CN113372109A - 一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法及其制得的陶瓷薄膜 - Google Patents

一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法及其制得的陶瓷薄膜 Download PDF

Info

Publication number
CN113372109A
CN113372109A CN202110540725.XA CN202110540725A CN113372109A CN 113372109 A CN113372109 A CN 113372109A CN 202110540725 A CN202110540725 A CN 202110540725A CN 113372109 A CN113372109 A CN 113372109A
Authority
CN
China
Prior art keywords
film
thin film
water
scale thickness
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110540725.XA
Other languages
English (en)
Other versions
CN113372109B (zh
Inventor
王霞
常启兵
刘昆
谭灵
杨柯
汪永清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdezhen Ceramic Institute
Original Assignee
Jingdezhen Ceramic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdezhen Ceramic Institute filed Critical Jingdezhen Ceramic Institute
Priority to CN202110540725.XA priority Critical patent/CN113372109B/zh
Publication of CN113372109A publication Critical patent/CN113372109A/zh
Application granted granted Critical
Publication of CN113372109B publication Critical patent/CN113372109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明公开了一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,将金属醇盐、表面活性剂、反应抑制剂溶解于易于在水面铺展的油性溶剂而形成油性溶液,将该油性溶液滴于静止的水面上铺展开来而形成厚度均匀的液膜,液膜中的金属醇盐与水发生化学反应而转变为溶胶,进而经凝胶化形成具有一定厚度和强度的膜层,膜层经干燥和煅烧后,即得到大面积无缺陷纳米量级厚度的致密陶瓷薄膜。此外,还公开了利用上述制备方法制得的陶瓷薄膜。本发明解决了现有技术以溶胶为前驱体所带来的易产生收缩而导致开裂的难题,以及采用沉积等方法纳米厚度难以控制、易形成气孔或裂纹缺陷等问题,为纳米厚度致密陶瓷薄膜的制备提供了新的途径。

Description

一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法及 其制得的陶瓷薄膜
技术领域
本发明涉及陶瓷材料技术领域,尤其涉及一种纳米量级厚度陶瓷薄膜材料的制备方法及其制得的陶瓷薄膜。
背景技术
纳米量级厚度的陶瓷薄膜材料,由于其特殊的结构特点,作为功能材料和结构材料都具有良好的发展前景。目前,现有技术制备薄膜所采用的前驱体主要为纳米粉体、溶胶、或者原子。采用纳米粉体作为前驱体,经分散形成稳定浆料,可采用流延法或者旋涂法获得薄膜,由于这种膜层是通过颗粒堆积而形成的,因此膜层厚度一般为5~500μm,无法得到纳米厚度的薄膜;而且,由于堆积的不均匀性,容易导致膜层出现针孔等缺陷。以溶胶为前驱体,可采用提拉镀膜法,膜层厚度一般为50~500nm;然而,从溶胶转变为凝胶过程以及凝胶在干燥过程中会产生非常大的收缩,容易导致薄膜开裂。以原子为前驱体,可采用化学气相沉积、蒸发镀膜法、原子层沉积等方法,膜层厚度一般为50~200nm;但该类方法沉积需要较长的时间,如果膜层生长速率加快,容易产生堆积不均匀,进而形成气孔或者裂纹等缺陷。此外,目前纳米厚度的陶瓷薄膜其制备面积一般直径不超过20mm,无法获得大面积的陶瓷薄膜。
发明内容
本发明的目的在于克服现有技术的不足,提供一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,将金属醇盐、表面活性剂、反应抑制剂溶解于易于在水面铺展的油性溶剂而形成油性溶液,将该油性溶液滴于静止的水面上铺展开来而形成厚度均匀的液膜,液膜中的金属醇盐与水发生化学反应而转变为溶胶,进而经凝胶化过程,形成具有一定厚度和强度的膜层,经干燥和煅烧后,即得到大面积无缺陷纳米量级厚度的致密陶瓷薄膜。本发明的另一目的在于提供利用上述大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法制得的陶瓷薄膜。
本发明的目的通过以下技术方案予以实现:
本发明提供的一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,包括以下步骤:
(1)油性溶液的配制
将金属醇盐、表面活性剂、反应抑制剂溶解于易于在水面铺展的油性溶剂,经搅拌充分溶解后,形成透明的、含金属醇盐1~30wt%的油性溶液;其中,表面活性剂的用量为金属醇盐的0.05~1.5wt%,反应抑制剂的用量为金属醇盐的30~100wt%;
(2)负载型薄膜的制备
(2-1)在大面积的容器中盛放水,在静止的水面上、以靠近水面处滴入所述油性溶液,在水面上形成的油滴自动铺展至整个水面而形成一层油膜,通过静置反应至逐渐形成透明的、呈果冻状的薄膜;
(2-2)将所述薄膜转移至支撑体上,形成负载型薄膜;
(3)纳米量级厚度薄膜的制备
将所述负载型薄膜置于恒温恒湿干燥箱内烘干至恒重,然后在700~1100℃温度下烧结,保温2~4h,降温至室温,即得到大面积无缺陷、厚度为20~200nm的致密陶瓷薄膜。
进一步地,本发明所述金属醇盐为正硅酸乙酯、钛酸四丁酯、异丙醇铝、四异丁醇锆中的一种或其组合。所述表面活性剂为十二烷基磺酸钠、十六烷基溴化铵、司班、吐温、嵌段聚合物P123、或嵌段聚合物F127。所述反应抑制剂为乙酰丙酮。所述油性溶剂为室温表面张力小于30mN/m、密度小于1g/cm3、不溶于水或在水中的溶解度<1g/100g,如环己烷。
上述方案中,本发明所述步骤(2-1)中水的温度为0~70℃。所述步骤(2-2)中,采用支撑体靠近所述薄膜,并逐渐下压,利用水压使薄膜黏贴至支撑体上而形成负载型薄膜;或者,将支撑体预先置于所述容器并浸没于水中,待所述薄膜形成后,从容器底部将水排放,使薄膜随着水面的降落而落在支撑体的表面,形成负载型薄膜。
上述方案中,本发明所述步骤(3)中在温度40~70℃、湿度60~80%下进行烘干。
利用本发明所述大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法制得的陶瓷薄膜。
本发明具有以下有益效果:
(1)本发明解决了现有技术以溶胶为前驱体制备纳米厚度陶瓷薄膜所带来的易产生收缩而导致开裂的难题。本发明将薄膜制备于水面上,由于水具有流动性,因此,从溶胶转变为凝胶过程以及凝胶在干燥过程所产生的收缩会被水面的流动所补偿,不会导致薄膜受到应力而开裂,即使这个薄膜厚度非常小,也不会开裂,因此,能够制备大面积、无缺陷的致密(孔隙率低于0.5%)陶瓷薄膜。
(2)本发明解决了现有技术陶瓷薄膜纳米厚度难以控制的问题。现有技术提拉镀膜法、化学气相沉积法、蒸发镀膜法、原子层沉积法等,其前驱体是被动地进行物质分布,所以所获得的膜层会因前驱体的分布不均而导致膜层厚度难以控制。本发明是利用油性溶剂因为具有较小的表面张力和低于水的密度,而主动铺展在水面上。同时,由于水和油性溶剂均呈液态,因此,油性溶剂在水面上所形成的薄膜会自动均匀,从而保证整个油膜具有均一的厚度。油膜的厚度由滴入的油性溶液的体积来控制;而金属醇盐的浓度决定了油膜厚度转变为薄膜厚度的程度,因此,通过控制油膜厚度和金属醇盐浓度,能够非常容易地控制陶瓷薄膜的纳米厚度。此外,通过控制水的温度,可控制金属醇盐的水解速率,避免形成白色絮状沉淀,使其逐渐形成透明的,具有果冻状的薄膜。
(3)本发明解决了现有技术难以获得大面积纳米厚度陶瓷薄膜的问题。本发明制备的陶瓷薄膜,其面积取决于油性溶液所铺展的水面,也即水面有多大,所形成的膜层就有多大,从而适宜于大面积的膜层制备。
附图说明
下面将结合实施例和附图对本发明作进一步的详细描述:
图1是本发明实施例一制备的致密TiO2陶瓷薄膜的SEM照片(A:膜层表面;B:膜层断面)。
具体实施方式
实施例一:
本实施例一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其步骤如下:
(1)油性溶液的配制
称取34.03g钛酸四丁酯、0.42g司班80、20.02g乙酰丙酮混合搅拌使之溶解于81.6g环己烷中,形成透明油性溶液;
(2)负载型薄膜的制备
(2-1)在直径为40cm的圆柱形容器中盛放去离子水,采用循环水冷设备控制去离子水的温度为25℃;在静止的水面上、以靠近水面处用毛细滴管滴入4滴(约0.1mL)上述油性溶液,在水面上形成的油滴自动铺展至整个水面而形成一层油膜,静置5h,待两相充分反应至水表面的溶胶收缩形成凝胶,而得到透明的、呈果冻状的薄膜;
(2-2)采用载玻片作为支撑体靠近上述薄膜,并逐渐下压,利用水压使薄膜黏贴至载玻片上而形成负载型薄膜;或者,将载玻片预先置于上述容器并浸没于水中,待上述薄膜形成后,从容器底部将水排放,使薄膜随着水面的降落而落在载玻片的表面,形成负载型薄膜;
(3)纳米量级厚度薄膜的制备
将上述负载型薄膜置于恒温恒湿干燥箱内在温度50℃、湿度70%下烘干至恒重,然后转移至马弗炉中,在950℃温度下烧结,保温2h,以2℃/min速率降温至室温,即得到大面积无缺陷(如图1A所示,膜层完整,没有裂纹、针孔等缺陷)、厚度为80nm(如图1B所示)的致密TiO2陶瓷薄膜。
实施例二:
本实施例一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其步骤如下:
(1)油性溶液的配制
称取20.4g异丙醇铝、0.12g十二烷基磺酸钠、8.12g乙酰丙酮混合搅拌使之溶解于80g甲苯中,形成透明油性溶液;
(2)负载型薄膜的制备
(2-1)在直径为40cm的圆柱形容器中盛放去离子水,采用循环水冷设备控制去离子水的温度为70℃;在静止的水面上、以靠近水面处用毛细滴管滴入4滴(约0.1mL)上述油性溶液,在水面上形成的油滴自动铺展至整个水面而形成一层油膜,静置12h,待两相充分反应至水表面的溶胶收缩形成凝胶,而得到透明的、呈果冻状的薄膜;
(2-2)采用载玻片作为支撑体靠近上述薄膜,并逐渐下压,利用水压使薄膜黏贴至载玻片上而形成负载型薄膜;或者,将载玻片预先置于上述容器并浸没于水中,待上述薄膜形成后,从容器底部将水排放,使薄膜随着水面的降落而落在载玻片的表面,形成负载型薄膜;
(3)纳米量级厚度薄膜的制备
将上述负载型薄膜置于恒温恒湿干燥箱内在温度70℃、湿度70%下烘干至恒重,然后转移至马弗炉中,在1100℃温度下烧结,保温4h,以1℃/min速率降温至室温,即得到大面积无缺陷、厚度为120nm的致密Al2O3陶瓷薄膜。

Claims (9)

1.一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其特征在于包括以下步骤:
(1)油性溶液的配制
将金属醇盐、表面活性剂、反应抑制剂溶解于易于在水面铺展的油性溶剂,经搅拌充分溶解后,形成透明的、含金属醇盐1~30wt%的油性溶液;其中,表面活性剂的用量为金属醇盐的0.05~1.5wt%,反应抑制剂的用量为金属醇盐的30~100wt%;
(2)负载型薄膜的制备
(2-1)在大面积的容器中盛放水,在静止的水面上、以靠近水面处滴入所述油性溶液,在水面上形成的油滴自动铺展至整个水面而形成一层油膜,通过静置反应至逐渐形成透明的、呈果冻状的薄膜;
(2-2)将所述薄膜转移至支撑体上,形成负载型薄膜;
(3)纳米量级厚度薄膜的制备
将所述负载型薄膜置于恒温恒湿干燥箱内烘干至恒重,然后在700~1100℃温度下烧结,保温2~4h,降温至室温,即得到大面积无缺陷、厚度为20~200nm的致密陶瓷薄膜。
2.根据权利要求1所述的大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其特征在于:所述金属醇盐为正硅酸乙酯、钛酸四丁酯、异丙醇铝、四异丁醇锆中的一种或其组合。
3.根据权利要求1所述的大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其特征在于:所述表面活性剂为十二烷基磺酸钠、十六烷基溴化铵、司班、吐温、嵌段聚合物P123、或嵌段聚合物F127。
4.根据权利要求1所述的大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其特征在于:所述反应抑制剂为乙酰丙酮,添加量为金属醇盐的30~100wt%。
5.根据权利要求1所述的大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其特征在于:所述油性溶剂为室温表面张力小于30mN/m、密度小于1g/cm3、不溶于水或在水中溶解度<1g/100g。
6.根据权利要求1所述的大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其特征在于:所述步骤(2-1)中水的温度为0~70℃。
7.根据权利要求1所述的大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其特征在于:所述步骤(2-2)中,采用支撑体靠近所述薄膜,并逐渐下压,利用水压使薄膜黏贴至支撑体上而形成负载型薄膜;或者,将支撑体预先置于所述容器并浸没于水中,待所述薄膜形成后,从容器底部将水排放,使薄膜随着水面的降落而落在支撑体的表面,形成负载型薄膜。
8.根据权利要求1所述的大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法,其特征在于:所述步骤(3)中在温度40~70℃、湿度60~80%下进行烘干。
9.权利要求1-8之一所述大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法制得的陶瓷薄膜。
CN202110540725.XA 2021-05-18 2021-05-18 一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法及其制得的陶瓷薄膜 Active CN113372109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110540725.XA CN113372109B (zh) 2021-05-18 2021-05-18 一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法及其制得的陶瓷薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110540725.XA CN113372109B (zh) 2021-05-18 2021-05-18 一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法及其制得的陶瓷薄膜

Publications (2)

Publication Number Publication Date
CN113372109A true CN113372109A (zh) 2021-09-10
CN113372109B CN113372109B (zh) 2022-12-13

Family

ID=77571171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110540725.XA Active CN113372109B (zh) 2021-05-18 2021-05-18 一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法及其制得的陶瓷薄膜

Country Status (1)

Country Link
CN (1) CN113372109B (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556530A (en) * 1983-08-02 1985-12-03 Shell Oil Company Method for producing a very thin dense membrane
JPH01108161A (ja) * 1987-10-19 1989-04-25 Toray Ind Inc チタニア薄膜の形成方法
US5407479A (en) * 1993-07-28 1995-04-18 The Center For Innovative Technology Sol-gel β-aluminum titanate thin film coating
US6074471A (en) * 1997-06-28 2000-06-13 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Sol-gel route to transparent metal oxide films
CN1648285A (zh) * 2004-11-26 2005-08-03 天津大学 采用高粘度溶剂制备纳米晶TiO2多孔薄膜的制备方法
JP2006110476A (ja) * 2004-10-15 2006-04-27 Nippon Soda Co Ltd 有機薄膜形成方法
CN101164689A (zh) * 2007-08-17 2008-04-23 东华大学 纳米晶多孔TiO2薄膜及其制备方法
CN101172852A (zh) * 2007-10-30 2008-05-07 景德镇陶瓷学院 一种采用溶胶-凝胶工艺制备钛酸铝薄膜的方法
CN101274776A (zh) * 2008-05-16 2008-10-01 景德镇陶瓷学院 一种非水解溶胶-凝胶工艺制备钛酸铝薄膜的方法
CN101660147A (zh) * 2009-09-18 2010-03-03 西北有色金属研究院 一种溶胶-凝胶法制备TiO2薄膜的方法
CN103360080A (zh) * 2013-07-18 2013-10-23 南京工业大学 一种改进的溶胶-凝胶法制备陶瓷纳滤膜的方法
CN103641098A (zh) * 2013-11-29 2014-03-19 太原理工大学 一种将纳米碳材料快速组装到油水界面形成柔性薄膜的方法
CN106698966A (zh) * 2016-11-18 2017-05-24 常州大学 一种基于水滴模板法制备TiO2/SiO2薄膜的工艺
CN108186614A (zh) * 2018-02-22 2018-06-22 南京医科大学附属口腔医院 一种生物活性玻璃复合膜、其制备方法及应用
CN108455661A (zh) * 2017-02-21 2018-08-28 上海市闵行第二中学 一种镧掺杂钛酸铋铁电薄膜及其制备方法
CN108929449A (zh) * 2017-05-25 2018-12-04 北京赛特超润界面科技有限公司 一种大面积连续制备功能性高分子膜的方法及装置
US20190270113A1 (en) * 2016-06-10 2019-09-05 Michael A. POPE Method and apparatus for producing large-area monolayer films of solution dispersed nanomaterials
CN110316736A (zh) * 2019-06-26 2019-10-11 河海大学 大面积纳米膜的制备方法
CN110741054A (zh) * 2017-06-14 2020-01-31 日产化学株式会社 亲水性涂膜形成用组合物、及使用其的亲水性涂膜
CN110743385A (zh) * 2019-09-12 2020-02-04 三达膜科技(厦门)有限公司 一种氧化钛-氧化硅复合陶瓷超滤膜的制备方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556530A (en) * 1983-08-02 1985-12-03 Shell Oil Company Method for producing a very thin dense membrane
JPH01108161A (ja) * 1987-10-19 1989-04-25 Toray Ind Inc チタニア薄膜の形成方法
US5407479A (en) * 1993-07-28 1995-04-18 The Center For Innovative Technology Sol-gel β-aluminum titanate thin film coating
US6074471A (en) * 1997-06-28 2000-06-13 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Sol-gel route to transparent metal oxide films
JP2006110476A (ja) * 2004-10-15 2006-04-27 Nippon Soda Co Ltd 有機薄膜形成方法
CN1648285A (zh) * 2004-11-26 2005-08-03 天津大学 采用高粘度溶剂制备纳米晶TiO2多孔薄膜的制备方法
CN101164689A (zh) * 2007-08-17 2008-04-23 东华大学 纳米晶多孔TiO2薄膜及其制备方法
CN101172852A (zh) * 2007-10-30 2008-05-07 景德镇陶瓷学院 一种采用溶胶-凝胶工艺制备钛酸铝薄膜的方法
CN101274776A (zh) * 2008-05-16 2008-10-01 景德镇陶瓷学院 一种非水解溶胶-凝胶工艺制备钛酸铝薄膜的方法
CN101660147A (zh) * 2009-09-18 2010-03-03 西北有色金属研究院 一种溶胶-凝胶法制备TiO2薄膜的方法
CN103360080A (zh) * 2013-07-18 2013-10-23 南京工业大学 一种改进的溶胶-凝胶法制备陶瓷纳滤膜的方法
CN103641098A (zh) * 2013-11-29 2014-03-19 太原理工大学 一种将纳米碳材料快速组装到油水界面形成柔性薄膜的方法
US20190270113A1 (en) * 2016-06-10 2019-09-05 Michael A. POPE Method and apparatus for producing large-area monolayer films of solution dispersed nanomaterials
CN106698966A (zh) * 2016-11-18 2017-05-24 常州大学 一种基于水滴模板法制备TiO2/SiO2薄膜的工艺
CN108455661A (zh) * 2017-02-21 2018-08-28 上海市闵行第二中学 一种镧掺杂钛酸铋铁电薄膜及其制备方法
CN108929449A (zh) * 2017-05-25 2018-12-04 北京赛特超润界面科技有限公司 一种大面积连续制备功能性高分子膜的方法及装置
CN110741054A (zh) * 2017-06-14 2020-01-31 日产化学株式会社 亲水性涂膜形成用组合物、及使用其的亲水性涂膜
CN108186614A (zh) * 2018-02-22 2018-06-22 南京医科大学附属口腔医院 一种生物活性玻璃复合膜、其制备方法及应用
CN110316736A (zh) * 2019-06-26 2019-10-11 河海大学 大面积纳米膜的制备方法
CN110743385A (zh) * 2019-09-12 2020-02-04 三达膜科技(厦门)有限公司 一种氧化钛-氧化硅复合陶瓷超滤膜的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAOFU HU ET AL.: "A new sol-gel route to prepare dense Al2O3 thin films", 《CERAMICS INTERNATIONAL》 *
HUNG-JEN CHEN ET AL.: "Chelation and solvent effect on the preparation of titania colloids", 《MATERIALS CHEMISTRY AND PHYSICS》 *
KAI-SHENG YAO ET AL.: "Facile synthesis of ultra-large,single-crystal Ag nanosheet-assembled films at chloroform-water interface", 《JOURNAL OF SOLID STATE CHEMISTRY》 *
XIAOYI WANG ET AL.: "A novel sol-gel method for preparing favorable TiO2 thin film", 《MATERIALS RESEARCH EXPRESS》 *

Also Published As

Publication number Publication date
CN113372109B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
Brinker Dip coating
JP6603916B2 (ja) 無機酸化物被膜
Brinker et al. Fundamentals of sol-gel dip-coating
Shilova Synthesis and structure features of composite silicate and hybrid TEOS-derived thin films doped by inorganic and organic additives
Liu et al. A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications
US20030003237A1 (en) Ceramic electrolyte coating methods
CN103183513B (zh) 一种质子导电陶瓷电解质薄膜的制备方法
EP1559677A2 (en) Mixed metal oxide layer and method of manufacture
CN102380321A (zh) 一种氧化铝陶瓷膜膜层的制备方法
CN105622079A (zh) 分子筛膜支撑体的制备方法
Geng et al. Photonic tuning of the emission color of nanophosphor films processed at high temperature
Biswas et al. Chemical solution deposition technique of thin-film ceramic electrolytes for solid oxide fuel cells
CN113372109B (zh) 一种大面积无缺陷纳米量级厚度致密陶瓷薄膜的制备方法及其制得的陶瓷薄膜
CN108892392B (zh) 一种基于调控zif-8薄膜暴露晶面比例的方法
Cha et al. Spray-dried and pre-sintered TiO 2 micro-balls for sinter-free processing of dye-sensitized solar cells
WO2024078624A1 (zh) 荧光复合颗粒及其制备方法
Castro et al. Thick sol–gel coatings produced by electrophoretic deposition
Menchaca-Campos et al. Smart protection of polymer-inhibitor doped systems
Miki et al. Preparation of thick TiO2 film with large surface area using aqueous sol with poly (ethylene glycol)
US20140302231A1 (en) Method for preparing a material on a substrate by sol-gel means
Feil et al. Purely inorganic coatings based on nanoparticles for magnesium alloys
Tang Crack-free TiO2 thin films with selfassembling nano-particles fabricated through in-situ sol–gel processing in reverse micelles
CN113694846B (zh) 一种mq硅树脂包覆相变微胶囊及其制备方法和应用
Sarkar et al. Screen‐Printing of ZnO Nanostructures from Sol–Gel Solutions for Their Application in Dye‐Sensitized Solar Cells
CN108249773A (zh) 一种玻璃表面减反射涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant