CN113403334A - Plasmid kit for saccharomyces cerevisiae multi-copy integration - Google Patents

Plasmid kit for saccharomyces cerevisiae multi-copy integration Download PDF

Info

Publication number
CN113403334A
CN113403334A CN202110659681.2A CN202110659681A CN113403334A CN 113403334 A CN113403334 A CN 113403334A CN 202110659681 A CN202110659681 A CN 202110659681A CN 113403334 A CN113403334 A CN 113403334A
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
strain
gene
genes
taxifolin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110659681.2A
Other languages
Chinese (zh)
Other versions
CN113403334B (en
Inventor
周景文
高松
曾伟主
陈坚
沐万孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202110659681.2A priority Critical patent/CN113403334B/en
Publication of CN113403334A publication Critical patent/CN113403334A/en
Application granted granted Critical
Publication of CN113403334B publication Critical patent/CN113403334B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a group of plasmid kits for saccharomyces cerevisiae multi-copy integration, and belongs to the field of gene and metabolic engineering. The multicopy integrative plasmid toolkit constructed and verified by the invention can realize multicopy, stable and integrative expression of a plurality of exogenous genes on a saccharomyces cerevisiae genome through one-time transformation. And the exogenous gene can be stably and integrally expressed in multiple batches and multiple genes by selecting different screening labels at different Ty sites.

Description

Plasmid kit for saccharomyces cerevisiae multi-copy integration
Technical Field
The invention relates to a group of plasmid kits for saccharomyces cerevisiae multi-copy integration, and belongs to the field of gene and metabolic engineering.
Background
Saccharomyces cerevisiae, a model strain of eukaryotes, is commonly used for introducing heterologous pathways to synthesize high value-added products. These approaches typically involve several to tens of genes, and multiple co-expression of multiple genes in s.cerevisiae requires multiple integrations, which is inefficient, and the integration sites and selection tags do not satisfy the subsequent integration procedures. Therefore, there is a need for a highly efficient, high copy and stable insertion site for integrating genes requiring overexpression into these sites to achieve efficient expression of heterologous genes.
There are a number of Long Terminal Repeats (LTRs) in the Saccharomyces cerevisiae genome, one type of LTR being transposons, which in yeast are designated as Ty transposons. There are five types of the Ty transposon sequence matching, including Ty1Cons, Ty2Cons, Ty3Cons, Ty4Cons and Ty5Cons, and the sequence matching between transposons is also low, the copy number of the five Ty transposons on the genome is about 20-50, and the transposons are distributed uniformly on the genome, and homologous recombination rarely occurs, and the structure is stable, so these Ty sites are ideal foreign gene insertion sites (Maury, J.; Germann, S.M.; Ballalobsen, S.A., et al., EasyClonemulti: A Set of Vectors for simple and Multiple genetic Integrations in Saccharomyces cerevisiae [ J ]. PloS One, 2016 (3), e 0194.). However, the current integrated expression based on the Ty locus has various defects, such as insufficient screening tag and low copy number of the obtained transformant; the integrative expression frame uses the same promoter, the same terminator and other expression elements, so that the homologous recombination probability is increased; the application of such integration sites is limited due to the unknown ability of the different Ty sites to coordinate integration.
To further refine the Ty integration protocol, a high copy integration plasmid kit was constructed in this study. In this high copy integration package, the screening tag classes were first expanded, including 5 auxotrophic tags: uracil-deficient tags (KlURA3), leucine-deficient tags (KlLEU2), histidine-deficient tags (SpHIS5), tryptophan-deficient tags (sctp 1), and methionine-deficient tags (ScMET 15); 5 antibiotic screening tags: nolsemicin resistance tag (Nourethericin resistance, natMX), Hygromycin resistance tag (Hygromycin resistance, hpHMX), Bialaphos resistance tag (Bialaphos resistance, patMX) (Goldstein A L, McCusker J H.three and new dominant drug resistance cassettes for gene delivery in Saccharomyces cerevisiae [ J ]. Yeast (Chichester, England)1999,15(14),1541-53.), Geneticin resistance tag (genetic in resistance, KanmX) (Wach A, Brachat A, Pohlmann R, Nuet al, New hematology modules for PCR-base gene delivery [ J ] (PCR-nucleotide sequences J.) (nucleotide J.) (PCR-nucleotide sequences J.) (PCR-nucleotide sequences J.) (nucleotide J.) (III J.) (nucleotide J.),93, nucleotide J.), 30(6), e 23.). Meanwhile, when a screening gene expression frame is constructed, a weak promoter is used for expressing a related screening gene, and a Degradation tag (deg) is added to the C end of the screening gene (Gilon T, Chomsky O, Kulka R G. grading signals for ubiquitin system protein [ J ]. EMBO J1998, 17(10),2759-66.), the expression level of the gene is reduced at the transcription level and the protein level, and the screening pressure is strengthened, so that the integrated copy number of the foreign gene is increased. Finally, all elements such as promoters and terminators are not identical in order to reduce the probability of homologous recombination of foreign genes. Connecting the constructed expression package with a reporter gene green fluorescent protein EGFP, respectively transforming the expression package into a saccharomyces cerevisiae strain, and determining the integration difficulty and the distribution condition of the integrated copy number of the corresponding labels and sites by detecting the number of the obtained transformants and the intensity distribution of the green fluorescent protein of the transformants.
After obtaining the high-copy integration tool and verifying the integration performance of the high-copy integration tool, the taxifolin synthetic pathway genes are integrated on different Ty sites of a saccharomyces cerevisiae genome by using different screening labels and are used for verifying the multi-copy integration performance.
Disclosure of Invention
The Saccharomyces cerevisiae includes model strain S288c and its derivative strains. The plasmids can realize multi-copy integration in a saccharomyces cerevisiae genome through one-time transformation, and the integration sites are mutually independent and have good stability, so that the plasmids can be used for over-expression of genes.
The invention provides a saccharomyces cerevisiae multicopy integrated gene expression cassette, which consists of a weak promoter sequence, a screening gene sequence with a degradation label deg and a terminator; the weak promoter comprises PADE6、PLEU2、PURA3、PPMA1、PZWF1、PARO7、PPYC1、PADE3、PYEF3、PERG1The screening gene comprises ScTRP1, KlLEU2, KlURA3, ScMET15, SpHIS5, natMX, hpHMX, kanMX, patMX and bleMX.
In one embodiment, the terminator is TTDH3The nucleotide sequence is SEQ ID NO. 43.
In one embodiment, the weak promoter PADE6、PLEU2、PURA3、PPMA1、PZWF1、PARO7、PPYC1、PADE3、PYEF3、PERG1The nucleotide is shown in SEQ ID NO. 1-10 respectively; the screening gene is provided with a degradation label which is deg, and the nucleotide sequence is shown in SEQ ID NO. 46; the nucleotide sequences formed by the screened gene and the degradation label are respectively shown in SEQ ID NO. 11-20.
In one embodiment, the weak Promoter is disclosed in the literature Promoter-library-based pathway optimization for efficacy (2S) -naringenin production from p-homologous acid in Saccharomyces cerevisiae (published in 2020).
The invention provides a saccharomyces cerevisiae multicopy integration plasmid, which consists of a gene expression frame and a pre-integration expression frame; the pre-integration expression frame consists of an upstream and downstream homologous arm sequence of a Ty transposon, a terminator sequence and a green fluorescent protein expression frame.
In one embodiment, the Ty transposon sequences comprise Ty1Cons, Ty2Cons, Ty3Cons, Ty4Cons, and Ty5 Cons; the terminator comprises TRFC5-TPOL30、TSEC13-TPNP1、TMTD1-TRPF2、TLEU2-TNFS1、TDSF1-THXT13、TTIM21-TGSC2、TRRP12-TTAF3、TRNA14-TBUB2、TADH1And TCYC1
In one embodiment, the saccharomyces cerevisiae multicopy integration plasmid is ligated in the order of upstream homology arm, green fluorescent protein expression cassette, terminator sequence, gene expression cassette, downstream homology arm.
In one embodiment, the upstream and downstream homology arms of Ty1Con1 are shown in SEQ ID No.21 and SEQ ID No.22, respectively; the upstream and downstream homology arms of Ty1Cons2 are shown in SEQ ID NO.23 and SEQ ID NO.24 respectively; the upstream and downstream homology arms of Ty2 are shown in SEQ ID NO.25 and SEQ ID NO.26 respectively; the upstream and downstream homology arms of Ty3 are shown in SEQ ID NO.27 and SEQ ID NO.28, respectively; the upstream and downstream homology arms of Ty4 are shown in SEQ ID NO.29 and SEQ ID NO.30 respectively; the upstream and downstream sequences of all Ty elements have been disclosed in Maury, j; germann, s.m.; baallil Jacobsen, S.A., et al, easy CloneMulti A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae [ J ]. Plous One 2016,11(3), e0150394 (published in 2016)
In one embodiment, the terminator T isRFC5-TPOL30、TSEC13-TPNP1、TMTD1-TRPF2、TLEU2-TNFS1、TDSF1-THXT13、TTIM21-TGSC2、TRRP12-TTAF3、TRNA14-TBUB2、TADH1And TCYC1The sequences of (A) are respectively shown in SEQ ID NO. 31-40; the terminator sequences are disclosed in the literature, Promoter-library-based optimization for efficacy (2S) -naringenin production from p-homologous acid in Saccharomyces cerevisiae (published in 2020).
In one embodiment, the green fluorescent protein expression cassette comprises a promoter PGAL7Promoter PGAL7Upstream of (2) comprises a terminator sequence TGAL10With a terminator TGAL10Promoter P of (1)GAL7Nucleotide sequence ofIs SEQ ID NO.41, and the nucleotide sequence of the green fluorescent protein is SEQ ID NO. 42.
In one embodiment, the selection gene is preferably KlLEU2, KlURA3, SpHIS5, hpmx, natMX.
The invention provides a strain for expressing a target protein, wherein the strain expresses the target protein through a saccharomyces cerevisiae multicopy integration plasmid.
In one embodiment, the protein of interest is inserted upstream of the green fluorescent expression cassette.
The invention provides a strain for producing taxifolin, which expresses relevant genes for producing taxifolin through a saccharomyces cerevisiae multicopy integration plasmid, wherein the genes are expressed through the following three modules:
a first module: overexpression of the relevant genes from tyrosine or phenylalanine to p-coumaric acid synthesis:
from tyrosine to p-coumaric acid genes include ARO4fbr、ARO7fbr、FjTAL、EcaroL;
The genes from phenylalanine to p-coumaric acid include ARO4fbr、ARO7fbr、FjTAL、EcaroL、SmPAL、SmC4H;
And a second module: overexpresses genes related to p-coumaric acid to naringenin production, including Pc4CL, PhCHS, and MsCHI;
and a third module: naringenin-to-taxifolin synthesis related genes including SmF 3' H, SmCPR and SmF 3H.
In one embodiment, the strain further expresses a malonyl-coa pathway-associated gene ScACC1S659A ,S1157A、SeACS2S641PAnd SpHIS 5.
In one embodiment, C800 is used as the starting strain, which is disclosed in patent document No. CN 111424020A.
The invention provides a method for producing taxifolin, which takes the bacterial strain for producing taxifolin and takes glucose or ethanol as a substrate to synthesize taxifolin from the beginning.
In one embodiment, the strain is culturedTo OD600The method comprises the steps of inoculating 20-30 seed liquid into YPD culture medium according to the proportion of 1-5 mL/100mL, culturing at 30-35 ℃ and 200-250 rpm, fermenting for 72 hours, and adding 95% ethanol or glucose at 12h, 24h, 36h and 48h respectively.
In one embodiment, the 95% ethanol is added at a concentration of 0.5% (0.5mL/100mL), the glucose concentration is 500g/L, and the amount added is 0.5% (0.5mL/100 mL).
In one embodiment, the temperature is controlled to 30 ± 0.1 ℃.
In one embodiment, the strain is cultured to obtain the OD600The method comprises the steps of inoculating 20-30 seed liquid into YPD culture medium according to the proportion of 1-5 mL/100mL, culturing at 30-35 ℃, 500-600 rpm and the aeration rate of 1-3 vvn, supplementing fed-batch culture medium at the flow rate of 5.0mL/L when the glucose concentration in a reaction system is reduced to 0g/L, controlling the pH to be 5.5 +/-0.1, and fermenting for 72 hours.
The invention provides an application of the saccharomyces cerevisiae multicopy integration gene expression cassette or the saccharomyces cerevisiae multicopy integration plasmid in production of target protein.
The invention provides application of the strain in producing taxifolin.
In one embodiment of the invention, the microbial cell is Saccharomyces cerevisiae strain C800(CEN. PK2-1D, MAT. alpha.; ura 3-52; leu2-3,112; trp 1-289; his 3. delta.1; MAL 2-8)C(ii) a SUC 2; gal80: KanMX), said strain C800 being disclosed in the patent document with publication number CN 111424020A. .
The invention provides a recombinant bacterium for producing taxifolin and a production method thereof, wherein the method comprises the steps of selecting the multi-copy carrier, integrating a plurality of copies of taxifolin synthetic genes on 3 different Ty sites, and fermenting by using the recombinant bacterium to produce taxifolin.
The invention has the beneficial effects that: the multicopy integrative plasmid toolkit constructed and verified by the invention can realize multicopy, stable and integrative expression of a plurality of exogenous genes on a saccharomyces cerevisiae genome through one-time transformation. And the exogenous gene can be stably and integrally expressed in multiple batches and multiple genes by selecting different screening labels at different Ty sites, so that the high-efficiency expression of the exogenous gene is realized.
Drawings
FIG. 1 is a diagram showing the genotypes of a multicopy plasmid kit (A: 10 combinations of screening gene expression cassettes for multicopy integration; B: 5 pre-integration expression cassettes; C-G: 50 genotypes of a plasmid kit for multicopy integration of Saccharomyces cerevisiae, where the positions and the order of all elements are the positions and the order in an actual plasmid map).
FIG. 2 is a graph showing the distribution of the number of transformants obtained after one transformation (the abscissa is the selection tag and the ordinate is the number of transformants obtained after one transformation.
FIG. 3 shows the fluorescence intensity distribution of multicopy recombinant strains (transformants were obtained by integrating 50 combination expression cassettes of the expression package into the genome of Saccharomyces cerevisiae, 10-30 transformants were randomly selected, the fluorescence intensity distribution was examined, and a box graph was drawn alongside which the fluorescence intensity distribution of each transformant was simultaneously drawn, Panel A: Blank is the fluorescence intensity distribution of strain C800 in YNB medium, and only one copy of EGFP is present on the genome of C887. Panel B-Panel H is the fluorescence intensity distribution of transformants obtained when the selection tags are, in the order of ScTRP1deg, KlURA3deg, ScMET15deg, hphMXdeg, KanMXdeg, patMXdeg, and bleg, when the selection tags are integrated in the order of Ty1Cons1, Ty1Cons2, Ty2Cons, Ty3Cons and Ty4Cons, when the selection tags are integrated in the order of transformants Ty1 Ty 2deg, Ty3Con 3 Ty and Ty4Con, and when the fluorescence intensity distribution of transformants are not obtained when the selection tags are integrated in the order of KlLUE2 deg.C.C.C.S selection tag, when the selection tag is replaced by KlMX 2, and the selection tags are not obtained when the selection tags are replaced by the combination of KlMX 3, and the selection tag is replaced by the selection tag 2.
FIG. 4 is a schematic diagram of the pathway for the synthesis of taxifolin in Saccharomyces cerevisiae (the taxifolin synthesis pathway is divided into three modules; module one: p-coumaric acid synthesis pathway (over-expression of ARO4/ARO7/TAL or ARO4/ARO 7/PAL/C4H); module two: naringenin synthesis pathway (over-expression of 4 CL/CHS/CHI); and module three: taxifolin synthesis pathway (over-expression of F3' H/CPR/F3H)).
FIG. 5 shows the effect of expression of genes at single Ty site and double Ty sites on the integration pathway.
FIG. 6 is a graph showing the effect of expression of a triple Ty site integration pathway gene; in Panel A, the number in parentheses is the fluorescence intensity.
FIG. 7 shows the copy number of the integrated gene at different sites.
FIG. 8 is a graph showing the yield of the de novo synthesized taxin in the 5-L fermenter.
Detailed Description
YNB medium: 0.72g/L yeast nitrogen source basic culture medium and 20g/L glucose.
YPD medium: 10g/L yeast powder, 20g/L peptone and 20g/L glucose.
Leucine, tryptophan, histidine or uracil were added to YNB medium to a final concentration of 50mg/L, or 50mg/L, as required.
Adding various antibiotics into a non-scalding culture medium in a mother liquor form, wherein the concentration of the nourseothricin mother liquor is 100mg/L, and the working concentration is 100 mu g/L; the concentration of the hygromycin mother liquor is 300mg/L, and the working concentration is 300 mug/L; the concentration of the glufosinate-ammonium mother liquor is 800mg/L, and the working concentration is 800 mug/L (if bialaphos is used, the concentration of the mother liquor is 200mg/L, and the working concentration is 200 mug/L); the concentration of the geneticin mother liquor is 200mg/L, and the working concentration is 200 mug/L; the concentration of the mother liquor of bleomycin is 100mg/L, and the working concentration is 100 mug/L. Transformants using the amino acid-deficient selection tag and the glufosinate antibiotic selection tag were plated on YNB plates, and transformants using the selection tags of the other four antibiotics were plated on YPD plates.
20g/L agar powder is added into the solid culture medium.
Feed medium composition: 400g/L glucose, KH2PO4 18g/L,MgSO4·7H2O 10.24g/L,K2SO47g/L,Na2SO40.56g/L, 20 mL. L of mother liquor of metal salt -124 mL. L vitamin mother liquor-1If necessary, 1g/L of each amino acid was added. Metal salt mother liquor: ZnSO4·7H2O 5.75g/L,MnCl2·4H2O 0.32g/L,CoCl2·6H2O 0.47g/L,NaMoO4·2H2O 0.48g/L,CaCl2·2H2O 2.9g/L,FeSO4·7H2O2.8 g/L, 80mL of 0.5M EDTA (pH 8.0). Vitamin mother liquor: 0.05g/L Biotin (Biotin), 1g/L Calcium pantothenate (Calcium panthenate), 1g/L Nicotinic acid (Nicotinic acid), 25g/L myo-Inositol (myo-Inositol), 1g/L Thiamine hydrochloride (Thiamine HCl), 1g/L Pyridoxal hydrochloride (Pyridoxal HCl), 0.02g/L p-Aminobenzoic acid (p-Aminobenzoic acid)
Saccharomyces cerevisiae CEN. PK2-1D (MAT. alpha.; ura 3-52; leu2-3,112; trp 1-289; his 3. delta.1; MAL2-8C(ii) a SUC2) for gene expression.
Coli JM109 was used for molecular cloning.
Plasmids pcfB2989, pcfB2988, pcfB2797, pcfB2990, pcfB2796 and pcfB2803(Addgene plasma #63636, #63638, #63639, #63645, #63641, #63646) were given by Irina Borodina & Jeromeo Maury (Maury J, Germann S M, Baallial Jacobsen S A, et al.
Plasmids pMDT-SmPAL and pMDT-SmC4H are Silybum marianum-derived Phenylalanine Ammonia Lyase (PAL) and cinnamate hydroxylase (C4H) obtained by tBLASTN from Silybum marianum transcriptome identification and reverse transcription corresponding to Contig 5930 and Contig265(Lv Y, Gao S, Xu S, et al spatial organization of simple biosyntheses in mile host [ Silybum marianum (L.) Gaertn ] [ J ]. Plant J2017, 92(6), 995) 1004 ], respectively, and the corresponding gene DNA sequences are in Table 1, with the nucleotide sequences being SEQ ID NO.44 and SEQ ID NO.45 in that order.
P-coumaric acid, naringenin, eriodictyol, and taxifolin were purchased from Sigma-Aldrich (st.
Nolsethricin (CAS: 96736-11-7) was purchased from Solobio (N9210).
Hygromycin (Hygromycin B Solution, CAS: 3128-04-9) was purchased from Biotechnology engineering (Shanghai) Inc. (B540725).
Glufosinate Ammonium (Ammonium glufosinate, CAS:77182-82-2) was purchased from Ark Pharm (AGZ 938).
Geneticin (G418 Sulfate, CAS:108321-42-2) was purchased from Biotechnology engineering (Shanghai) Inc. (A100859).
Bleomycin (Bleomycin, CAS:11006-33-0) was purchased from Biotechnology engineering (Shanghai) Inc. (A620212).
The detection method comprises the following steps: taking 100 mu L of fermentation liquor, mixing with 900 mu L of methanol, whirling, shaking, uniformly mixing for 30s, centrifuging at 13500rpm for 5min, and filtering supernatant for later use. Shimadzu high performance liquid detection was used. A chromatographic column: ZORBAX SB-C18(4.6 mm. times.150 mm, Shimadzu). Mobile phase A: 100% acetonitrile, mobile phase B: 100 percent of water, adding 1 per mill (V/V) of trifluoroacetic acid into all mobile phases, filtering, and removing bubbles by ultrasonic waves for later use. Flow rate of mobile phase: 1mL/min, column temperature: 30 ℃, sample introduction: 10 μ L, detection wavelength: 290 nm. Liquid phase procedure: 0-10 min, 10-40% of mobile phase A; 10-15 min, 40-60% of mobile phase A; and (3) distinguishing various substances according to different peak emergence times of different substances by using 60-10% of the mobile phase A for 15-18 min.
Example 1: construction of multicopy plasmid expression kits
In the present invention, Gibson assembly technology (Gibson assembly) is used as an assembly means, and the assembly of all sequences is seamless cloning. Corresponding nucleotide sequences are amplified through PCR, homologous arms of about 20-30bp are contained among the sequences, and all plasmid expression kits can be obtained through Gibbson assembly.
(1) Construction of multiple copy integrated screening Gene expression cassette combinations
Selecting 10 combinations of screening gene expression cassettes (Marker genes, shown as pT 0-pT 9 in Table 2 and FIG. 1) for multi-copy integration, including 10 weak promoter sequences, 10 screening gene sequences with degradation tag deg, and terminator TTDH3The nucleotide sequence is SEQ ID NO. 43.
10 weak promoters are respectively PADE6、PLEU2、PURA3、PPMA1、PZWF1、PARO7、PPYC1、PADE3、PYEF3、PERG1Corresponding coreThe nucleotide sequence is SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6, SEQ ID NO.7, SEQ ID NO.8, SEQ ID NO.9 and SEQ ID NO.10(Gao, S.; Zhou, H.; Zhou, J., et al, Promoter-library-based optimization for efficacy (2S) -naringenin production from p-cortex acid in Saccharomyces cerevisiae [ J].J Agric Food Chem 2020,68(25),6884-6891.)。
10 screening genes with degradation label deg are ScTRP1-deg, KlLEU2-deg, KlURA3-deg, ScMET15-deg, SpHIS5-deg, natMX-deg, hpHphMX-deg, kanMX-deg, patMX-deg and bleMX-deg, and the corresponding nucleotide sequences are SEQ ID No.11, SEQ ID No.12, SEQ ID No.13, SEQ ID No.14, SEQ ID No.15, SEQ ID No.16, SEQ ID No.17, SEQ ID No.18, SEQ ID No.19 and SEQ ID No. 20.
(2) Construction of Pre-integration expression cassette
According to the integration site of the saccharomyces cerevisiae, 5 pre-integration expression frames are constructed, including upstream and downstream homologous arm sequences of 5 sets of Ty sequences, 8 bidirectional terminator sequences, 2 unidirectional terminator sequences and a green fluorescent protein expression frame.
The 5 groups of Ty sequences are Ty1Cons1, Ty1Cons2, Ty2, Ty3 and Ty4 in sequence, the upstream/downstream homology arm of Ty1Con1, the upstream/downstream homology arm of Ty1Con2, the upstream/downstream homology arm of Ty2, the upstream/downstream homology arm of Ty3 and the upstream/downstream homology arm of Ty4, and the nucleotide sequences corresponding to the upstream and downstream homology arms of the 5 groups are SEQ ID NO.21/SEQ ID NO.22, SEQ ID NO.23/SEQ ID NO.24, SEQ ID NO.25/SEQ ID NO.26, SEQ ID NO.27/SEQ ID NO.28 and SEQ ID NO.29/SEQ ID NO.30 in sequence.
8 bidirectional terminators are T in sequenceRFC5-TPOL30、TSEC13-TPNP1、TMTD1-TRPF2、TLEU2-TNFS1、TDSF1-THXT13、TTIM21-TGSC2、TRRP12-TTAF3、TRNA14-T BUB22 unidirectional terminators are in turn TADH1And TCYC1The nucleotide sequence corresponding to the bidirectional terminator is SEQ ID NO.31, SEQ ID NO.32, SEQ ID NO.33 and SEQ ID NO.32 in sequenceThe sequence corresponding to the unidirectional terminator is SEQ ID NO.39 and SEQ ID NO.40 in sequence.
The expression frame of the green fluorescent protein comprises a promoter PGAL7Promoter PGAL7Upstream of (2) comprises a terminator sequence TGAL10The green fluorescent protein is EGFP with terminator TGAL10Promoter P of (1)GAL7The nucleotide sequence of the EGFP gene is SEQ ID NO.41, and the nucleotide sequence of the green fluorescent protein is SEQ ID NO. 42. A terminator sequence T is also used in the present inventionTDH3The nucleotide sequence is SEQ ID NO. 43. The invention uses two silybum marianum-derived genes SmPAL and SmC4H, and the nucleotide sequences are SEQ ID NO.44 and SEQ ID NO.45 in sequence.
Construction of 50 plasmid kits for multiple copy integration of s.cerevisiae: the 10 screening gene expression cassettes (Marker genes) are sequentially and respectively inserted into the middle of two double terminators in 5 pre-integration expression cassettes (Gibson assembly technology is used, no redundant base insertion exists, and both insertion are traceless insertion), and then a group of saccharomyces cerevisiae multi-copy integration kit containing 50 plasmids is obtained. Wherein the Ty1Cons1 pre-integrated expression cassette is combined with 10 screening genes to obtain 10 plasmids of pcT111, pcT112, pcT113, pcT114, pcT115, pcT116, pcT117, pcT118, pcT119 and pcT110 in total in sequence. Wherein the Ty1Cons2 pre-integration expression frame is combined with 10 screening genes, and a total of 10 plasmids of pcT121, pcT122, pcT123, pcT124, pcT125, pcT126, pcT127, pcT128, pcT129 and pcT120 are obtained in sequence. The Ty2 pre-integrated expression frame is combined with 10 screening genes, and pcT21, pcT22, pcT23, pcT24, pcT25, pcT26, pcT27, pcT28, pcT29 and pcT20 total 10 plasmids are obtained in sequence. The Ty3 pre-integrated expression frame is combined with 10 screening genes, and pcT31, pcT32, pcT33, pcT34, pcT35, pcT36, pcT37, pcT38, pcT39 and pcT30 total 10 plasmids are obtained in sequence. Wherein the Ty4 pre-integrated expression frame is combined with 10 screening genes to obtain 10 plasmids of pcT41, pcT42, pcT43, pcT44, pcT45, pcT46, pcT47, pcT48, pcT49 and pcT40 in total.
The actual positions of all the genes, promoters, terminators, etc. in the 10 combinations of the screening gene expression cassettes for multicopy integration, 5 pre-integration expression cassettes, and 50 plasmid kits for multicopy integration of s.cerevisiae are shown in FIG. 1.
Gene ScACC1S659A,S1157A、SeACSS641P、SmF3′HD284N、SmCPRI453V、ARO4fbr、ARO7fbrFjTAL, EcaroL and SmF3H, and the sequentially corresponding nucleotide sequences are SEQ ID NO. 47-SEQ ID NO. 55. Other promoters P mentionedGAL1And PGAL10The corresponding nucleotide sequences are SEQ ID NO.56 and SEQ ID NO.57 in sequence.
All nucleotide sequences of the present invention are shown in Table 1. The genotypes of the plasmids and strains are shown in table 2. All key primer sequences are shown in table 3.
Table 1 all nucleotide sequences
Figure BDA0003113175780000061
Figure BDA0003113175780000071
Figure BDA0003113175780000081
TABLE 2 genotypes of plasmids and strains
Figure BDA0003113175780000082
Figure BDA0003113175780000091
Figure BDA0003113175780000101
Figure BDA0003113175780000111
Figure BDA0003113175780000121
TABLE 3 Key primer sequences
Figure BDA0003113175780000122
Example 2: validation of integration Capacity of multicopy integrating plasmid tool
Plasmids pcT110 to pcT119 were amplified respectively using primers Ty11-inte-up/down, plasmids pcT120 to pcT129 were amplified respectively using primers Ty12-inte-up/down, plasmids pcT20 to pcT29 were amplified respectively using primers Ty2-inte-up/down, plasmids pcT30 to pcT39 were amplified respectively using primers Ty3-inte-up/down, plasmids pcT40 to pcT49 were amplified respectively using primers Ty4-inte-up/down, and integrated expression frame portions of the vectors were obtained respectively. PCR products are recovered and purified, and then integrated into a Saccharomyces cerevisiae strain by a Saccharomyces cerevisiae efficient transformation method (see Gietz, R.D.; Schiestl, R.H., High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method [ J ]. Nat Protoc 2007,2(1), 31-4.).
When the screening tags are TRP1, LEU2, URA3, HIS5, natMX, hphMX, patMX and bleMX, the strain is transformed into the strain C800. When the screening tag was MET15, strain C815 was selected.
When the selection tag was KanMX, strain C850 was selected. The transformed cells were plated on corresponding screening plates (when the screening gene was TRP1, they were plated on YNB-containing TRP)-Plate coated with screening gene LEU2 containing YNB-LEU-Plate coated with YNB-URA when the selection gene is URA3-Plate, screening gene is applied to YNB-HIS containing HIS5-Plate coated with YNB-MET when the screening gene is MET15-Plates were plated on YPD plates containing nourseothricin when the selection gene was natMX, and plated on hphMXYPD plates containing hygromycin, YPD plates containing geneticin coated with the selection gene KanMX, YPD plates containing glufosinate-ammonium coated with the selection gene patMX, and YPD plates containing bleomycin coated with the selection gene bleMX) were cultured at 30 ℃ for 3-5 days until single colonies were obtained. And counting the obtained single colonies, inoculating the single colonies for culture, and detecting the fluorescence intensity. The integration efficiency of each combination in the kit was determined from the number of transformants obtained and the distribution of fluorescence intensity of the transformants. The number distribution of transformants obtained for each combination after one transformation is shown in FIG. 2. The fluorescence intensity distribution range of the multicopy recombinant strains obtained for each combination is shown in FIG. 3.
As can be seen from FIG. 2, about 100-500 transformants can be obtained after a large part of plasmids in the Ty expression package are transformed once, but pcT122, pcT22, pcT32 and pcT 42; pcT25, pcT35, pcT45 and pcT116, pcT26, pcT46 did not obtain transformants after multiple transformations, whereas pcT114, pcT124, pcT24, pcT34 and pcT44 using ScMET15deg as a selection tag obtained more than 1 ten thousand transformants, however, the transformants had almost no fluorescence (fig. 3), and it was found that ScMET15deg was not suitable for high copy integration here.
As can be seen from FIG. 3, the fluorescence intensity values of C887, a blank strain and a strain having only one copy of EGFP, were about 8000 and 25000 (FIG. 3A). When ScMET15deg, KanMXdeg, patMXdeg and BleMXdeg were used as selection tags, the obtained transformants had a weak fluorescence intensity, and most of them had only one copy (FIG. 3D, FIG. 3F, FIG. 3G and FIG. 3H), and when ScTRR1deg was used as selection tags, most of the transformants had a weak fluorescence intensity (FIG. 3B). While the transformants with high probability of obtaining strong fluorescence signals by using KlURA3deg, KlLEU2deg, SpHIS5deg, natMXdeg and hphMXdeg (FIG. 3C, FIG. 3E and FIG. 3I) have the average fluorescence intensity of 7.9-16.5 times that of the control group, and the strongest one reaches 48.2 times that of the control group. These multicopy integrative plasmids can thus be used to increase the copy number in s.cerevisiae.
Example 3: use of multicopy integrative plasmid kit
The process of synthesis of taxifolin involves the introduction and overexpression of multiple genes and is therefore used to validate the performance of a multicopy integrative plasmid kit. The synthesis route of taxifolin is shown in fig. 4, wherein the module I is glucose to p-coumaric acid, the module II is p-coumaric acid to naringenin, and the module III is naringenin to taxifolin. The multicopy integrative plasmid kit with significantly increased copy number in example 2 was picked for use in the production of taxifolin or related intermediates.
1. Construction of single Ty site integrated recombinant bacterium
Primers Ty4-inte-up/Ty4-inte-down are used for amplifying pcfB4-47LL and pcfB4-P05m4 respectively, PCR products are efficiently transformed by saccharomyces cerevisiae and integrated to Ty4 sites of the saccharomyces cerevisiae strain C800 respectively, and strains C8011 and C805 are obtained respectively. Strain C8011 integrates the genes related to the synthesis of p-coumaric acid in module I, and can synthesize p-coumaric acid from head, and strain C805 integrates the genes related to the synthesis of naringenin to taxifolin in module III, and can synthesize taxifolin from naringenin.
2. Construction of double Ty site integrated recombinant bacteria
And (3) using a primer Ty3-inte-up/Ty3-inte-down amplification plasmid pcfB3-P03, purifying and refining the obtained PCR product, and efficiently converting and integrating the purified PCR product into a Ty3 site of a strain C8011 genome to obtain a strain C824. And (3) using a primer Ty4-inte-up/Ty4-inte-down amplification plasmid pcfB4-P05m4, purifying and refining the obtained PCR product, and efficiently converting and integrating the purified PCR product into a Ty4 site of a genome of a strain C803 through saccharomyces cerevisiae to obtain a strain C857. Strain C824 integrates related genes from glucose to naringenin synthesis in module I and module II, and can synthesize naringenin from head, and strain C857 integrates related genes from p-coumaric acid to taxifolin synthesis in module II and module III, and can synthesize taxifolin from p-coumaric acid.
pT820 was amplified using primers Pf-gal80/Pf-gal80D, and after recovery of PCR products, the PCR products were transformed into strain C803 and strain C857, respectively, by the Saccharomyces cerevisiae high efficiency transformation method, to obtain strain C823 and strain C877, respectively. Strain C823 and strain C877 enhanced the malonyl-CoA pathway on the basis of the starting strains C803 and C857, respectively.
3. Construction of triple Ty site integration recombinant bacteria
Integrating a module-related gene on the basis of the strain C877, and respectively obtaining a strain C900 and a strain C901 according to the expression formula by taking tyrosine or phenylalanine as a precursor: primers Ty2-inte-up/Ty2-inte-down are used for amplifying pcT21-LL and pcT21-LHL, PCR products are recovered and then are transformed to Ty2 sites in a strain C877 through a saccharomyces cerevisiae high-efficiency transformation method, and strains C900 and C901 are obtained respectively. Both the strain C900 and the strain C901 can synthesize taxifolin from the head, wherein the strain C900 takes tyrosine as a precursor and obtains p-coumaric acid through TAL approach to synthesize taxifolin, and the strain C901 takes phenylalanine as a precursor and obtains the p-coumaric acid through PAL/C4H/CPR approach to obtain the taxifolin.
4. RNA expression level of taxifolin synthesis related gene in recombinant strain (detection of integrated copy number of different Ty sites and verification of stability direction)
(1) Copy number detection
Strain culture: single colonies of the strain C900 and the strain C901 which are constructed in the above way are selected and inoculated in a 250mL shake flask containing 5mL YNB medium, and cultured for 24 hours at 30 ℃ and 220rpm, so as to obtain a seed medium. Seed cultures were adjusted to starting OD6000.1 to a 250mL shake flask in 50mL YNB liquid medium. Incubated at 30 ℃ and 220rpm for 6-8 hours to early log phase. The fermentation broth was centrifuged at 13500rpm for 3 min. Removing supernatant and collecting yeast cells.
RT-PCR procedure: yeast total RNA was extracted using the RNAprep pure Plant Kit (TIANGEN, Beijing, China)). Using the total RNA as a template, the DNA was removed using a PrimeScript RT kit, and then reverse transcription was performed to obtain cDNA. RT-PCR was performed using SYBR Premix Ex Taq (Tli RNAseH Plus) kit and RT-PCR was performed using cDNA as a template. The internal reference gene ACT1 for homogenization was subjected to RT-PCR using the primer pair ACT1-F/ACT 1-R. RT-PCR was performed on a LightCycler 480II instrument. All results were normalized according to the reference gene ACT 1. The expression intensity of the gene was determined according to 2-ΔΔCtMethod (Livak K J, Schmitgen T D. analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]Methods 2001,25(4), 402-8). The integrated copy number of the genes of the modules I, II and III is determined by using primers qEGFP-F/R, qCHS-F/R and qF3H-F/R respectivelyAmount of the compound (A).
According to RT-PCR verification, the module one, the module two and the module three genes in the strain C900 are respectively integrated at the Ty2 site, the Ty3 site and the Ty4 site, and the copy numbers are 4, 5 and 7 in sequence, while the copy numbers of the strain C901 at the Ty2 site, the Ty3 site and the Ty4 site are 8, 5 and 7 in sequence (FIG. 7).
(2) Stability verification
Inoculating strains C900 and C901 into 250mL shake flasks containing 20mL of liquid YPD medium, culturing at 30 ℃ and 220rpm, inoculating 1% (mL/100mL) of the strains into 250mL shake flasks containing fresh 20mL of liquid YPD medium every 12h of culture, carrying out passage for 60 passages, respectively inoculating the two strains obtained after passage and the corresponding starting strains into 250mL shake flasks containing 20mL of liquid YPD medium after 30 days of total passage, respectively, culturing at 30 ℃ and 220rpm for 14-16h, inoculating the strains into 250mL shake flasks containing 20mL of YPD medium according to an inoculation ratio of 1mL/100mL, culturing at 30 ℃ and 220rpm, fermenting for 72h, and respectively adding 0.5% (0.5mL/100mL) of 95% ethanol at 12h, 24h, 36h and 48h, and measuring the yield of the taxifolin after the completion. The results showed that the yields of taxifolin of the starting strains C900 and C901 were 50.93mg/L and 33.83mg/L, respectively, and the yields of taxifolin of the strains after passage of strains C900 and C901 were 52.34mg/L and 33.48mg/L, respectively, and it was apparent that the ability of the strains after passage to produce taxifolin did not significantly change, thereby demonstrating that the stability of the three-site integration strain based on the Ty transposon is good.
5. Recombinant bacterium fermentation production of taxifolin
(1) The strain C8011, the strain C803, the strain C805, the strain C824, the strain C857 and the strain C877 which are obtained by construction are utilized: respectively selecting single colony, inoculating into 250mL shake flask of 20mL YPD medium, controlling shaking table at 30 deg.C and 220rpm, culturing for 14-16h to strain OD600Seed solutions were obtained around 25, when the strain was in mid-log phase. The mixture was inoculated into a 250mL shake flask containing 20mL YPD medium at an inoculation ratio of 1mL/100mL, cultured at 30 ℃ and 220rpm, and 0.5% (0.5mL/100mL) of 500g/L glucose solution or 0.5% (0.5mL/100mL) of 95% ethanol was added at 12h, 24h, 36h and 48h, respectively, as required. Sampling after fermentation, detecting the end product andcontent of intermediate product.
Strain C8011 has integrated the genes involved in module one, and it was possible to synthesize 544.01mg/L of p-coumaric acid starting from glucose by fermentation in a 250mL shake flask for 72h (FIG. 5A). Strain C803 integrated the gene related to module two, and fermented in a 250mL shake flask for 72h could synthesize 623.60mg/L naringenin from 1000mg/L p-coumaric acid (FIG. 5B). Strain C805, which incorporates the genes related to Module three, was fermented in 250mL for 72h to synthesize 603.90mg/L of taxifolin from 1000mg/L of naringenin, while 392.30mg/L of eriodictyol was accumulated, and the remainder was 83.80mg/L of naringenin (FIG. 5A). Constitutive strains with stable gene phenotypes can be obtained based on single-site integration of the Ty transposon.
The strain C824 is a strain C8011 integrated with the related gene of module II, and can synthesize naringenin from glucose as a substrate, and synthesize 264.05mg/L naringenin by 72h fermentation in a 250mL shake flask (FIG. 5A). Strain C857 is a strain C803 integrated with related genes of module two, can synthesize taxifolin from p-coumaric acid as a substrate, can synthesize 346.43mg/L taxifolin from 1000mg/L p-coumaric acid after 72h of fermentation in a 250mL shake flask, meanwhile, the accumulation amount of intermediate products of naringenin and eriodictyol is 66.32mg/L and 142.66mg/L, and the rest of substrate p-coumaric acid is 76.52mg/L (FIG. 5C). The double-site integration based on the Ty transposon can still obtain a constitutive strain with good stability.
(2) In order to verify the relationship between the synthesis capacity of the taxifolin and the copy number of a module gene, 10 strains with different fluorescence intensities are selected from a C900 and C901 transformant library, and fermentation verification is carried out by using a 48-depth orifice plate, and the result proves that the higher the fluorescence intensity is, the higher the accumulation amount of the taxifolin and other flavone related compounds is (FIG. 6A, the number in the horizontal coordinate bracket is the fluorescence intensity). Wherein the strain C901 using phenylalanine as a precursor obtains the highest accumulated amount of taxifolin of 20.66mg/L, and the accumulated amounts of coumaric acid, naringenin and eriodictyol are respectively 56.67, 31.24 and 19.01 mg/L. The highest accumulation of taxifolin obtained by the strain C900 taking tyrosine as a precursor is 19.77mg/L, and the accumulation of p-coumaric acid, naringenin and eriodictyol are 31.42, 23.67 and 15.56mg/L respectively.
Selecting single colonies of C900 and C901, inoculating into 250mL shake flask of 20mL YPD medium, controlling shaking table at 30 deg.C and 220rpm, culturing for 14-16h to strain OD600Seed solutions were obtained around 25, when the strain was in mid-log phase. The seed solution was inoculated into a 250mL shake flask containing 20mL YPD medium at an inoculation ratio of 1mL/100mL, cultured at 30 ℃ and 220rpm, fermented for 72 hours, and 0.5% (0.5mL/100mL) of 95% ethanol was added at 12h, 24h, 36h, and 48h, respectively. The transformants with the highest accumulation of taxifolin obtained were named C900 and C901. The optimal fermentation carbon source was then checked at the shake flask level by rescreening and adding 500g/L glucose solution at 0.5% (0.5mL/100mL) or 95% ethanol at 0.5% (0.5mL/100mL) at 12h, 24h, 36h and 48h, respectively. At 72h, the amounts of p-coumaric acid, naringenin, eriodictyol and taxifolin accumulated by fermenting strain C900 with glucose/ethanol as carbon source were 11.88/8.78, 13.35/10.85, 22.72/13.40 and 50.93/33.83mg/L, respectively; the amounts of p-coumaric acid, naringenin, eriodictyol and taxifolin accumulated by fermentation of strain C901 using glucose/ethanol as a carbon source were 15.97/13.27, 24.40/20.72, 45.43/24.56 and 70.54/49.47mg/L, respectively (FIG. 6B).
(3) Strain C901 was fermented in a 5L fermentor: the seed medium was transferred at 1% to a 5L fermenter containing 2.5L YPD medium as above. The temperature was controlled at 30. + -. 0.1 ℃, the speed 600rpm, and the aeration rate 3 vvn. Starting a feed pump when the glucose concentration is reduced to 0g/L, setting the speed of feeding the culture medium to be 5.0mL/L, controlling the pH to be 5.5 +/-0.1 at the same time, and measuring the concentration of various substances in the fermentation liquid every 12h during the fermentation process till the end of 72h of fermentation. As a result, as shown in FIG. 8, 135.83mg/L of taxifolin could be synthesized de novo within 72 hours while p-coumaric acid, naringenin and eriodictyol were accumulated in amounts of 40.37, 10.32 and 41.10 mg/L.
Although the present invention has been described with reference to the preferred embodiments, it should be understood that various changes and modifications can be made therein by those skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.
SEQUENCE LISTING
<110> university of south of the Yangtze river
<120> a set of plasmid kits for saccharomyces cerevisiae multicopy integration
<130> BAA210539A
<160> 57
<170> PatentIn version 3.3
<210> 1
<211> 508
<212> DNA
<213> Artificial sequence
<400> 1
ctgaacgtat cgagactcgg ttgtgtcgtt atgctagcaa tgtcctcaca ggctccattc 60
cttctttcgc tctattggat atcatcacag ctattctccc tggtgcaaaa tatcatatta 120
aattggattt atccttacca acgatggtga agctgacgca tagataggat atgtaattct 180
acatcagctt gtaaataaac aaaaatgact ttcaatatcc ttcaaccgtt cctgactctt 240
tcctgctgac ccgtttttcc aaatttctcg tcgaacttga aattgaaaaa aaaaaaaaaa 300
aattgaatga ggactcatta aacagatgat gccgtaataa atgcaatata tcttgctatt 360
taactctttc tttctttgaa aaccttgaca tacgtattta aataattggc tgtccctgcc 420
tcgaagtata tttctcttct acttttatct tagcgatatc cctaagagtt taatcctccc 480
aggtccataa caaaagaagt caagttca 508
<210> 2
<211> 1031
<212> DNA
<213> Artificial sequence
<400> 2
gagctcgctg tgaagatccc agcaaaggct tacaaagtgt tatctctttt gagacttgtt 60
gagttgaaca ctggtgtttt catcaaactt accaaggacg tgtacccatt gttgaaactt 120
gtatcaccat atattgttat cggacaacct tcacttgcat ctatccgttc tttaatccaa 180
aagagatcta gaataatgtg gcaaaggcca gaagataaag aaccaaaaga gataatcttg 240
aatgacaaca atatcgttga agagaaatta ggtgatgaag gtgtcatttg tatcgaggat 300
atcatccatg agatttcgac gttgggcgaa aatttctcga aatgtacttt cttcctatta 360
ccattcaaat tgaacagaga agtcagtgga ttcggtgcca tctcccgttt gaataaactg 420
aaaatgcgcg aacaaaacaa ggagactcgt caaatttcaa acgctgccac ggctccagtt 480
atccaagtag atatcgactc aatgatttcc aagttgaatt gattaactat aaaaggaaaa 540
tatctgtaca atagacatcg ggctcccatt ggccctaccc acatatgtag aaatacatta 600
ctctattcac tactgcattt agttatgttt aacatttgat atagcagact accgccaggc 660
acaatatatt ccccttccct cttgccattc gctgtacttg tggtggattc caattcagcg 720
cagtcacgtg ctagtaatca ccgcattttt ttcttttcct ttcaggctaa aaccggttcc 780
gggcctgatc cctgcactca ttttctaacg gaaaaccttc agaagcataa ctacccattc 840
cagtttagag tcatgacagg ttcaacatca gatgcttcat atacttttat atattgaatt 900
atataaatat atctatgtac tctaagtaag tacatctgct ttaacgcatt cctacatttg 960
cttcgattta tttttattgt tgatacctat ttgaagaagt aaaaagtatc ccacactaca 1020
cagattatac c 1031
<210> 3
<211> 493
<212> DNA
<213> Artificial sequence
<400> 3
ttttatttag gttctatcga ggagaaaaag cgacaagaag agatagacca tggataaact 60
gattatgttc taaacactcc tcagaagctc atcgaactgt catcctgcgt gaagattaaa 120
atccaactta gaaatttcga gcttacggag acaatcatat gggagaagca attggaagat 180
agaaaaaagg tactcggtac ataaatatat gtgattctgg gtagaagatc ggtctgcatt 240
ggatggtggt aacgcatttt tttacacaca ttacttgcct cgagcatcaa atggtggtta 300
ttcgtggatc tatatcacgt gatttgctta agaattgtcg ttcatggtga cacttttagc 360
tttgacatga ttaagctcat ctcaattgat gttatctaaa gtcatttcaa ctatctaaga 420
tgtggttgtg attgggccat tttgtgaaag ccagtacgcc agcgtcaata cactcccgtc 480
aattagttgc acc 493
<210> 4
<211> 545
<212> DNA
<213> Artificial sequence
<400> 4
ccctcgttca cagaaagtct gaagaagcta tagtagaact atgagctttt tttgtttctg 60
ttttcctttt tttttttttt acctctgtgg aaattgttac tctcacactc tttagttcgt 120
ttgtttgttt tgtttattcc aattatgacc ggtgacgaaa cgtggtcgat ggtgggtacc 180
gcttatgctc ccctccatta gtttcgatta tataaaaagg ccaaatattg tattattttc 240
aaatgtccta tcattatcgt ctaacatcta atttctctta aattttttct ctttctttcc 300
tataacacca atagtgaaaa tctttttttc ttctatatct acaaaaactt tttttttcta 360
tcaacctcgt tgataaattt tttctttaac aatcgttaat aattaattaa ttggaaaata 420
accatttttt ctctctttta tacacacatt caaaagaaag aaaaaaaata taccccagct 480
agttaaagaa aatcattgaa aagaataaga agataagaaa gatttaatta tcaaacaata 540
tcaat 545
<210> 5
<211> 600
<212> DNA
<213> Artificial sequence
<400> 5
gccgtcgaaa aggatctcgt ctctgttggg agcacctggt aagtaaggtg tagttttgca 60
cccgtgtaca taagcgtgaa atcaccacaa actgtgtgta tcaagtacat agtgacattt 120
aaataatagc aagaacaaca ataatagtag cgctactgga agcaccacgt aatagtggaa 180
aagaactgga aaaaccgcta taagatgcat actccggcgg tcttacgcgg agatacaagc 240
ttccaacggt gctaaaagcc cggtttcggc tcggccggag gaggaagaga gacgaaaaaa 300
aaaaaaatga ctaaaaaaaa aatggaatat tattaatgtg ggatttttgg ctcaaggtgt 360
ggtggcccct tttctaaggg tggcgaattc ttcaatgtac ggaaaactcg ccaaggctat 420
cccatatata agcaaactgt gggttcatct atataccgac acataacacc taaagtggct 480
tcctcctgcc cctctctccc ttttctccac tcacccctcc ttctccccct tccccctctc 540
caattggctg tatagacaga aagagtaaat ccaatagaat agaaaaccac ataaggcaag 600
<210> 6
<211> 520
<212> DNA
<213> Artificial sequence
<400> 6
tggattacat ttgattcagt catacacgaa ttatggtctt gatactgaca aattttccag 60
attgaggcgg ttcttatggt ttagaacttg gggactttac aagtcgaaag aggatttaga 120
tagagaagcc aagatcaatg aagaaatgat acgcaaactg aaagcagcta aatgaaatca 180
cctattgcgc cgctcgcgga atacaattac taaattttat atatattctt taaaaatgca 240
tctatacatt cgtttttcca cgtataccaa attcgaaaaa agttgttaaa ccatcgtttt 300
cacgtttttt aatttttttt tggttctctt tttttttttt tttcaatatc aacttttttt 360
caaacttcgt gttgcatttc ctttatcgta aattttcaat ggatctctat aatcttcgaa 420
gttcgaagaa aagaagaaaa aaagtattga aaagttgaaa catcgattcc gttttgctaa 480
caaatagcac tcagcatcct gcataaaatt ggtataagat 520
<210> 7
<211> 520
<212> DNA
<213> Artificial sequence
<400> 7
cgtatccaag ccgaaacggc gctcgcctca tccccacggg aataaggcag ccgacaaaag 60
aaaaacgacc gaaaaggaac cagaaagaaa aaagagggtg ggcgcgccgc ggacgtgtaa 120
aaagatatgc atccagcttc tatatcgctt taactttacc gttttgggca tcgggaacgt 180
atgtaacatt gatctcctct tgggaacggt gagtgcaacg aatgcgatat agcaccgacc 240
atgtgggcaa attcgtaata aattcggggt gagggggatt caagacaagc aaccttgtta 300
gtcagctcaa acagcgattt aacggttgag taacacatca aaacaccgtt cgaggtcaag 360
cctggcgtgt ttaacaagtt cttgatatca tatataaatg taataagaag tttggtaata 420
ttcaattcga agtgttcagt cttttacttc tcttgtttta tagaagaaaa aacatcaaga 480
aacatcttta acatacacaa acacatacta tcagaataca 520
<210> 8
<211> 500
<212> DNA
<213> Artificial sequence
<400> 8
acgtgagcta aagcacagat tgttggaaaa gcaagcggac ggccgcggag cgctgaacgt 60
gattttccat tgtatgttat cgcagcagcg cggaccgtct gcagcgatgc tgctgcttcg 120
gtcgcttgac acggcggaac tttctcgctg tcgtctatgg gtgttgcgtg gggggttctc 180
gcgctggcaa tccgtatacg gtgacgacga gagcgttacg gcgggttacc tacccgatct 240
gtggcgttga caggtttaca caatcgcacg tgatcatata tttgccatga ctcctcccag 300
tgacaatttt gttctttttt cctctttatc gctttcgtac tatggtcagt cattcattca 360
ttatatacgc gctctccata acccgtaact ttttattata tatagactcg tttacaatac 420
aacgatagcg ataccattca attgaagttg tgagaccagg taacgagacg aacacaactt 480
tacaagtcaa ataagaaatc 500
<210> 9
<211> 720
<212> DNA
<213> Artificial sequence
<400> 9
aataagcgcc actatcaggg aatagcaact ttcccttctg tttcaatctt tttacctatt 60
cctttttaaa agatatatat acattaaact ccttctacaa gtatatattt tatacatatc 120
tacagggcgt atatatacat aacattttaa gataagcaag tgaatgttga ttcccgtttc 180
ttagtcaaca cttctttcta ttttacccgg tcgttaccct attaaaaaaa caacttacaa 240
tcattgttcg ccccttccat acttactgcc actcgcaaaa gggcccaacc agggcaatta 300
cgtatcaaaa aatcatgaca ggctgggtaa taaatattcg tgaagaaaga agaaattaaa 360
aaaagaaacg aagaagcaaa aaaaagaaaa gactccgttt aatcactttc aaccgcggtt 420
tatccggccc cacccatgca taaccctaaa ttattagatc acttagcacg tgaaaaagaa 480
acgtttttaa tgtttttttt ttttttttct ttttcttttt ttgcgttggt gaaaattttt 540
tcgcttcctc gagtataatt atctcatctc atctttcata taagataaga agttttataa 600
aaaccttttg catcaaaatt ttgtagaata tctctttttc ttacgctctc tttctttcct 660
taattgtttt ctaaagaacc gtgtattttt ctagttcgaa tccatcgata acattaaaag 720
<210> 10
<211> 723
<212> DNA
<213> Artificial sequence
<400> 10
atgtcggtga taaactttac aggaagtagt ggacccttgg tgaaggtctg cggattacag 60
agtacagagg cggcagagtg tgctctagat agtgatgccg acctactagg aataatatgc 120
gttcccaaca ggaagaggac aatagacccc gtgatagcta ggaagataag ttcactagtc 180
aaagcctaca agaacagttc aggaacaccc aagtacctag taggagtttt taggaaccag 240
cccaaggaag acgtactagc gctagtgaat gattatggaa tagatatagt tcaattacat 300
ggcgatgagt catggcaaga atatcaggag ttcttaggac ttcccgtcat aaagcggttg 360
gtatttccca aggattgtaa tatcctcctt tccgccgcaa gtcaaaagcc ccactcattc 420
atacccctct tcgacagtga ggccggagga acaggagagc ttctagactg gaacagtata 480
tcggattggg taggacgaca agagagtccc gagagtcttc atttcatgct agctggagga 540
ctaacacccg agaacgtcgg agatgcccta cgactaaatg gagtaatagg agtagacgtt 600
agtggagggg tagagacaaa tggagtgaag gacagtaata aaatagctaa tttcgtaaaa 660
aatgcaaaga aggcttgtaa aaattggttc tcttctttgt ctcatttcgt tattcatttg 720
taa 723
<210> 11
<211> 723
<212> DNA
<213> Artificial sequence
<400> 11
atgtcggtga taaactttac aggaagtagt ggacccttgg tgaaggtctg cggattacag 60
agtacagagg cggcagagtg tgctctagat agtgatgccg acctactagg aataatatgc 120
gttcccaaca ggaagaggac aatagacccc gtgatagcta ggaagataag ttcactagtc 180
aaagcctaca agaacagttc aggaacaccc aagtacctag taggagtttt taggaaccag 240
cccaaggaag acgtactagc gctagtgaat gattatggaa tagatatagt tcaattacat 300
ggcgatgagt catggcaaga atatcaggag ttcttaggac ttcccgtcat aaagcggttg 360
gtatttccca aggattgtaa tatcctcctt tccgccgcaa gtcaaaagcc ccactcattc 420
atacccctct tcgacagtga ggccggagga acaggagagc ttctagactg gaacagtata 480
tcggattggg taggacgaca agagagtccc gagagtcttc atttcatgct agctggagga 540
ctaacacccg agaacgtcgg agatgcccta cgactaaatg gagtaatagg agtagacgtt 600
agtggagggg tagagacaaa tggagtgaag gacagtaata aaatagctaa tttcgtaaaa 660
aatgcaaaga aggcttgtaa aaattggttc tcttctttgt ctcatttcgt tattcatttg 720
taa 723
<210> 12
<211> 1136
<212> DNA
<213> Artificial sequence
<400> 12
atgtctaaga atatcgttgt cctaccgggt gatcacgtcg gtaaagaagt tactgacgaa 60
gctattaagg tcttgaatgc cattgctgaa gtccgtccag aaattaagtt caatttccaa 120
catcacttga tcgggggtgc tgccatcgat gccactggca ctcctttacc agatgaagct 180
ctagaagcct ctaagaaagc cgatgctgtc ttactaggtg ctgttggtgg tccaaaatgg 240
ggtacgggcg cagttagacc agaacaaggt ctattgaaga tcagaaagga attgggtcta 300
tacgccaact taagaccatg taactttgct tctgattctt tactagatct ttctcctttg 360
aagcctgaat atgcaaaggg taccgatttc gtcgtcgtta gagaattggt tggtggtatc 420
tactttggtg aaagaaaaga agatgaaggt gacggagttg cttgggactc tgagaaatac 480
agtgttcctg aagttcaaag aattacaaga atggctgctt tcttggcatt gcaacaaaac 540
ccaccattac caatctggtc acttgacaag gctaacgtgc ttgcctcttc cagattgtgg 600
agaaagactg ttgaagaaac catcaagact gagttcccac aattaactgt tcagcaccaa 660
ttgatcgact ctgctgctat gattttggtt aaatcaccaa ctaagctaaa cggtgttgtt 720
attaccaaca acatgtttgg tgatattatc tccgatgaag cctctgttat tccaggttct 780
ttgggtttat taccttctgc atctctagct tccctacctg acactaacaa ggcattcggt 840
ttgtacgaac catgtcatgg ttctgcccca gatttaccag caaacaaggt taacccaatt 900
gctaccatct tatctgcagc tatgatgttg aagttatcct tggatttggt tgaagaaggt 960
agggctcttg aagaagctgt tagaaatgtc ttggatgcag gtgtcagaac cggtgacctt 1020
ggtggttcta actctaccac tgaggttggc gatgctatcg ccaaggctgt caaggaaatc 1080
ttggcgcttg taaaaattgg ttctcttctt tgtctcattt cgttattcat ttgtaa 1136
<210> 13
<211> 852
<212> DNA
<213> Artificial sequence
<400> 13
atgtccacaa aatcatatac cagtagagct gagactcatg caagtccggt tgcatcgaaa 60
cttttacgtt taatggatga aaagaaaacc aatttgtgtg cttctcttga cgttcgttcg 120
actgatgagc tattgaaact tgttgaaacg ttgggtccat acatttgcct tttgaaaaca 180
cacgttgata tcttggatga tttcagttat gagggtactg tcgttccatt gaaagcattg 240
gcagagaaat acaagttctt gatatttgag gacagaaaat tcgccgatat cggtaacaca 300
gtcaaattac aatatacatc gggcgtttac cgtatcgcag aatggtctga tatcaccaac 360
gcccacgggg ttactggtgc tggtattgtt gctggcttga aacaaggtgc gcaagaggtc 420
accaaagaac caaggggatt attgatgctt gctgaattat cttccaaggg ttctctagca 480
cacggtgaat atactaaggg taccgttgat attgcaaaga gtgataaaga tttcgttatt 540
gggttcattg ctcagaacga tatgggagga agagaagaag ggtttgattg gctaatcatg 600
accccaggtg taggtttaga cgacaaaggc gatgcattgg gtcagcagta cagaaccgtc 660
gacgaagttg taagtggtgg atcagatatc atcattgttg gcagaggact tttcgccaag 720
ggtagagatc ctaaggttga aggtgaaaga tacagaaatg ctggatggga agcgtaccaa 780
aagagaatca gcgctcccca tgcttgtaaa aattggttct cttctttgtc tcatttcgtt 840
attcatttgt aa 852
<210> 14
<211> 1383
<212> DNA
<213> Artificial sequence
<400> 14
atgccatctc atttcgatac tgttcaacta cacgccggcc aagagaaccc tggtgacaat 60
gctcacagat ccagagctgt accaatttac gccaccactt cttatgtttt cgaaaactct 120
aagcatggtt cgcaattgtt tggtctagaa gttccaggtt acgtctattc ccgtttccaa 180
aacccaacca gtaatgtttt ggaagaaaga attgctgctt tagaaggtgg tgctgctgct 240
ttggctgttt cctccggtca agccgctcaa acccttgcca tccaaggttt ggcacacact 300
ggtgacaaca tcgtttccac ttcttactta tacggtggta cttataacca gttcaaaatc 360
tcgttcaaaa gatttggtat cgaggctaga tttgttgaag gtgacaatcc agaagaattc 420
gaaaaggtct ttgatgaaag aaccaaggct gtttatttgg aaaccattgg taatccaaag 480
tacaatgttc cggattttga aaaaattgtt gcaattgctc acaaacacgg tattccagtt 540
gtcgttgaca acacatttgg tgccggtggt tacttctgtc agccaattaa atacggtgct 600
gatattgtaa cacattctgc taccaaatgg attggtggtc atggtactac tatcggtggt 660
attattgttg actctggtaa gttcccatgg aaggactacc cagaaaagtt ccctcaattc 720
tctcaacctg ccgaaggata tcacggtact atctacaatg aagcctacgg taacttggca 780
tacatcgttc atgttagaac tgaactatta agagatttgg gtccattgat gaacccattt 840
gcctctttct tgctactaca aggtgttgaa acattatctt tgagagctga aagacacggt 900
gaaaatgcat tgaagttagc caaatggtta gaacaatccc catacgtatc ttgggtttca 960
taccctggtt tagcatctca ttctcatcat gaaaatgcta agaagtatct atctaacggt 1020
ttcggtggtg tcttatcttt cggtgtaaaa gacttaccaa atgccgacaa ggaaactgac 1080
ccattcaaac tttctggtgc tcaagttgtt gacaatttaa agcttgcctc taacttggcc 1140
aatgttggtg atgccaagac cttagtcatt gctccatact tcactaccca caaacaatta 1200
aatgacaaag aaaagttggc atctggtgtt accaaggact taattcgtgt ctctgttggt 1260
atcgaattta ttgatgacat tattgcagac ttccagcaat cttttgaaac tgttttcgct 1320
ggccaaaaac cagcttgtaa aaattggttc tcttctttgt ctcatttcgt tattcatttg 1380
taa 1383
<210> 15
<211> 747
<212> DNA
<213> Artificial sequence
<400> 15
atggcagaac cagcccaaaa aaagcaaaaa caaactgttc aggagcgcaa ggcgtttatc 60
tcccgtatca ctaatgaaac taaaattcaa atcgctattt cgctgaatgg tggttatatt 120
caaataaaag attcgattct tcctgcaaag aaggatgacg atgtagcttc ccaagctact 180
cagtcacagg tcatcgatat tcacacaggt gttggctttt tggatcatat gatccatgcg 240
ttggcaaaac actctggttg gtctcttatt gttgaatgta ttggtgacct gcacattgac 300
gatcaccata ctaccgaaga ttgcggtatc gcattagggc aagcgttcaa agaagcaatg 360
ggtgctgtcc gtggtgtaaa aagattcggt actgggttcg caccattgga tgaggcgcta 420
tcacgtgccg tagtcgattt atctagtaga ccatttgctg taatcgacct tggattgaag 480
agagagatga ttggtgattt atccactgaa atgattccac actttttgga aagtttcgcg 540
gaggcggcca gaattacttt gcatgttgat tgtctgagag gtttcaacga tcaccacaga 600
agtgagagtg cgttcaaggc tttggctgtt gccataagag aagctatttc tagcaatggc 660
accaatgacg ttccctcaac caaaggtgtt ttgatggctt gtaaaaattg gttctcttct 720
ttgtctcatt tcgttattca tttgtaa 747
<210> 16
<211> 621
<212> DNA
<213> Artificial sequence
<400> 16
atgggtacca ctcttgacga cacggcttac cggtaccgca ccagtgtccc gggggacgcc 60
gaggccatcg aggcactgga tgggtccttc accaccgaca ccgtcttccg cgtcaccgcc 120
accggggacg gcttcaccct gcgggaggtg ccggtggacc cgcccctgac caaggtgttc 180
cccgacgacg aatcggacga cgaatcggac gacggggagg acggcgaccc ggactcccgg 240
acgttcgtcg cgtacgggga cgacggcgac ctggcgggct tcgtggtcgt ctcgtactcc 300
ggctggaacc gccggctgac cgtcgaggac atcgaggtcg ccccggagca ccgggggcac 360
ggggtcgggc gcgcgttgat ggggctcgcg acggagttcg cccgcgagcg gggcgccggg 420
cacctctggc tggaggtcac caacgtcaac gcaccggcga tccacgcgta ccggcggatg 480
gggttcaccc tctgcggcct ggacaccgcc ctgtacgacg gcaccgcctc ggacggcgag 540
caggcgctct acatgagcat gccctgcccc gcttgtaaaa attggttctc ttctttgtct 600
catttcgtta ttcatttgta a 621
<210> 17
<211> 1077
<212> DNA
<213> Artificial sequence
<400> 17
atgggtaaaa agcctgaact caccgcgacg tctgtcgaga agtttctgat cgaaaagttc 60
gacagcgtct ccgacctgat gcagctctcg gagggcgaag aatctcgtgc tttcagcttc 120
gatgtaggag ggcgtggata tgtcctgcgg gtaaatagct gcgccgatgg tttctacaaa 180
gatcgttatg tttatcggca ctttgcatcg gccgcgctcc cgattccgga agtgcttgac 240
attggggaat tcagcgagag cctgacctat tgcatctccc gccgtgcaca gggtgtcacg 300
ttgcaagacc tgcctgaaac cgaactgccc gctgttctgc agccggtcgc ggaggccatg 360
gatgcgatcg ctgcggccga tcttagccag acgagcgggt tcggcccatt cggaccgcaa 420
ggaatcggtc aatacactac atggcgtgat ttcatatgcg cgattgctga tccccatgtg 480
tatcactggc aaactgtgat ggacgacacc gtcagtgcgt ccgtcgcgca ggctctcgat 540
gagctgatgc tttgggccga ggactgcccc gaagtccggc acctcgtgca cgcggatttc 600
ggctccaaca atgtcctgac ggacaatggc cgcataacag cggtcattga ctggagcgag 660
gcgatgttcg gggattccca atacgaggtc gccaacatct tcttctggag gccgtggttg 720
gcttgtatgg agcagcagac gcgctacttc gagcggaggc atccggagct tgcaggatcg 780
ccgcggctcc gggcgtatat gctccgcatt ggtcttgacc aactctatca gagcttggtt 840
gacggcaatt tcgatgatgc agcttgggcg cagggtcgat gcgacgcaat cgtccgatcc 900
ggagccggga ctgtcgggcg tacacaaatc gcccgcagaa gcgcggccgt ctggaccgat 960
ggctgtgtag aagtactcgc cgatagtgga aaccgacgcc ccagcactcg tccgagggca 1020
aaggaagctt gtaaaaattg gttctcttct ttgtctcatt tcgttattca tttgtaa 1077
<210> 18
<211> 858
<212> DNA
<213> Artificial sequence
<400> 18
atgggtaagg aaaagactca cgtttcgagg ccgcgattaa attccaacat ggatgctgat 60
ttatatgggt ataaatgggc tcgcgataat gtcgggcaat caggtgcgac aatctatcga 120
ttgtatggga agcccgatgc gccagagttg tttctgaaac atggcaaagg tagcgttgcc 180
aatgatgtta cagatgagat ggtcagacta aactggctga cggaatttat gcctcttccg 240
accatcaagc attttatccg tactcctgat gatgcatggt tactcaccac tgcgatcccc 300
ggcaaaacag cattccaggt attagaagaa tatcctgatt caggtgaaaa tattgttgat 360
gcgctggcag tgttcctgcg ccggttgcat tcgattcctg tttgtaattg tccttttaac 420
agcgatcgcg tatttcgtct cgctcaggcg caatcacgaa tgaataacgg tttggttgat 480
gcgagtgatt ttgatgacga gcgtaatggc tggcctgttg aacaagtctg gaaagaaatg 540
cataagcttt tgccattctc accggattca gtcgtcactc atggtgattt ctcacttgat 600
aaccttattt ttgacgaggg gaaattaata ggttgtattg atgttggacg agtcggaatc 660
gcagaccgat accaggatct tgccatccta tggaactgcc tcggtgagtt ttctccttca 720
ttacagaaac ggctttttca aaaatatggt attgataatc ctgatatgaa taaattgcag 780
tttcatttga tgctcgatga gtttttcgct tgtaaaaatt ggttctcttc tttgtctcat 840
ttcgttattc atttgtaa 858
<210> 19
<211> 603
<212> DNA
<213> Artificial sequence
<400> 19
atgggtagcc cagaacgacg cccggtcgag atccgtcccg ccaccgccgc cgacatggcg 60
gcggtctgcg acatcgtcaa tcactacatc gagacgagca cggtcaactt ccgtacggag 120
ccgcagactc cgcaggagtg gatcgacgac ctggagcgcc tccaggaccg ctacccctgg 180
ctcgtcgccg aggtggaggg cgtcgtcgcc ggcatcgcct acgccggccc ctggaaggcc 240
cgcaacgcct acgactggac cgtcgagtcg acggtgtacg tctcccaccg gcaccagcgg 300
ctcggactgg gctccaccct ctacacccac ctgctgaagt ccatggaggc ccagggcttc 360
aagagcgtgg tcgccgtcat cggactgccc aacgacccga gcgtgcgcct gcacgaggcg 420
ctcggataca ccgcgcgcgg gacgctgcgg gcagccggct acaagcacgg gggctggcac 480
gacgtggggt tctggcagcg cgacttcgag ctgccggccc cgccccgccc cgtccggccc 540
gtcacacaga tcgcttgtaa aaattggttc tcttctttgt ctcatttcgt tattcatttg 600
taa 603
<210> 20
<211> 429
<212> DNA
<213> Artificial sequence
<400> 20
atggccgacc aagcgacgcc caacctgcca tcacgagatt tcgatcccac cgccgccttc 60
tatgaaaggt tgggcttcgg aatcgttttc cgggacgccg gctggatgat cctccagcgc 120
ggggatctca agctggagtt cttcgcccac cccgggctcg atcccctcgc gagttggttc 180
agctgctgcc tgaggctgga cgacctcgcg gagttctacc ggcagtgcaa atccgtcggc 240
atccaggaaa ccagcagcgg ctatccgcgc atccatgccc ccgaactgca ggagtgggga 300
ggcacgatgg ccgctttggt cgacccggac gggacgctcc tgcgcctgat acagaacgaa 360
ttgcttgcag gcatctcagc ttgtaaaaat tggttctctt ctttgtctca tttcgttatt 420
catttgtaa 429
<210> 21
<211> 211
<212> DNA
<213> Artificial sequence
<400> 21
tccgcgctga gggtttaatg gcgcgccgcg gccgcccgcg gtgttggaat aaaaatccac 60
tatcgtctat caactaatag ttatattatc aatatattat catatacggt gttaagatga 120
tgacataagt tatgagaagc tgtcatcgaa gttagaggaa gctgaagtgc aaggattgat 180
aatgtaatag gatcaatgaa tataaacata t 211
<210> 22
<211> 213
<212> DNA
<213> Artificial sequence
<400> 22
aaaacggaat gaggaataat cgtaatatta gtatgtagaa atatagattc cattttgagg 60
attcctatat cctcgaggag aacttctagt gtatattctg tatacctaat attatagcct 120
ttatcaacaa tggaatccca acaattatct aattacccac aaatttctca agatctgcgg 180
ccgcactcag acctgaagtg aagttcctat act 213
<210> 23
<211> 208
<212> DNA
<213> Artificial sequence
<400> 23
ccgcgctgag ggtttaatgg cgcgccgcgg ccgcccgcgg tgttggaata aaaatcaact 60
atcatctact aactagtatt tacgttacta gtatattatc atatacggtg ttagaagatg 120
acgcaaatga tgagaaatag tcatctaaat tagtggaagc tgaaacgcaa ggattgataa 180
tgtaatagga tcaatgaata ttaacata 208
<210> 24
<211> 211
<212> DNA
<213> Artificial sequence
<400> 24
taaaacggaa tgatgaataa tatttataga attgtgtaga attgcagatt cccttttatg 60
gattcctaaa tcctcgagga gaacttctag tatattctgt atacctaata ttatagcctt 120
tatcaacaat ggaatcccaa caattatctc aaaattcaca tatttctcaa gatctgcggc 180
cgcactcaga cctgaagtga agttcctata c 211
<210> 25
<211> 209
<212> DNA
<213> Artificial sequence
<400> 25
gtgtccgcgc tgagggttta atggcgcgcc gcggccgccc gcggtgttgg aataaaaatc 60
aactatcatc tactaactag tatttacgtt actagtatat tatcatatac ggtgttagaa 120
gatgacgcaa atgatgagaa atagtcatct aaattagtgg aagctgaaac gcaaggattg 180
ataatgtaat aggatcaatg aatattaac 209
<210> 26
<211> 205
<212> DNA
<213> Artificial sequence
<400> 26
atataaaatg atgataataa tatttataga attgtgtaga attgcagatt cccttttatg 60
gattcctaaa tcctgaggag aacttctagt atattctaca tacctaatat tattgcctta 120
ttaaaaatgg aatcccaaca attacatcaa aatccacatt ctcagatctg cggccgcact 180
cagacctgaa gtgaagttcc tatac 205
<210> 27
<211> 212
<212> DNA
<213> Artificial sequence
<400> 27
gtccgcgctg agggtttaat ggcgcgccgc ggccgcccgc ggtgttgtat ctcaaaatga 60
gatatgtcag tatgacaata cgtcatcctg aacgttcata aaacacatat gaaacaacct 120
tataacaaaa cgaacaacat gagacaaaac ccgtccttcc ctagctgaac tacccaaaag 180
tataaatgcc tgaacaatta gtttagatcc ga 212
<210> 28
<211> 213
<212> DNA
<213> Artificial sequence
<400> 28
gattccgcgc ttccaccact tagtatgatt catattttat ataatatata agataagtaa 60
cattccgtga attaatctga taaactgttt tgacaactgg ttacttccct aagactgttt 120
atattaggat tgtcaagaca ctccggtatt actcgagccc gtaatacaac aagatctgcg 180
gccgcactca gacctgaagt gaagttccta tac 213
<210> 29
<211> 298
<212> DNA
<213> Artificial sequence
<400> 29
gaacttctga agtggggatt taaatgcggc cgcgctgagg gtttaatggc gcgccgcggc 60
cgcccgcggt gttggaacga gagtaattaa tagtgacatg agttgctatg gtaacaatct 120
aatgcttaca tcgtatatta atgtacaact cgtatacgtt taagtgtgat tgcgcctatt 180
gcagaaggaa tgttaaacga gaagctcaga caatactgaa gctgtgttaa agacctatta 240
gttgaacatg ttatgctagc attaagtcct cagcgagctc gcatggaatg cgtgcgat 298
<210> 30
<211> 401
<212> DNA
<213> Artificial sequence
<400> 30
taggtgatat cagatccact agtggcctat gcacccaatt cgccctatag tgagtcgtat 60
tacgcgcgct cactggccgt cgttttacaa cgtcgtgact gggaaaaccc tggcgttacc 120
cctacaggac tagtgctgag gcattaattg atcaggtagg tacatatatg aggaatatga 180
gtcgtcacat caatgtatag taactaccgg aatcactatt atattggtca tgattaatat 240
gaccaatcgg cgtgtgtttt atatacctct cttatttagt ataagaagat cagtactcac 300
ttcttcatta atactaattt ttaacctcta attatcaaca agatctgcgg ccgcggccgc 360
aaatttaaat aaaatgaagt gaagttccta tactttctag a 401
<210> 31
<211> 343
<212> DNA
<213> Artificial sequence
<400> 31
caagtgtttt tgacgaaaga ttatcacttg gaaacaaagc aatattccat ttggaagggt 60
tcatagcaaa agttatgtgc tgtctagatt aatgtaagat atgtcataaa tactgtataa 120
gtcacacaaa aagctgatat ttaacgcatc ttagtcttta ttttctttgt tatttatttt 180
catttaaaac aaactttact gttttttttt tgtttattat ttttagtata caactatata 240
gataatttac atttattctt cgtcattaaa tttaggagcc aagaaaaact gtaggaaccc 300
actcttcaaa tcaaattgga ataaagcagg agcttcgctg gag 343
<210> 32
<211> 352
<212> DNA
<213> Artificial sequence
<400> 32
agagtatcaa gaatttaaaa tgaaacatct caaaagaaaa aagaatgcaa atgagtctat 60
cgacgaattt gaagggaaat aaacgcataa tgtacagtaa cgtataacaa ttaaagattt 120
gtggaagttt tcaaaaactt ttcaactttt ttctttgttt tttttttgca acttcttata 180
ttaatattgt catagatatt tcttatacaa aaacaagcga acaaaaataa tcgacgtata 240
tacaatagat atataagact gtttttcttc aatagaacag gcgaaattat tctaccggcc 300
gaaggtacat cttcccgcta tgtaataaat agaggtattt aagttataac aa 352
<210> 33
<211> 356
<212> DNA
<213> Artificial sequence
<400> 33
agcttctctt tacgttccaa tgactggtaa agttaccatt gcaatgttgt tgagaaacat 60
gttacgttta gtaaggaacg tagaactgtc taaagaaaaa tagaacattt gtggctgttc 120
aaataagcat aggtaaaaca gaatacataa aaataaggga aaaaaagaaa gatcatttgt 180
aatgtactta ctacatacat atagaattct cctctcttag attatcatat aatatacaaa 240
gtttatgggt cttatttctt ctgtctttta gcagagggct caatatcagt ggcactgacg 300
aactcttctt cgtattcttg tccatcatcc gaatacgacg cttcatcttc gtagtc 356
<210> 34
<211> 358
<212> DNA
<213> Artificial sequence
<400> 34
aaagattctc tttttttatg atatttgtac ataaacttta taaatgaaat tcataataga 60
aacgacacga aattacaaaa tggaatatgt tcatagggta gacgaaacta tatacgcaat 120
ctacatacat ttatcaagaa ggagaaaaag gaggatgtaa aggaatacag gtaagcaaat 180
tgatactaat ggctcaacgt gataaggaaa aagaattgca ctttaacatt aatattgaca 240
aggaggaggg caccacacaa aaagttaggt gtaacagaaa atcatgaaac tatgattcct 300
aatttatata ttggaggatt ttctctaaaa aaaaaaaaat acaacaaata aaaaacac 358
<210> 35
<211> 439
<212> DNA
<213> Artificial sequence
<400> 35
ttttaaaggt gaactgatct acgcgccctc gatagtaatg actaaatatc ttgggtagag 60
tatatataat gtcgtatttt tgtatattgt tttatttaga caaatagtaa cgtgttatgt 120
tccttcaatc gcatctttca tgatctttaa tcgatcgtca aatggatcca tttagagttt 180
ctcatcacca tccccatatc atttcactcc accccgcttt acgtaaaaaa aaaaaaaaaa 240
attgaataaa tgactaagaa ttagacacaa ttttgtctta atgaatgctt tttacttatg 300
acacatgcca gtttgtacat atgttgatct tcatagctcc gataatcttc ataaattcgt 360
gacaaattaa aattacacat tattatgtaa actataatat acaatgttgc ctatcaagac 420
aaacatatgc actctatga 439
<210> 36
<211> 400
<212> DNA
<213> Artificial sequence
<400> 36
cactcatacg ccatccttaa agacctggtc tacgatcaaa tgattttttt agtttacaat 60
ctatttttgt ttctaagcaa gtttatcacg caaatacata agtatatttt tactttctat 120
tcttcctagt ttatatttat ttcattgtaa ctttcttaga agctcggtcc tctcgctata 180
tagtaggatc tgcaacatat ttggatgtgg gtgggcgttc tccttctttt ttagatgtaa 240
ggtccaacac gtataacagg tgatacacat agaaagacac gtggaaataa cagtcattta 300
cgaatattta aaacctgagc aactccgtca aatttgatct taatcttttc tggggcccca 360
tctaattccc agaaagccct tcgaattaga aaccggatgc 400
<210> 37
<211> 331
<212> DNA
<213> Artificial sequence
<400> 37
ggtaacaaga ttggcaaaca taataagaaa ggtccaaagt tcaaatctag aaaaaaatta 60
tagaagattg aaactgagca atatggctaa ttacacacct ggagaaaaaa tcagatatgt 120
atatataaga atattataat actgtatatt aaaaatgatt aaaataaaga aaaaaatgaa 180
tcgggcgttt aattgcttat tatcttgaag aagcgaaagt acactatata gtaataatgt 240
gaggttaatt aaatatggat gagataatga cgaaagaaaa tgcagaaatg tcgttttaaa 300
agtaaccccc ataatctagt gaggttcgac g 331
<210> 38
<211> 301
<212> DNA
<213> Artificial sequence
<400> 38
gttaacatta cgttaataaa taggtatata tgaatattta taccaacaca tctattataa 60
taggcgaacc tctgtatgta attaagtaaa aaaaaaacga tgtgacagga tagttaaggt 120
gcctcgtaca taaataaaaa cggaaatagt taattctttc aaaaatatgg caatagccaa 180
actcattcag aaggtacagg aaacactctg tttctgtgcg tttatataac catgcttata 240
aaagaaagat tgaacaaaat atacatgaat ttatgaacgg taatcaccgt taattgttac 300
a 301
<210> 39
<211> 205
<212> DNA
<213> Artificial sequence
<400> 39
cattccgttg gtagatacgt tgttgacact tctaaataag cgaatttctt atgatttatg 60
atttttatta ttaaataagt tataaaaaaa ataagtgtat acaaatttta aagtgactct 120
taggttttaa aacgaaaatt cttattcttg agtaactctt tcctgtaggt caggttgctt 180
tctcaggtat agcatgaggt cgctc 205
<210> 40
<211> 190
<212> DNA
<213> Artificial sequence
<400> 40
atccgctcta accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt 60
ttttatagtt atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct 120
gtacagacgc gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg 180
acgctcgaag 190
<210> 41
<211> 725
<212> DNA
<213> Artificial sequence
<400> 41
tttgccagct tactatcctt cttgaaaata tgcactctat atcttttagt tcttaattgc 60
aacacataga tttgctgtat aacgaatttt atgctatttt ttaaatttgg agttcagtga 120
taaaagtgtc acagcgaatt tcctcacatg tagggaccga attgtttaca agttctctgt 180
accaccatgg agacatcaaa aattgaaaat ctatggaaag atatggacgg tagcaacaag 240
aatatagcac gagccgcgga gttcatttcg ttacttttga tatcactcac aactattgcg 300
aagcgcttca gtgaaaaaat cataaggaaa agttgtaaat attattggta gtattcgttt 360
ggtaaagtag agggggtaat ttttcccctt tattttgttc atacattctt aaattgcttt 420
gcctctcctt ttggaaagct atacttcgga gcactgttga gcgaaggctc attagatata 480
ttttctgtca ttttccttaa cccaaaaata agggaaaggg tccaaaaagc gctcggacaa 540
ctgttgaccg tgatccgaag gactggctat acagtgttca caaaatagcc aagctgaaaa 600
taatgtgtag ctatgttcag ttagtttggc tagcaaagat ataaaagcag gtcggaaata 660
tttatgggca ttattatgca gagcatcaac atgataaaaa aaaacagttg aatattccct 720
caaaa 725
<210> 42
<211> 717
<212> DNA
<213> Artificial sequence
<400> 42
atgggtaagg gagaagaact tttcactgga gttgtcccaa ttcttgttga attagatggt 60
gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg aaggtgatgc aacatacgga 120
aaacttaccc ttaaatttat ttgcactact ggaaagcttc ctgttccttg gccaacactt 180
gtcactactc ttacttatgg tgttcaatgc ttttcaagat acccagatca tatgaagcgg 240
cacgacttct tcaagagcgc catgcctgag ggatacgtgc aggagaggac catcttcttc 300
aaggacgacg ggaactacaa gacacgtgct gaagtcaagt ttgagggaga caccctcgtc 360
aacagaatcg agcttaaggg aatcgatttc aaggaggacg gaaacatcct cggccacaag 420
ttggaataca actacaactc ccacaacgta tacatcatgg cagacaaaca aaagaatgga 480
atcaaagtta acttcaaaat tagacacaac attgaagatg gaagcgttca actagcagac 540
cattatcaac aaaatactcc aattggcgat ggccctgtcc ttttaccaga caaccattac 600
ctgtccacac aatctgccct ttcgaaagat cccaacgaaa agagagacca catggtcctt 660
cttgagtttg taacagctgc tgggattaca catggcatgg atgaactata caaataa 717
<210> 43
<211> 580
<212> DNA
<213> Artificial sequence
<400> 43
gtgaatttac tttaaatctt gcatttaaat aaattttctt tttatagctt tatgacttag 60
tttcaattta tatactattt taatgacatt ttcgattcat tgattgaaag ctttgtgttt 120
tttcttgatg cgctattgca ttgttcttgt ctttttcgcc acatgtaata tctgtagtag 180
atacctgata cattgtggat gctgagtgaa attttagtta ataatggagg cgctcttaat 240
aattttgggg atattggctt ttttttttaa agtttacaaa tgaatttttt ccgccaggat 300
aacgattctg aagttactct tagcgttcct atcggtacag ccatcaaatc atgcctataa 360
atcatgccta tatttgcgtg cagtcagtat catctacatg aaaaaaactc ccgcaatttc 420
ttatagaata cgttgaaaat taaatgtacg cgccaagata agataacata tatctagatg 480
cagtaatata cacagattcc cgcggacgtg ggaaggaaaa aattagataa caaaatctga 540
gtgatatgga aattccgctg tatagctcat atctttccct 580
<210> 44
<211> 2157
<212> DNA
<213> Artificial sequence
<400> 44
atggatcaat ataccaatgg acattccact agtaagatga atcatgatga tcatagtagt 60
ttatgccaga ctactacgac ggacccattg aattggggtg tggctgcggc ggcgttaagc 120
ggcagccacc tcaacgaggt gaagaagatg gtggaggagt atcggaatcc ggtggtgagg 180
ttgggtggcg aaacgctgac tattggtcag gtagcagcgg tcgccaccac tagggacgtt 240
caggttgagt tatcggaatc ttctcgtgcc ggagttacag ccagcagcga ttgggtgatg 300
gatagcatga aaagaggagg agacacctat ggtgtcacca ccggtttcgg tgccacctct 360
caccggagaa caaaggaagg tggtgctctt caacaagagc tcattagatt cttgaacgcc 420
ggaatcttcg gtaccggaac ggaatccgac catacgctgc cgcaatccac cacaagagcc 480
gccatgttgg tcagaatcaa caccctcctc caaggctact ccggcatccg attcgaaatc 540
ttagaagcca tcactaaatt tctcaaccac aacatcaccc catgcctacc cttacgtggc 600
actatcacag cctccggtga cctggtccca ctctcctaca ttgccggaat cttgaccggt 660
cgtcacaatt ccaaggccgt cggccccacc ggagaattac tcgatgccgc caaatctttc 720
gatcgtgccg gtatcgatac tggatttttc gagctacaac cgaaagaagg acttgcgtta 780
gtgaacggga ccgccgtggg gtccggtatg gcttcggtgg ttctttttga agctaatatc 840
ctagcggttt tatcggaggt tttatcggcc atttttgcgg aagttatgca aggaaaacct 900
gagtttacgg atcatctgac ccataaactc aagcatcacc ccggccagat tgaggccgcg 960
gcgatcatgg agcacattct tgatggtagc tcctacgtaa aagaagcaca aaagatgcac 1020
gaaatggatc cgcttcaaaa accaaagcaa gatcgttacg ctcttcgtac gtcaccgcaa 1080
tggctcggtc cgcttatcga ggtgatacgt acatcgacga aatcgatcga gagagagatt 1140
aattcggtta atgataaccc tttaattgat gtttctcgaa ataaggcact tcatggaggg 1200
aattttcagg gtaccccaat aggagtctcg atggataata cccgattagc cgttgcatcc 1260
atcgggaagc ttttgtttgc gcagttttcc gagcttgtga atgattttta taacaatggg 1320
cttccatcca atctttctgg aagccgtaat ccaagtttgg attacggctt caaaggagca 1380
gagattgcga tggcatccta ctgctcggaa cttcagttcc tcgcaaaccc tgtaacgagt 1440
cacgttcaaa gcgcagagca acataaccag gatgtgaact cattagggtt gatttcttca 1500
aggaaaacgg ccgaagcagt tgagatttta aaactcatgt catccactta cttagtggca 1560
ctatgccaag cagtcgactt gaggcactta gaagaaaacc tcaagtcgac tgtcaagaac 1620
gttgttagcc aggtggccaa gaaagtcttg accaccggcc acaatggcca gcttcaccca 1680
tctcgctttt gcgaaaagga tttgctcaaa gtggtcgacc gtgagcacat cttttcgtac 1740
atcgatgacc cgtgtagtgc aacttaccct ctaatgcaaa aattacgaca agttatagtc 1800
gatcacgcgc tcgcaaacgg tgaggccgaa atggactcga gtacgtcaat cttccaaaag 1860
atcggggctt tcgagcaaga actcgaaacc cttttgccaa aagaagtcga aagcactcgg 1920
gtcgatcacg aaggtggaaa gttagcgatt tttaacagaa tcgaagaatg tcgatcatac 1980
ccgttgtata agtttgtaag gatggaactc ggaaccggct atttgaccgg cgagaagacg 2040
gtttcaccgg gagaggagtt tgagaaggtg ttctcggcga tatgtgccgg aaaattgatg 2100
gatccattgt tggattgttt gaagatgtgg gacggaaagc cacttccaat ttcataa 2157
<210> 45
<211> 1518
<212> DNA
<213> Artificial sequence
<400> 45
atggatcttc tccttttgga gaaagctctt gtagggctct tcgtagccat tttaggagcg 60
atcttcatat ctaagttacg tggaaagcgt ttcaagctcc cgccgggacc aattccggta 120
ccgattttcg gaaactggct tcaagtcggc gatgatctca accaccggaa cttaacagat 180
ctagccaaga agttcggcca gatcttcctt ctccgtatgg gccaacggaa cctcgtcgtc 240
gtatcatcgc cggatctcgc caaggaagtc ctccacacac aaggcgtgga gttcggatct 300
cgaactagaa acgtcgtgtt cgacattttc acagggaaag gacaagatat ggtgtttacg 360
gtttacggcg agcactggcg gaagatgcgg aggatcatga cggttccgtt tttcaccaat 420
aaagttgttc agcagtacag gttcggatgg gaggcggagg cggcggcggt ggtggaggat 480
gtgaagaaga atccggcagc agcgacggaa gggattgtga tcaggagacg gttacagctg 540
atgatgtata acaatatgtt cagaattatg tttgatagaa ggttcgagag tgaggacgat 600
cctttgttct tgaagctcaa ggcgttgaat ggggagagga gtcgattggc acagagcttc 660
gattacaact atggcgattt catcccaatt ttgaggccgt ttttgaaagg ttatttgaag 720
atgtgcaaag aagtcaaaga gaagaggttg cagctattca aggattactt cgttgatgaa 780
aggaagaaga tgggaagcat aaaaaccatg gacaacaacc aaatcaaatg tgcaattgat 840
catatacttg aagctcagga caaaggagag atcaacgagg acaatgtcct ttacatcgtt 900
gagaatatca atgttgccgc aatcgaaacc accctctggt ccatcgaatg gggaatcgcg 960
gaactcgtga accaccctga aatccaatcg aaactgagac acgaactcga caccaaactc 1020
ggacccggag tccaagtcac cgaaccagac atccaaaagc ttccatacct ccaagccgtg 1080
gttaaggaga ctctccgcct tcggatggct atcccgctcc tggtcccaca catgaacctc 1140
cacgacgcca agcttaacgg ctacgacatt ccagccgaaa gcaagatctt ggtcaacgcc 1200
tggtggctag ccaacaaccc cgaacaatgg aagaaacccg atgaattccg acccgaaaga 1260
ttcttcgaag aagaaagcca cgtggaggct aacggaaatg atttccgtta cttgccgttt 1320
ggagtcggga gaaggagttg tcccgggatt atccttgcgt taccgatctt ggggataacg 1380
atcgggcgat tggtgcagaa tttcgagcta ttgccgccac cggggatgtc gaagatcgat 1440
gtgaaggaga aaggtggaca gtttagtttg catattttga atcattccac cgttgttgct 1500
aaaccaagat cattgtga 1518
<210> 46
<211> 48
<212> DNA
<213> Artificial sequence
<400> 46
gcttgtaaaa attggttctc ttctttgtct catttcgtta ttcatttg 48
<210> 47
<211> 6702
<212> DNA
<213> Artificial sequence
<400> 47
atgagcgaag aaagcttatt cgagtcttct ccacagaaga tggagtacga aattacaaac 60
tactcagaaa gacatacaga acttccaggt catttcattg gcctcaatac agtagataaa 120
ctagaggagt ccccgttaag ggactttgtt aagagtcacg gtggtcacac ggtcatatcc 180
aagatcctga tagcaaataa tggtattgcc gccgtgaaag aaattagatc cgtcagaaaa 240
tgggcatacg agacgttcgg cgatgacaga accgtccaat tcgtcgccat ggccacccca 300
gaagatctgg aggccaacgc agaatatatc cgtatggccg atcaatacat tgaagtgcca 360
ggtggtacta ataataacaa ctacgctaac gtagacttga tcgtagacat cgccgaaaga 420
gcagacgtag acgccgtatg ggctggctgg ggtcacgcct ccgagaatcc actattgcct 480
gaaaaattgt cccagtctaa gaggaaagtc atctttattg ggcctccagg taacgccatg 540
aggtctttag gtgataaaat ctcctctacc attgtcgctc aaagtgctaa agtcccatgt 600
attccatggt ctggtaccgg tgttgacacc gttcacgtgg acgagaaaac cggtctggtc 660
tctgtcgacg atgacatcta tcaaaagggt tgttgtacct ctcctgaaga tggtttacaa 720
aaggccaagc gtattggttt tcctgtcatg attaaggcat ccgaaggtgg tggtggtaaa 780
ggtatcagac aagttgaacg tgaagaagat ttcatcgctt tataccacca ggcagccaac 840
gaaattccag gctcccccat tttcatcatg aagttggccg gtagagcgcg tcacttggaa 900
gttcaactgc tagcagatca gtacggtaca aatatttcct tgttcggtag agactgttcc 960
gttcagagac gtcatcaaaa aattatcgaa gaagcaccag ttacaattgc caaggctgaa 1020
acatttcacg agatggaaaa ggctgccgtc agactgggga aactagtcgg ttatgtctct 1080
gccggtaccg tggagtatct atattctcat gatgatggaa aattctactt tttagaattg 1140
aacccaagat tacaagtcga gcatccaaca acggaaatgg tctccggtgt taacttacct 1200
gcagctcaat tacaaatcgc tatgggtatc cctatgcata gaataagtga cattagaact 1260
ttatatggta tgaatcctca ttctgcctca gaaatcgatt tcgaattcaa aactcaagat 1320
gccaccaaga aacaaagaag acctattcca aagggtcatt gtaccgcttg tcgtatcaca 1380
tcagaagatc caaacgatgg attcaagcca tcgggtggta ctttgcatga actaaacttc 1440
cgttcttcct ctaatgtttg gggttacttc tccgtgggta acaatggtaa tattcactcc 1500
ttttcggact ctcagttcgg ccatattttt gcttttggtg aaaatagaca agcttccagg 1560
aaacacatgg ttgttgccct gaaggaattg tccattaggg gtgatttcag aactactgtg 1620
gaatacttga tcaaactttt ggaaactgaa gatttcgagg ataacactat taccaccggt 1680
tggttggacg atttgattac tcataaaatg accgctgaaa agcctgatcc aactcttgcc 1740
gtcatttgcg gtgccgctac aaaggctttc ttagcatctg aagaagcccg ccacaagtat 1800
atcgaatcct tacaaaaggg acaagttcta tctaaagacc tactgcaaac tatgttccct 1860
gtagatttta tccatgaggg taaaagatac aagttcaccg tagctaaatc cggtaatgac 1920
cgttacacat tatttatcaa tggttctaaa tgtgatatca tactgcgtca actagctgat 1980
ggtggtcttt tgattgccat aggcggtaaa tcgcatacca tctattggaa agaagaagtt 2040
gctgctacaa gattatccgt tgactctatg actactttgt tggaagttga aaacgatcca 2100
acccagttgc gtactccatc ccctggtaaa ttggttaaat tcttggtgga aaatggtgaa 2160
cacattatca agggccaacc atatgcagaa attgaagtta tgaaaatgca aatgcctttg 2220
gtttctcaag aaaatggtat cgtccagtta ttaaagcaac ctggttctac cattgttgca 2280
ggtgatatca tggctattat gactcttgac gatccatcca aggtcaagca cgctctacca 2340
tttgaaggta tgctgccaga ttttggttct ccagttatcg aaggaaccaa acctgcctat 2400
aaattcaagt cattagtgtc tactttggaa aacattttga agggttatga caaccaagtt 2460
attatgaacg cttccttgca acaattgata gaggttttga gaaatccaaa actgccttac 2520
tcagaatgga aactacacat ctctgcttta cattcaagat tgcctgctaa gctagatgaa 2580
caaatggaag agttagttgc acgttctttg agacgtggtg ctgttttccc agctagacaa 2640
ttaagtaaat tgattgatat ggccgtgaag aatcctgaat acaaccccga caaattgctg 2700
ggcgccgtcg tggaaccatt ggcggatatt gctcataagt actctaacgg gttagaagcc 2760
catgaacatt ctatatttgt ccatttcttg gaagaatatt acgaagttga aaagttattc 2820
aatggtccaa atgttcgtga ggaaaatatc attctgaaat tgcgtgatga aaaccctaaa 2880
gatctagata aagttgcgct aactgttttg tctcattcga aagtttcagc gaagaataac 2940
ctgatcctag ctatcttgaa acattatcaa ccattgtgca agttatcttc taaagtttct 3000
gccattttct ctactcctct acaacatatt gttgaactag aatctaaggc taccgctaag 3060
gtcgctctac aagcaagaga aattttgatt caaggcgctt taccttcggt caaggaaaga 3120
actgaacaaa ttgaacatat cttaaaatcc tctgttgtga aggttgccta tggctcatcc 3180
aatccaaagc gctctgaacc agatttgaat atcttgaagg acttgatcga ttctaattac 3240
gttgtgttcg atgttttact tcaattccta acccatcaag acccagttgt gactgctgca 3300
gctgctcaag tctatattcg tcgtgcttat cgtgcttaca ccataggaga tattagagtt 3360
cacgaaggtg tcacagttcc aattgttgaa tggaaattcc aactaccttc agctgcgttc 3420
tccacctttc caactgttaa atctaaaatg ggtatgaaca gggctgttgc tgtttcagat 3480
ttgtcatatg ttgcaaacag tcagtcatct ccgttaagag aaggtatttt gatggctgtg 3540
gatcatttag atgatgttga tgaaattttg tcacaaagtt tggaagttat tcctcgtcac 3600
caatcttctt ctaacggacc tgctcctgat cgttctggta gctccgcatc gttgagtaat 3660
gttgctaatg tttgtgttgc ttctacagaa ggtttcgaat ctgaagagga aattttggta 3720
aggttgagag aaattttgga tttgaataag caggaattaa tcaatgcttc tatccgtcgt 3780
atcacattta tgttcggttt taaagatggg tcttatccaa agtattatac ttttaacggt 3840
ccaaattata acgaaaatga aacaattcgt cacattgagc cggctttggc cttccaactg 3900
gaattaggaa gattgtccaa cttcaacatt aaaccaattt tcactgataa tagaaacatc 3960
catgtctacg aagctgttag taagacttct ccattggata agagattctt tacaagaggt 4020
attattagaa cgggtcatat ccgtgatgac atttctattc aagaatatct gacttctgaa 4080
gctaacagat tgatgagtga tatattggat aatttagaag tcaccgacac ttcaaattct 4140
gatttgaatc atatcttcat caacttcatt gcggtgtttg atatctctcc agaagatgtc 4200
gaagccgcct tcggtggttt cttagaaaga tttggtaaga gattgttgag attgcgtgtt 4260
tcttctgccg aaattagaat catcatcaaa gatcctcaaa caggtgcccc agtaccattg 4320
cgtgccttga tcaataacgt ttctggttat gttatcaaaa cagaaatgta caccgaagtc 4380
aagaacgcaa aaggtgaatg ggtatttaag tctttgggta aacctggatc catgcattta 4440
agacctattg ctactcctta ccctgttaag gaatggttgc aaccaaaacg ttataaggca 4500
cacttgatgg gtaccacata tgtctatgac ttcccagaat tattccgcca agcatcgtca 4560
tcccaatgga aaaatttctc tgcagatgtt aagttaacag atgatttctt tatttccaac 4620
gagttgattg aagatgaaaa cggcgaatta actgaggtgg aaagagaacc tggtgccaac 4680
gctattggta tggttgcctt taagattact gtaaagactc ctgaatatcc aagaggccgt 4740
caatttgttg ttgttgctaa cgatatcaca ttcaagatcg gttcctttgg tccacaagaa 4800
gacgaattct tcaataaggt tactgaatat gctagaaagc gtggtatccc aagaatttac 4860
ttggctgcaa actcaggtgc cagaattggt atggctgaag agattgttcc actatttcaa 4920
gttgcatgga atgatgctgc caatccggac aagggcttcc aatacttata cttaacaagt 4980
gaaggtatgg aaactttaaa gaaatttgac aaagaaaatt ctgttctcac tgaacgtact 5040
gttataaacg gtgaagaaag atttgtcatc aagacaatta ttggttctga agatgggtta 5100
ggtgtcgaat gtctacgtgg atctggttta attgctggtg caacgtcaag ggcttaccac 5160
gatatcttca ctatcacctt agtcacttgt agatccgtcg gtatcggtgc ttatttggtt 5220
cgtttgggtc aaagagctat tcaggtcgaa ggccagccaa ttattttaac tggtgctcct 5280
gcaatcaaca aaatgctggg tagagaagtt tatacttcta acttacaatt gggtggtact 5340
caaatcatgt ataacaacgg tgtttcacat ttgactgctg ttgacgattt agctggtgta 5400
gagaagattg ttgaatggat gtcttatgtt ccagccaagc gtaatatgcc agttcctatc 5460
ttggaaacta aagacacatg ggatagacca gttgatttca ctccaactaa tgatgaaact 5520
tacgatgtaa gatggatgat tgaaggtcgt gagactgaaa gtggatttga atatggtttg 5580
tttgataaag ggtctttctt tgaaactttg tcaggatggg ccaaaggtgt tgtcgttggt 5640
agagcccgtc ttggtggtat tccactgggt gttattggtg ttgaaacaag aactgtcgag 5700
aacttgattc ctgctgatcc agctaatcca aatagtgctg aaacattaat tcaagaacct 5760
ggtcaagttt ggcatccaaa ctccgccttc aagactgctc aagctatcaa tgactttaac 5820
aacggtgaac aattgccaat gatgattttg gccaactgga gaggtttctc tggtggtcaa 5880
cgtgatatgt tcaacgaagt cttgaagtat ggttcgttta ttgttgacgc attggtggat 5940
tacaaacaac caattattat ctatatccca cctaccggtg aactaagagg tggttcatgg 6000
gttgttgtcg atccaactat caacgctgac caaatggaaa tgtatgccga cgtcaacgct 6060
agagctggtg ttttggaacc acaaggtatg gttggtatca agttccgtag agaaaaattg 6120
ctggacacca tgaacagatt ggatgacaag tacagagaat tgagatctca attatccaac 6180
aagagtttgg ctccagaagt acatcagcaa atatccaagc aattagctga tcgtgagaga 6240
gaactattgc caatttacgg acaaatcagt cttcaatttg ctgatttgca cgataggtct 6300
tcacgtatgg tggccaaggg tgttatttct aaggaactgg aatggaccga ggcacgtcgt 6360
ttcttcttct ggagattgag aagaagattg aacgaagaat atttgattaa aaggttgagc 6420
catcaggtag gcgaagcatc aagattagaa aagatcgcaa gaattagatc gtggtaccct 6480
gcttcagtgg accatgaaga tgataggcaa gtcgcaacat ggattgaaga aaactacaaa 6540
actttggacg ataaactaaa gggtttgaaa ttagagtcat tcgctcaaga cttagctaaa 6600
aagatcagaa gcgaccatga caatgctatt gatggattat ctgaagttat caagatgtta 6660
tctaccgatg ataaagaaaa attgttgaag actttgaaat aa 6702
<210> 48
<211> 1959
<212> DNA
<213> Artificial sequence
<400> 48
atgtcacaaa ctcataaaca tgctattcca gcaaacatcg ctgatagatg tttgattaat 60
ccagaacaat acgaaactaa gtacaagcaa tctattaatg atccagatac attttggggt 120
gaacaaggta aaattttgga ttggatcact ccataccaaa aggttaaaaa tacatcattt 180
gctcctggta atgtttctat taaatggtac gaagatggta ctttgaattt ggctgcaaac 240
tgtttggata gacatttgca agaaaatggt gacagaacag caattatttg ggaaggtgac 300
gatgcttcac aatctaagca tatctcttac agagaattac atagagatgc atgtagattc 360
gctaacactt tgttagattt gggtattaag aaaggtgacg ttgttgctat ctatatgcca 420
atggttccag aagctgcagt tgcaatgtta gcttgtgcaa gaattggtgc tgttcattca 480
gttatttttg gtggtttttc tccagaagct gttgcaggta gaatcatcga ttcttcatct 540
agattggtta ttacagcaga tgaaggtgtt agagctggta gatcaatccc attgaagaaa 600
aatgttgatg atgctttgaa aaatccaaac gttacttcag ttgaacatgt tatcgttttg 660
aaaagaacag gttctgatat tgattggcaa gaagatagag atttgtggtg gagagatttg 720
attgaaaaag cttctccaga acatcaacca gaagcaatga acgctgaaga tccattgttt 780
attttgtaca cttcaggttc tacaggtaaa ccaaaaggtg ttttacatac tacaggtggt 840
tatttggttt acgctgcaac tacttttaaa tacgttttcg attaccatcc aggtgacatc 900
tattggtgta ctgctgatgt tggttgggtt acaggtcatt catatttgtt atacggtcca 960
ttagcatgtg gtgctactac attgatgttt gaaggtgttc caaattggcc aactccagct 1020
agaatgtgtc aagttgttga taagcatcaa gttaacatct tgtacactgc accaacagct 1080
attagagcat tgatggctga aggtgacaaa gcaattgaag gtacagatag atcatctttg 1140
agaattttag gttctgttgg tgaaccaatt aatccagaag cttgggaatg gtactggaag 1200
aaaattggta aagaaaagtg tccagttgtt gatacttggt ggcaaactga aacaggtggt 1260
tttatgatta caccattgcc aggtgctatt gaattaaaag caggttcagc tactagacca 1320
tttttcggtg ttcaaccagc attagttgat aatgaaggtc atccacaaga aggtgctact 1380
gagggtaatt tggttattac agattcttgg ccaggtcaag caagaacatt gtttggtgac 1440
catgaaagat ttgaacaaac ttacttctca acttttaaaa acatgtactt ttctggtgac 1500
ggtgctagaa gagatgaaga tggttattac tggatcactg gtagagttga tgatgttttg 1560
aacgtttcag gtcatagatt gggtacagca gaaattgaat ctgcattggt tgctcatcca 1620
aaaattgcag aagctgcagt tgttggtatt ccacatgcta ttaaaggtca agcaatctat 1680
gcttacgtta ctttaaatca tggtgaagaa ccatcaccag aattgtatgc agaagttaga 1740
aactgggtta gaaaggaaat tggtccattg gctacaccag atgttttaca ttggactgat 1800
tcattgccaa agacaagatc aggtaaaatc atgagaagaa tcttgagaaa gattgctgca 1860
ggtgacactt caaatttggg tgacacttct acattggctg atccaggtgt tgttgaaaaa 1920
ccattggaag aaaaacaagc tattgcaatg ccatcttaa 1959
<210> 49
<211> 1557
<212> DNA
<213> Artificial sequence
<400> 49
atgactatcc tacccctgct actctacgcc tccataactg gtttactaat ctatgtattg 60
cttaacctac gcaccacccc tcgttctaac cacctcccac tcccacccgg cccaacccca 120
tggccaatca tcggaaactt acctcatctt ggaagaatac cgcaccatgc gctggcggcc 180
atggctacaa agtacggccc gttgatgcat ctccggctcg gcgtcgttga cgtggtggtg 240
gcggcgtctg cgtcggtggc ggcacagttt ttgaaggttc atgacgccaa tttcgcgagt 300
aggccgccga actccggcgc gaaacacatc gcgtataatt atcaggatct ggtgtttgca 360
ccttatggtc agaaatggcg gatgcttagg aagatttgct ccgtgcatct gttctctaac 420
aaagcactcg atgatttccg tcacgttcgt caggaggagg tggcgattct ggtgcgcgct 480
ttggccggag ccggtcgatc tacggcggcg gcgttaggtc aactacttaa cgtttgcacc 540
acaaacgcgt tggcacgagt gatgttaggt cggagagtgt tcgtggacgg aagtgaaggc 600
aatcgagacg cggatgaatt caaggatatg gtggttgaag tgatggtatt ggccggagaa 660
ttcaacatcg gcgacttcat tccggcgctt gattggctgg atctgcaaag cgtgacgaag 720
aagatgaaga aactccatct ccgattcgat tcgtttctta acaaaatcct ggaagaccat 780
agaaatggag gtgacgtcac ttcgggtaac gtggatttgc tgagcacgtt gatttcgctc 840
aaggatgacg ccaatgggga gggcgggaag ctttcagata tcgaaatcaa agctttgctt 900
ctgaatttat tcactgcggg aacagacaca tcatctagta cggtggaatg ggcaatggct 960
gaactcattc gccatccgca attattgaag caagcccaag aagaattgga cactgttgtt 1020
ggtaaagacc ggcttgtatc cgaattggac ctgagtagac taacattcct cgaagccatt 1080
gtgaaggaaa ccttcaggct ccacccatcg accccactct ctttgccacg gattgcatca 1140
gagagctgtg aagtcgatgg gtattacatt cctaagggaa ccacacttct tgttaacgtg 1200
tgggccattg cccgagaccc aaaaatgtgg accgacccgc ttgaattccg acccacccgg 1260
ttcttgccgg gaggtgaaaa gccgaatgct aatgtaaagg gaaatgattt tgaaataata 1320
ccgtttgggg ctggtcgaag gatttgtgcg ggtatgagcc tagggttacg gatggttcag 1380
ttgctcactg cgactctggt tcatgccttt gattggaaat tggctaacgg gttagaccca 1440
gagaagctca atatggaaga agcttatggg ttgacccttc aaagggctgc acccttgatg 1500
gtgcacccaa ccccacggtt agctccccat ttgtatgaaa gcagtcaagg tttataa 1557
<210> 50
<211> 2133
<212> DNA
<213> Artificial sequence
<400> 50
atgcaatcgg actcgtctct ggaaacgtcg tcgtttgatt tgattaccgc agctcttaag 60
gagaaagtta ttgatacagc aaacgcatct gatagcggag attcaacgat gcctccggct 120
ttggcgatga ttttggaaaa ccgtgagctg tttatgatgc tgactacaac agtggctctt 180
ttgcttggat ttattgtcgt ttcgttctgg aagagatctt ctgagaagaa gtcggctaag 240
gatttggagc taccgaagat cgttgtgcct aagagacagc aggaacagga ggttgatgac 300
ggtaagaaga aggttacgat tctttttgga acgcagaccg gaacggcgga aggtttcgct 360
aaggcactgt tggaagaagc taaagcgcga tatgaaaagg cgacctttaa agtagtcgat 420
ttggatgatt atgctgttga tgatgatgag tacgaagaga aactaaagaa ggagtcattt 480
gctttcttct tcttggctac atatggagat ggtgagccaa ctgataatgc tgccagattt 540
tataaatggt ttacagaggg aggtgagaaa ggagtttggc ttgaaaagct tcaatatgga 600
gtatttggcc ttggcaatag acaatacgag catttcaaca agattgcaaa agaggttgac 660
gatggtctcg cagagcaggg tgcaaagcgc cttgttccag ttggccttgg agatgatgat 720
caatccattg aagatgattt tactgcatgg aaagagttag tgtggcctga gttggatgaa 780
ttgcttcgtg acgaggatga caaaggcgtt gctactccct acacagctgc tattccagaa 840
taccgagttg tgtttcatga gaaacatgat acatctgctg aagatcaaat tcagacaaat 900
ggtcatgctg ttcatgatgc tcaacatcca tgcagatcca atgtggctgt taaaaaggag 960
ctccataccc ctgaatctga tcgctcttgc acgcatctgg aatttgacat ctcacacact 1020
ggactatcat acgaaactgg ggaccatgtt ggtgtctact gtgagaactt aagtgaagtt 1080
gtggaggagg ctgagaggtt aataggttta ccatcggata cttatttctc agttcacacg 1140
gataacgaag atggaacacc acttggtgga gcttccttac tacctccttt ccctccatgc 1200
actttaagaa aagcattggc taattacgca gatgtattga cttctcccaa aaagtcggcc 1260
ttgattgctc tagctgctca tgcttctgat cctactgaag ctgaacgact aaaatttctt 1320
gcatctcctg ctgggaagga tgaatattct caatgggtta ttgcaagcca aagaagcctg 1380
cttgaggtca tggaagcttt cccatcggct aagcctccac ttggggtttt ctttgcagct 1440
attgctccac gcttacagcc tcgatactac tctatttctt cctccccgaa gatggcacct 1500
agcaggattc atgttacttg tgcattagtt tatgagaaaa cacctgcagg ccgtctccat 1560
aaaggaatct gttcaacctg gatgaagaat gctgtgccta tgacggaaag tcaggattgc 1620
agctgggcac ctattttcgt tagaacgtct aacttcagac ttcccactga tccaaaagtt 1680
cctgttatca tgattggccc tggaaccgga ttggctccgt tcagaggttt tcttcaagaa 1740
agattagctc tgaaggaagc cggaactgaa ctgggatcat ccattttatt cttcggatgt 1800
agaaatcgca aagtggattt catatatgag aatgaactga aagactttgt tgagaatggt 1860
gctgtttccg agcttattgt tgccttctcc cgtgaaggcc ccaataagga atatgtgcaa 1920
cataaaatga gcgatagggc ttcggatcta tggaacttgc tttcggaggg agcatattta 1980
tacgtttgtg gtgatgccaa aggcatggct aaagatgtac accggaccct tcacacaatt 2040
gtgcaagaac agggatctct agactcgtca aaggcagagc tgtatgtgaa gaatctacaa 2100
atgtcaggaa gatacctccg tgatgtttgg tag 2133
<210> 51
<211> 1113
<212> DNA
<213> Artificial sequence
<400> 51
atgagtgaat ctccaatgtt cgctgccaac ggcatgccaa aggtaaatca aggtgctgaa 60
gaagatgtca gaattttagg ttacgaccca ttagcttctc cagctctcct tcaagtgcaa 120
atcccagcca caccaacttc tttggaaact gccaagagag gtagaagaga agctatagat 180
attattaccg gtaaagacga cagagttctt gtcattgtcg gtccttgttc catccatgat 240
ctagaagccg ctcaagaata cgctttgaga ttaaagaaat tgtcagatga attaaaaggt 300
gatttatcca tcattatgag agcatacttg gagaagccaa gaacaaccgt cggctggaaa 360
ggtctaatta atgaccctga tgttaacaac actttcaaca tcaacaaggg tttgcaatcc 420
gctagacaat tgtttgtcaa cttgacaaat atcggtttgc caattggttc tgaaatgctt 480
gataccattt ctcctcaata cttggctgat ttggtctcct tcggtgccat tggtgccaga 540
accaccgaat ctcaactgca cagagaattg gcctccggtt tgtctttccc agttggtttc 600
aagaacggta ccgatggtac cttaaatgtt gctgtggatg cttgtcaagc cgctgctcat 660
tctcaccatt tcatgggtgt tactttgcat ggtgttgctg ctatcaccac tactaagggt 720
aacgaacact gcttcgttat tctaagaggt ggtaaaaagg gtaccaacta cgacgctaag 780
tccgttgcag aagctaaggc tcaattgcct gccggttcca acggtctaat gattgactac 840
tctcacggta actccaataa ggatttcaga aaccaaccaa aggtcaatga cgttgtttgt 900
gagcaaatcg ctaacggtga aaacgccatt accggtgtca tgattgaatc aaacatcaac 960
gaaggtaacc aaggcatccc agccgaaggt aaagccggct tgaaatatgg tgtttccatc 1020
actgatgctt gtataggttg ggaaactact gaagacgtct tgaggaaatt ggctgctgct 1080
gtcagacaaa gaagagaagt taacaagaaa tag 1113
<210> 52
<211> 771
<212> DNA
<213> Artificial sequence
<400> 52
atggatttca caaaaccaga aactgtttta aatctacaaa atattagaga tgaattagtt 60
agaatggagg attcgatcat cttcaaattt attgagaggt cgcatttcgc cacatgtcct 120
tcagtttatg aggcaaacca tccaggttta gaaattccga attttaaagg atctttcttg 180
gattgggctc tttcaaatct tgaaattgcg cattctcgca tcagaagatt cgaatcacct 240
gatgaaactc ccttctttcc tgacaagatt cagaaatcat tcttaccgag cattaactac 300
ccacaaattt tggcgcctta tgccccagaa gttaattaca atgataaaat aaaaaaagtt 360
tatattgaaa agattatacc attaatttcg aaaagagatg gtgatgataa gaataacttc 420
agttctgttg ccactagaga tatagaatgt ttgcaaagct tgagtaggag aatccacttt 480
ggcaagtttg ttgctgaagc caagttccaa tcggatatcc cgctatacac aaagctgatc 540
aaaagtaaag atgtcgaggg gataatgaag aatatcacca attctgccgt tgaagaaaag 600
attctagaaa gattaactaa gaaggctgaa gtctatggtg tggaccctac caacgagtca 660
ggtgaaagaa ggattactcc agaatatttg gtaaaaattt ataaggaaat tgttatacct 720
atcactaagg aagttgaggt ggaatacttg ctaagaaggt tggaagagta a 771
<210> 53
<211> 1521
<212> DNA
<213> Artificial sequence
<400> 53
atgaacacca ttaatgaata cttgagttta gaagaattcg aagcaataat cttcggtaac 60
caaaaagtaa ctatctctga tgttgtcgta aacagagtta acgaaagttt taacttctta 120
aaggaatttt ctggtaataa ggttatatat ggtgtaaaca ctggtttcgg tccaatggct 180
caatacagaa tcaaggaatc tgatcaaatc caattgcaat acaatttgat aagaagtcat 240
tcttcaggta ctggtaaacc attatctcct gtttgtgcta aggctgcaat cttggcaaga 300
ttgaacacat tgtctttagg caactcaggt gttcacccat ctgttattaa tttgatgtct 360
gaattgataa acaaagacat cactcctttg atattcgaac atggtggtgt tggtgcatct 420
ggtgacttgg tccaattgtc ccacttggcc ttagtattga taggtgaagg tgaagttttc 480
tataaaggtg aaagaagacc aacacctgaa gtcttcgaaa tcgaaggttt aaagcctata 540
caagtagaaa tcagagaagg tttagctttg attaatggta cttctgtcat gacaggtata 600
ggtgttgtca acgtatacca tgctaagaaa ttgttggatt ggtcattgaa gtccagttgt 660
gccattaatg aattggttca agcatatgat gaccatttct ctgcagaatt gaaccaaacc 720
aagagacaca agggtcaaca agaaatcgca ttgaagatga gacaaaattt gtccgatagt 780
acattgatca gaaagagaga agaccactta tactcaggtg aaaacaccga agaaattttc 840
aaagaaaagg ttcaagaata ctactccttg agatgcgtcc cacaaatctt gggtcctgta 900
ttggaaacta ttaataacgt tgcctcaatc ttggaagatg aattcaattc cgctaacgat 960
aacccaatca tcgacgttaa aaatcaacat gtttatcacg gtggtaactt ccatggtgac 1020
tacatttctt tagaaatgga caaattgaag atagttatca caaaattgac catgttggct 1080
gaaagacaat tgaactactt gttgaactca aagattaacg aattgttgcc acctttcgtt 1140
aatttgggta cattgggttt taacttcggt atgcaaggtg ttcaattcac cgccacttca 1200
actacagctg aatcccaaat gttgagtaac ccaatgtacg ttcattccat ccctaacaac 1260
aacgataacc aagacatcgt ctctatgggt accaactcag ccgtcattac ttccaaagta 1320
atagaaaacg cattcgaagt tttggccatc gaaatgatca caattgtcca agctatcgat 1380
tacttgggtc aaaaggacaa gatctcttct gtttctaaga aatggtacga tgaaataaga 1440
aacataatcc caacctttaa ggaagaccaa gttatgtacc ctttcgtaca aaaggttaag 1500
gatcatttga ttaacaatta a 1521
<210> 54
<211> 525
<212> DNA
<213> Artificial sequence
<400> 54
atgacacaac ctctttttct gatcgggcct cggggctgtg gtaaaacaac ggtcggaatg 60
gcccttgccg attcgcttaa ccgtcggttt gtcgataccg atcagtggtt gcaatcacag 120
ctcaatatga cggtcgcgga gatcgtcgaa agggaagagt gggcgggatt tcgcgccaga 180
gaaacggcgg cgctggaagc ggtaactgcg ccatccaccg ttatcgctac aggcggcggc 240
attattctga cggaatttaa tcgtcacttc atgcaaaata acgggatcgt ggtttatttg 300
tgtgcgccag tatcagtcct ggttaaccga ctgcaagctg caccggaaga agatttacgg 360
ccaaccttaa cgggaaaacc gctgagcgaa gaagttcagg aagtgctgga agaacgcgat 420
gcgctatatc gcgaagttgc gcatattatc atcgacgcaa caaacgaacc cagccaggtg 480
atttctgaaa ttcgcagcgc cctggcacag acgatcaatt gttga 525
<210> 55
<211> 1035
<212> DNA
<213> Artificial sequence
<400> 55
atgcttgaaa acaggttcgt tcgcgatgaa gacgagcgtc caaaagtggc gtacaataat 60
tttagcaacg agattccggt gatctcactt gaaggtatcg acgatactag tagtagggcg 120
gagatttgcg agaagatcgt taaggcttgt gaagattggg gggtttttca ggtggtggat 180
cacgggatcg ataatagatt gttgacggag atgacgaggc tcgccacgga gttcttcatg 240
atgccgccgg aggagaaact ccgatttgat atgagtggcg ggaaaaaagg cggtttcatt 300
gtttccagcc atcttcaagg agaaacggtg caagattgga gggagattgt aaccttcttc 360
tcgtacccaa caaaagcaag agactactct aggtggcccg ataagcccaa agagtggagg 420
gcagttactg aggaatatag caaggtgtta atgggcctgg cctgcaagct actagaggta 480
ttgtctgagg caatgggcct tgagaaagag gccttgacca aagcttgtgt agatatggac 540
caaaaggtgg tggtcaatta ctatccaaaa tgccctcatc ccgacctcac gttgggcctg 600
aaacgacata cggatccggg aacaatcacg ttgttgcttc aggaccaagt tggtgggctt 660
caggcgactc gtgatggtgg tcaaagttgg atcacagttc agccgattga aggtgctttt 720
gtggttaatc ttggtgatca tggacattat ttgagcaacg ggaggttcaa gaacgcagac 780
caccaagccg tggtgaactc aaacacgagc cgactctcca tagctacgtt tcaaaaccct 840
gcaccggatg cgattgtata cccgctgaaa gtgaatgagg gagataaatc gataatggaa 900
gaagctataa ctttcatgga gatgtacaag aagaagatgg gtcgagacct tgagttggct 960
cggcttaaga agctagccaa ggacaagcaa caagatttgg agaaagagaa gccaatcgag 1020
aatatatttg cttag 1035
<210> 56
<211> 668
<212> DNA
<213> Artificial sequence
<400> 56
ttatattgaa ttttcaaaaa ttcttacttt ttttttggat ggacgcaaag aagtttaata 60
atcatattac atggcattac caccatatac atatccatat ctaatcttac ttatatgttg 120
tggaaatgta aagagcccca ttatcttagc ctaaaaaaac cttctctttg gaactttcag 180
taatacgctt aactgctcat tgctatattg aagtacggat tagaagccgc cgagcgggcg 240
acagccctcc gacggaagac tctcctccgt gcgtcctcgt cttcaccggt cgcgttcctg 300
aaacgcagat gtgcctcgcg ccgcactgct ccgaacaata aagattctac aatactagct 360
tttatggtta tgaagaggaa aaattggcag taacctggcc ccacaaacct tcaaattaac 420
gaatcaaatt aacaaccata ggatgataat gcgattagtt ttttagcctt atttctgggg 480
taattaatca gcgaagcgat gatttttgat ctattaacag atatataaat ggaaaagctg 540
cataaccact ttaactaata ctttcaacat tttcagtttg tattacttct tattcaaatg 600
tcataaaagt atcaacaaaa aattgttaat atacctctat actttaacgt caaggagaaa 660
aaactata 668
<210> 57
<211> 668
<212> DNA
<213> Artificial sequence
<400> 57
tatagttttt tctccttgac gttaaagtat agaggtatat taacaatttt ttgttgatac 60
ttttatgaca tttgaataag aagtaataca aactgaaaat gttgaaagta ttagttaaag 120
tggttatgca gcttttccat ttatatatct gttaatagat caaaaatcat cgcttcgctg 180
attaattacc ccagaaataa ggctaaaaaa ctaatcgcat tatcatccta tggttgttaa 240
tttgattcgt taatttgaag gtttgtgggg ccaggttact gccaattttt cctcttcata 300
accataaaag ctagtattgt agaatcttta ttgttcggag cagtgcggcg cgaggcacat 360
ctgcgtttca ggaacgcgac cggtgaagac gaggacgcac ggaggagagt cttccgtcgg 420
agggctgtcg cccgctcggc ggcttctaat ccgtacttca atatagcaat gagcagttaa 480
gcgtattact gaaagttcca aagagaaggt ttttttaggc taagataatg gggctcttta 540
catttccaca acatataagt aagattagat atggatatgt atatggtggt aatgccatgt 600
aatatgatta ttaaacttct ttgcgtccat ccaaaaaaaa agtaagaatt tttgaaaatt 660
caatataa 668

Claims (10)

1. The saccharomyces cerevisiae multicopy integration gene expression frame is characterized in that the expression frame consists of a weak promoter sequence and a screening gene sequence with a degradation label deg; the weak promoter comprises PADE6、PLEU2、PURA3、PPMA1、PZWF1、PARO7、PPYC1、PADE3、PYEF3、PERG1The screening gene comprises ScTRP1, KlLEU2, KlURA3, ScMET15, SpHIS5, natMX, hpHMX, kanMX, patMX and bleMX.
2. The gene expression cassette of claim 1, wherein the weak promoter P is a promoter for expression of a geneADE6、PLEU2、PURA3、PPMA1、PZWF1、PARO7、PPYC1、PADE3、PYEF3、PERG1The nucleotide is shown in SEQ ID NO. 1-10 respectively; the screening gene is provided with a degradation label, and a nucleotide sequence formed by the screening gene and the degradation label is shown in SEQ ID NO. 11-20.
3. A saccharomyces cerevisiae multicopy integration plasmid consisting of a gene expression cassette and a pre-integration expression cassette according to claim 1 or 2; the pre-integration expression frame consists of an upstream and downstream homologous arm sequence of a Ty transposon, a terminator sequence and a green fluorescent protein expression frame.
4. The Saccharomyces cerevisiae multicopy integration plasmid of claim 3, wherein the plasmid is a plasmid that integrates multiple copies of Saccharomyces cerevisiae gene into a single geneTy transposon sequences include Ty1Cons, Ty2Cons, Ty3Cons, Ty4Cons and Ty5 Cons; the terminator comprises TRFC5-TPOL30、TSEC13-TPNP1、TMTD1-TRPF2、TLEU2-TNFS1、TDSF1-THXT13、TTIM21-TGSC2、TRRP12-TTAF3、TRNA14-TBUB2、TADH1And TCYC1
5. The Saccharomyces cerevisiae multicopy integration plasmid of claim 3, wherein the upstream homology arm, the green fluorescent protein expression cassette, the terminator sequence, the gene expression cassette, the downstream homology arm are ligated in that order.
6. The Saccharomyces cerevisiae multicopy integration plasmid of claim 3, wherein the green fluorescent protein expression cassette comprises a promoter PGAL7Promoter PGAL7Upstream of (2) comprises a terminator sequence TGAL10
7. A strain for producing taxifolin, which expresses relevant genes for producing taxifolin by the saccharomyces cerevisiae multicopy integration plasmid of any one of claims 3-6, and the genes are expressed by the following three modules:
a first module: overexpression of the relevant genes from tyrosine or phenylalanine to p-coumaric acid synthesis:
from tyrosine to p-coumaric acid genes include ARO4fbr、ARO7fbr、FjTAL、EcaroL;
The genes from phenylalanine to p-coumaric acid include ARO4fbr、ARO7fbr、FjTAL、EcaroL、SmPAL、SmC4H;
And a second module: overexpresses genes related to p-coumaric acid to naringenin production, including Pc4CL, PhCHS, and MsCHI;
and a third module: naringenin-to-taxifolin synthesis related genes including SmF 3' H, SmCPR and SmF 3H.
8. The strain of claim 7, wherein the strain is a starting strain of Saccharomyces cerevisiae C800.
9. A method for synthesizing taxifolin, which is characterized in that the strain of claim 7 or 8 is used for de novo synthesis of taxifolin by using glucose or ethanol as a substrate.
10. Use of the saccharomyces cerevisiae multicopy integration gene expression cassette of claim 1 or 2, or the saccharomyces cerevisiae multicopy integration plasmid of any one of claims 3 to 6, or the strain of claim 7 or 8 for the production of a protein of interest or taxifolin and derivatives thereof.
CN202110659681.2A 2021-06-11 2021-06-11 Plasmid kit for Saccharomyces cerevisiae multi-copy integration Active CN113403334B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110659681.2A CN113403334B (en) 2021-06-11 2021-06-11 Plasmid kit for Saccharomyces cerevisiae multi-copy integration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110659681.2A CN113403334B (en) 2021-06-11 2021-06-11 Plasmid kit for Saccharomyces cerevisiae multi-copy integration

Publications (2)

Publication Number Publication Date
CN113403334A true CN113403334A (en) 2021-09-17
CN113403334B CN113403334B (en) 2023-10-27

Family

ID=77683832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110659681.2A Active CN113403334B (en) 2021-06-11 2021-06-11 Plasmid kit for Saccharomyces cerevisiae multi-copy integration

Country Status (1)

Country Link
CN (1) CN113403334B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391300A (en) * 2020-11-04 2021-02-23 江南大学 Silybum marianum-derived flavone 3 beta-hydroxylase and application of coenzyme thereof
CN113862166A (en) * 2021-09-26 2021-12-31 浙江华睿生物技术有限公司 Saccharomyces cerevisiae for producing naringenin
CN114574517A (en) * 2022-03-04 2022-06-03 江南大学 Plasmid kit for saccharomyces cerevisiae multicopy integration
CN114574516A (en) * 2022-01-18 2022-06-03 浙江大学杭州国际科创中心 CRISPR/Cas 9-based yeast genome stable integration method
CN114606256A (en) * 2022-04-14 2022-06-10 江南大学 Plasmid kit for saccharomyces cerevisiae multicopy integration
CN114752619A (en) * 2022-04-14 2022-07-15 江南大学 Multiple-copy integration plasmid kit based on saccharomyces cerevisiae rDNA locus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140154762A1 (en) * 2011-06-24 2014-06-05 Algenol Biofuels Inc. Genetically Enhanced Cyanobacteria Lacking Functional Genes Conferring Biocide Resistance for the Production of Chemical Compounds
CN106566779A (en) * 2016-10-28 2017-04-19 天津大学 Recombinant yeast strain, construction method and application thereof
CN112458065A (en) * 2020-11-04 2021-03-09 江南大学 Silybum marianum-derived flavone 3-hydroxylase and application thereof
CN112852860A (en) * 2021-02-04 2021-05-28 天津大学 Plasmid vector and application thereof in construction of multi-copy expression system
CN112852650A (en) * 2019-11-27 2021-05-28 暨南大学 Saccharomyces cerevisiae engineering bacterium for high yield of santalene and santalol and construction method and application thereof
CN113136348A (en) * 2020-01-20 2021-07-20 暨南大学 Saccharomyces cerevisiae engineering bacterium for high yield of taxifolin and construction and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140154762A1 (en) * 2011-06-24 2014-06-05 Algenol Biofuels Inc. Genetically Enhanced Cyanobacteria Lacking Functional Genes Conferring Biocide Resistance for the Production of Chemical Compounds
CN106566779A (en) * 2016-10-28 2017-04-19 天津大学 Recombinant yeast strain, construction method and application thereof
CN112852650A (en) * 2019-11-27 2021-05-28 暨南大学 Saccharomyces cerevisiae engineering bacterium for high yield of santalene and santalol and construction method and application thereof
CN113136348A (en) * 2020-01-20 2021-07-20 暨南大学 Saccharomyces cerevisiae engineering bacterium for high yield of taxifolin and construction and application thereof
CN112458065A (en) * 2020-11-04 2021-03-09 江南大学 Silybum marianum-derived flavone 3-hydroxylase and application thereof
CN112852860A (en) * 2021-02-04 2021-05-28 天津大学 Plasmid vector and application thereof in construction of multi-copy expression system

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
HÉLÈNE CHASSIN等: "A modular degron library for synthetic circuits in mammalian cells", 《NATURE COMMUNICATIONS》 *
HÉLÈNE CHASSIN等: "A modular degron library for synthetic circuits in mammalian cells", 《NATURE COMMUNICATIONS》, vol. 10, 1 May 2019 (2019-05-01), pages 2 *
JAVIER SÁEZ-SÁEZ等: "Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol", 《METABOLIC ENGINEERING》 *
JAVIER SÁEZ-SÁEZ等: "Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol", 《METABOLIC ENGINEERING》, 31 December 2020 (2020-12-31), pages 1 - 38 *
SONG GAO等: "Efficient Biosynthesis of (2S)‑Naringenin from p‑Coumaric Acid in Saccharomyces cerevisiae", 《J. AGRIC. FOOD CHEM.》 *
SONG GAO等: "Efficient Biosynthesis of (2S)‑Naringenin from p‑Coumaric Acid in Saccharomyces cerevisiae", 《J. AGRIC. FOOD CHEM.》, vol. 68, 6 November 2019 (2019-11-06), pages 1016 *
SONG GAO等: "Promoter-Library-Based Pathway Optimization for Efficient (2S)‑Naringenin Production from p‑Coumaric Acid in Saccharomyces cerevisiae", 《J. AGRIC. FOOD CHEM.》 *
SONG GAO等: "Promoter-Library-Based Pathway Optimization for Efficient (2S)‑Naringenin Production from p‑Coumaric Acid in Saccharomyces cerevisiae", 《J. AGRIC. FOOD CHEM.》, vol. 68, 27 May 2020 (2020-05-27), pages 1 - 2 *
高松等: "水飞蓟来源黄酮 3-羟化酶鉴定及黄杉素发酵优化", 《生物工程学报》 *
高松等: "水飞蓟来源黄酮 3-羟化酶鉴定及黄杉素发酵优化", 《生物工程学报》, vol. 36, no. 12, 25 December 2020 (2020-12-25), pages 4839 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391300A (en) * 2020-11-04 2021-02-23 江南大学 Silybum marianum-derived flavone 3 beta-hydroxylase and application of coenzyme thereof
CN112391300B (en) * 2020-11-04 2022-08-23 江南大学 Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof
CN113862166A (en) * 2021-09-26 2021-12-31 浙江华睿生物技术有限公司 Saccharomyces cerevisiae for producing naringenin
CN113862166B (en) * 2021-09-26 2024-04-02 浙江华睿生物技术有限公司 Saccharomyces cerevisiae for producing naringenin
CN114574516A (en) * 2022-01-18 2022-06-03 浙江大学杭州国际科创中心 CRISPR/Cas 9-based yeast genome stable integration method
CN114574516B (en) * 2022-01-18 2023-10-27 浙江大学杭州国际科创中心 CRISPR/Cas 9-based yeast genome stable integration method
CN114574517A (en) * 2022-03-04 2022-06-03 江南大学 Plasmid kit for saccharomyces cerevisiae multicopy integration
CN114606256A (en) * 2022-04-14 2022-06-10 江南大学 Plasmid kit for saccharomyces cerevisiae multicopy integration
CN114752619A (en) * 2022-04-14 2022-07-15 江南大学 Multiple-copy integration plasmid kit based on saccharomyces cerevisiae rDNA locus
CN114752619B (en) * 2022-04-14 2024-03-26 江南大学 Saccharomyces cerevisiae rDNA site-based multi-copy integrated plasmid kit

Also Published As

Publication number Publication date
CN113403334B (en) 2023-10-27

Similar Documents

Publication Publication Date Title
CN113403334B (en) Plasmid kit for Saccharomyces cerevisiae multi-copy integration
DK2588616T3 (en) PROCEDURE FOR MAKING A RELATIONSHIP OF INTEREST
CN111363759B (en) Construction method of recombinant yarrowia lipolytica for synthesizing erythritol and bacterial strain thereof
CN113684169B (en) Poly (3-hydroxybutyrate-4-hydroxybutyrate-5-hydroxyvalerate) trimer and microorganism production strain construction thereof
CN113755354B (en) Recombinant saccharomyces cerevisiae for producing gastrodin by utilizing glucose and application thereof
CN112501095B (en) Construction method and application of recombinant escherichia coli for synthesizing 3-fucose
CN114657078B (en) Construction method and application of saccharomyces cerevisiae strain for high yield of cannabidiol
CN112063646B (en) Method for integrating multiple copies of target gene, recombinant bacterium and preparation method of recombinant human serum albumin
TW202214841A (en) Engineered biosynthetic pathway for production of 4-aminophenylethylamine by fermentation
CN113249241B (en) Construction and application of saccharomyces cerevisiae protease deletion strain
CN112391300B (en) Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof
CN116262928A (en) Engineering bacterium for producing 3-hydroxy propionic acid and construction method and application thereof
CN109652388B (en) Gene for coding lycopene dehydrogenase
CN112779202B (en) Engineering bacterium for knocking out high-yield threonine of genes proP and proVWX and application thereof
CN113748210B (en) Microorganism for producing dicarboxylic acid and method for producing dicarboxylic acid using same
CN115873881A (en) Genetically engineered bacterium for producing 1,3-butanediol and application thereof
CN115305254A (en) Terpenoid chassis microorganism and engineering bacterium as well as construction method and application thereof
CN114774443B (en) Recombinant saccharomyces cerevisiae strain for producing parthenolide and construction method thereof
CN111041040A (en) Recombinant saccharomyces cerevisiae for producing levopimaric diene and levopimaric acid and construction method
CN115247183B (en) Construction method of recombinant microorganism, related biological material and application thereof
CN115261243B (en) Recombinant saccharomyces cerevisiae as well as construction method and application thereof
CN114774442B (en) Recombinant yarrowia lipolytica for producing scutellarin and construction method and application thereof
CN115948264B (en) Genetically engineered bacterium for producing 3-hydroxy propionic acid and application thereof
CN114752619B (en) Saccharomyces cerevisiae rDNA site-based multi-copy integrated plasmid kit
CN118389546A (en) Saccharomyces cerevisiae engineering strain for synthesizing D-limonene and construction method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant