成分调整:取样混合钢液,分析混合钢液的成分比并与原料比进行对比,补充缺失,对混合钢液的成分进行调整,然后搅拌混合均匀,制备混合钢液B;
步骤4、铸造:将混合钢液B注入预热后铸造模型中,保温3h,然后在空气中冷却至常温,随后脱模,制备模具钢锭;
步骤5、均匀化:将模具钢锭加热至850℃,然后并保温4h,对模具钢锭进行均匀化处理,使模具钢锭内部成分均匀化,然后随炉冷却至250℃,最后室温冷却至常温;
步骤6、配置淬火液:将水和聚丙烯酸钠以8:1的质量比混合均匀,制备淬火液A,将水和氯化钠以7:2的质量比混合均匀,制备淬火液B,然后将淬火液A和淬火液B以3:2的质量比混合均匀,制备混合淬火液;
步骤7、热处理:将模具钢锭加热至奥氏体化温度范围,然后保温5h,然后将模具钢锭置入混合淬火液中进行淬火处理。
进一步的,在上述技术方案中,所述步骤1中,中频感应炉中的熔炼温度设置为1200℃,所述真空精炼炉的精炼温度设置为1400℃。
进一步的,在上述技术方案中,所述步骤2中,首先将中频感应炉加热至1300℃,向精炼钢液中加入铬、钒、钨熔炼并搅拌混合均匀,然后升温至1450℃,并向精炼钢液中加入钼、铜并搅拌混合均匀,然后保温30min,随后降温至1380℃,并向精炼钢液中加入锰、镍、硅并搅拌均匀,然后保温1.5h,制成混合钢液A。
进一步的,在上述技术方案中,所述步骤3中,成分调整时,维持混合钢液温度在1330℃,持续时间设置为2h。
进一步的,在上述技术方案中,所述步骤5中,首先以250℃/h的升温速度将模具钢锭升温至600℃,然后以200℃/h的升温速度将模具钢锭升温至850℃。
进一步的,在上述技术方案中,所述步骤7中,首先将模具钢锭置入混合淬火液中,维持混合淬火液的温度在60摄氏度以下,模具钢锭温度降低至500℃左右时,取出模具钢锭空冷至400℃左右,再次将模具钢锭置入混合淬火液中,待模具钢锭温度减低至250℃,再次取出模具钢锭空冷至180℃,最后将模具钢锭置入混合淬火液中冷却至常温,然后将模具钢锭置入清水中清洗,最后将取出模具钢锭,将清洗液倒入混合淬火液中,对混合淬火液进行补充。
实施例4
与实施例2相同,不同的是步骤6中,将水和聚丙烯酸钠以8:1的质量比混合均匀,制备淬火液A,将水和氯化钙以7:2的质量比混合均匀,制备淬火液B,然后将淬火液A和淬火液B以3:2的质量比混合均匀,制备混合淬火液。
实施例5
与实施例2相同,不同的是步骤6中,将水和聚丙烯酸钠以8:1的质量比混合均匀,制备淬火液A,将水、氯化钙和氯化钠以7:1:1的质量比混合均匀,制备淬火液B,然后将淬火液A和淬火液B以3:2的质量比混合均匀,制备混合淬火液。
实施例5-10
与实施例1-5相同,不同的是步骤5中,将模具钢锭加热至1100℃,然后并保温6h,对模具钢锭进行均匀化处理,使模具钢锭内部成分均匀化,然后随炉冷却至290℃,最后室温冷却至常温。
分别取上述实施例1-10所制得模具钢锭,逐渐加温到600℃、700℃和800℃,统计其硬度,同时统计混合淬火液中的原料损耗,得到以下数据:
Figure BDA0003114371680000091
由上表可知,实施例10中原料配合比例适中,模具钢在升温到600℃硬度依旧高达66,随着温度的升高,其硬度的下降较低,同时混合淬火液在使用后其内部原料依旧高达96%,混合淬火液的损耗较少,混合淬火液利用率更高。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (8)

1.一种热作模具钢材料,其特征在于:其中所使用的原料(按重量百分比计)包括碳0.4wt%-0.7wt%、铬1.1wt%-3.5wt%、钒0.2wt%-1.5wt%、钨0.3wt%-0.8wt%、钼0.7wt%-1.2wt%、铜0.7wt%-2.1wt%、锰2.3wt%-5.5wt%、镍0.7wt%-1.1wt%、硅0.3wt%-0.5wt%、余量为铁。
2.一种热作模具钢材料的制备方法,其特征在于:具体制备步骤为:
步骤1、初炼:按照原料配比将铁和碳放入中频感应炉中进行熔炼,获取基底钢液,然后将基底钢液转入真空精炼炉中进行真空精炼,制备精炼钢液;
步骤2、混炼:将精炼钢液转入中频感应炉中,然后按照原料配比依次向中频感应炉中加入铬、钒、钨、钼、铜、锰、镍、硅,熔炼并搅拌混合,制备混合钢液A;
步骤3、成分调整:取样混合钢液,分析混合钢液的成分比并与原料比进行对比,补充缺失,对混合钢液的成分进行调整,然后搅拌混合均匀,制备混合钢液B;
步骤4、铸造:将混合钢液B注入预热后铸造模型中,保温3h,然后在空气中冷却至常温,随后脱模,制备模具钢锭;
步骤5、均匀化:将模具钢锭加热至850-1100℃,然后并保温4-6h,对模具钢锭进行均匀化处理,使模具钢锭内部成分均匀化,然后随炉冷却至250-290℃,最后室温冷却至常温;
步骤6、配置淬火液:将水和聚丙烯酸钠以8:1的质量比混合均匀,制备淬火液A,将水和氯化钠以7:2的质量比混合均匀,制备淬火液B,然后将淬火液A和淬火液B以3:2的质量比混合均匀,制备混合淬火液;
步骤7、热处理:将模具钢锭加热至奥氏体化温度范围,然后保温5h,然后将模具钢锭置入混合淬火液中进行淬火处理。
3.根据权利要求2所述的一种热作模具钢材料的制备方法,其特征在于:所述步骤1中,中频感应炉中的熔炼温度设置为1200℃,所述真空精炼炉的精炼温度设置为1400℃。
4.根据权利要求2所述的一种热作模具钢材料的制备方法,其特征在于:所述步骤2中,首先将中频感应炉加热至1300℃,向精炼钢液中加入铬、钒、钨熔炼并搅拌混合均匀,然后升温至1450℃,并向精炼钢液中加入钼、铜并搅拌混合均匀,然后保温30min,随后降温至1380℃,并向精炼钢液中加入锰、镍、硅并搅拌均匀,然后保温1.5h,制成混合钢液A。
5.根据权利要求2所述的一种热作模具钢材料的制备方法,其特征在于:所述步骤3中,成分调整时,维持混合钢液温度在1330℃,持续时间设置为2h。
6.根据权利要求2所述的一种热作模具钢材料的制备方法,其特征在于:所述步骤5中,首先以250℃/h的升温速度将模具钢锭升温至600℃,然后以200℃/h的升温速度将模具钢锭升温至850-1100℃。
7.根据权利要求2所述的一种热作模具钢材料的制备方法,其特征在于:所述步骤6中,还可以通过水和氯化钙的混合物或者水、氯化钙和氯化钠的混合物制备淬火液B,所述水和氯化钙的质量比为7:2,所述水、氯化钙和氯化钠的质量比为7:1:1。
8.根据权利要求2所述的一种热作模具钢材料的制备方法,其特征在于:所述步骤7中,首先将模具钢锭置入混合淬火液中,维持混合淬火液的温度在60摄氏度以下,模具钢锭温度降低至500℃左右时,取出模具钢锭空冷至400℃左右,再次将模具钢锭置入混合淬火液中,待模具钢锭温度减低至250℃,再次取出模具钢锭空冷至180℃,最后将模具钢锭置入混合淬火液中冷却至常温,然后将模具钢锭置入清水中清洗,最后将取出模具钢锭,将清洗液倒入混合淬火液中,对混合淬火液进行补充。
CN202110658683.XA 2021-06-15 2021-06-15 一种热作模具钢材料及其制备方法 Pending CN113403552A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110658683.XA CN113403552A (zh) 2021-06-15 2021-06-15 一种热作模具钢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110658683.XA CN113403552A (zh) 2021-06-15 2021-06-15 一种热作模具钢材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113403552A true CN113403552A (zh) 2021-09-17

Family

ID=77683761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110658683.XA Pending CN113403552A (zh) 2021-06-15 2021-06-15 一种热作模具钢材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113403552A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174896A (zh) * 1996-04-29 1998-03-04 克罗索·洛利工业责任有限公司 用于制造塑料模具的低合金钢
CN1256323A (zh) * 1998-12-07 2000-06-14 清华大学 铁道辙叉专用超强高韧可焊接空冷鸿康贝氏体钢
CN107557699A (zh) * 2017-07-29 2018-01-09 沈阳湛轩新材料科技有限公司 一种热作模具钢及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174896A (zh) * 1996-04-29 1998-03-04 克罗索·洛利工业责任有限公司 用于制造塑料模具的低合金钢
CN1256323A (zh) * 1998-12-07 2000-06-14 清华大学 铁道辙叉专用超强高韧可焊接空冷鸿康贝氏体钢
CN107557699A (zh) * 2017-07-29 2018-01-09 沈阳湛轩新材料科技有限公司 一种热作模具钢及其制备方法

Similar Documents

Publication Publication Date Title
CN110438310B (zh) 一种热作模具钢及其热处理方法
CN110172641B (zh) 一种细晶高强韧热作模具钢及其制备方法
CN109913768B (zh) 一种电渣重熔热作模具钢及其制备方法
CN110129678B (zh) 一种经济型细晶高强韧热作模具钢及其制备方法
CN110055464B (zh) 一种细晶高强韧热冲压模具钢及其制备方法
CN101280394A (zh) 一种高硅低碳型高热强性热作模具钢
CN109468544B (zh) 高碳高铬冷作模具钢及其制备方法
CN101220442B (zh) 高热稳定性高强度的热作模具钢
CN103911556A (zh) 一种热作模具钢材料及其制备方法
CN104878296A (zh) 轧机导辊用高钒耐磨合金材料及轧机导辊热处理方法
CN101942606B (zh) 含氮奥氏体型热作模具钢及其制备方法
CN115710654A (zh) 一种铜镍锡合金及其制备方法
CN107974632B (zh) 一种奥氏体热作模具钢及其制备方法
CN114032440A (zh) 一种Laves相强化奥氏体耐热钢及其制备方法
CN109371330A (zh) 一种高韧性高速钢及其制备工艺
CN113403552A (zh) 一种热作模具钢材料及其制备方法
CN112080704B (zh) 一种高韧性高硬度的冷热兼具型模具钢及其制备方法
CN108396230A (zh) 一种表面硬度均匀耐磨的模具钢制备方法
CN111893277B (zh) 一种中熵高速钢组织中获得弥散碳化物的制造方法
CN110343963B (zh) 一种热作模具钢及其制备方法
CN110042322B (zh) 一种替代45模钢的预硬模钢及其制备方法
CN113005351B (zh) 一种超高氮元素含量的1Mn18Cr18N钢的冶炼工艺
CN111321339B (zh) 一种半自磨机的分料口铸件及其使用的高铬铸铁
CN115821169B (zh) 一种高强钢及其制备方法与应用
CN116855703B (zh) 一种坯件的锻造工艺方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210917

RJ01 Rejection of invention patent application after publication