CN113368302A - 负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法 - Google Patents

负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法 Download PDF

Info

Publication number
CN113368302A
CN113368302A CN202110692136.3A CN202110692136A CN113368302A CN 113368302 A CN113368302 A CN 113368302A CN 202110692136 A CN202110692136 A CN 202110692136A CN 113368302 A CN113368302 A CN 113368302A
Authority
CN
China
Prior art keywords
protein
calcium phosphate
loaded
mixed solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110692136.3A
Other languages
English (en)
Inventor
王佐林
雷婧诗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202110692136.3A priority Critical patent/CN113368302A/zh
Publication of CN113368302A publication Critical patent/CN113368302A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了一种负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法,该制备方法包括将蛋白溶解在三羟甲基氨基甲烷盐酸盐缓冲溶液中,然后逐滴加入氯化钙、氯化镁和磷酸氢二钠溶液混合均匀,经离心、冻干即可;本发明的方法通过简单地混合蛋白及无机盐成分,在敞开环境下快速反应制备具有生物活性的磷酸钙纳米颗粒,该过程方法避免了高温高压等苛刻条件,不引入其他有毒成分、操作简单、反应快速,能够有效保护生长因子活性,并且实现生长因子的有效负载及释放的优点,为后续的用于临床应用提供基础;另外,本发明的生物活性磷酸钙纳米颗粒尺寸为40nm左右,生物相容性较好,可以有效的保留生长因子活性,促进细胞的增殖、分化。

Description

负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法
技术领域
本发明属于纳米材料合成技术领域,具体涉及一种无机离子与生物活性蛋白共沉淀合成,具有生物活性的纳米颗粒,即负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法。
背景技术
过去数十年中,许多研究证明了多种生长因子具有高生物活性及生物特异性,在组织修复和再生等生命活动中起重要作用。然而,与大部分蛋白质相似,生长因子在体内大多不稳定,且半衰期短。因此,具有生物活性的蛋白纳米载体在能够保护蛋白活性的同时,还能延长其半衰期,有效地避免反复注射、口服等引起的不良反应。然而,仍然有两个问题限制了蛋白纳米载体的实现:如何有效保护蛋白活性;如何实现蛋白的有效负载及释放。目前研究较多的蛋白纳米载体材料有:氧化石墨烯、磁性纳米颗粒、金纳米颗粒、脂质体颗粒和聚合物纳米颗粒等。其中,磷酸钙纳米颗粒备受关注。
脊椎动物钙化组织内的主要无机成分即为磷酸钙类矿物。人工合成的磷酸钙材料组成结构与生物体内结构相似,并且都具有良好的化学稳定性、生物活性、可降解性及一定的吸附能力。此外,体外实验表明,磷酸钙材料具有良好的生物相容性,其生物毒性远远低于硅基、量子点、碳纳米管磁性颗粒等。其在pH>4.2的环境中能够稳定存在,具有良好的稳定性。并且,纳米级磷酸钙类材料与体内骨组织磷酸钙的形式高度一致,能够改善骨组织的增殖,促进成骨细胞黏附,在种植体表面改性中得到广泛应用。
目前,基于磷酸钙纳米颗粒制备的生物蛋白活性载体可见以下报道:
《材料科学:医学材料》(J Mater Sci:Mater Med,2010年第21卷1875-1880页)报道了利用化学沉淀的方法合成羟基磷灰石纳米颗粒,在pH=12的体系中缓慢混合硝酸钙和磷酸氢二铵,可产生大量沉淀;然后将反应体系煮沸10min,最后离心保留沉淀,冷冻干燥。将冻干后的沉淀溶解于5毫升BMP-2溶液中37℃搅拌反应30min,通过吸附作用负载生长因子BMP-2。反应结束后,离心去除上清,沉淀冻干保存。该方法中生长因子与磷酸钙纳米颗粒仅通过吸附作用结合,易导致蛋白突释。
《先进健康材料》(Adv.Healthcare Mater.,2013年第2卷682-686页)报道了一种在温和的极性环境中,不采用任何有毒表面活性剂微波协同合成多空磷酸钙的方法。由于没有引入有毒物质,所以合成出的材料可以直接应用于生物体内而不需要任何后处理过程。同时该纳米材料表现出良好的蛋白负载和缓释的特性。作者进一步基于表征讨论了其存在的潜在机理。该方法的反应高温环境会影响蛋白活性,且蛋白突释明显,2h内大部分蛋白已经完全释放。
发明内容
针对现有技术中的不足,本发明的目的之一是提供一种负载蛋白的生物活性磷酸钙纳米颗粒的制备方法。
本发明的目的之二是提供上述负载蛋白的生物活性磷酸钙纳米颗粒。
本发明的原理:利用化学沉淀的方法,在合成磷酸钙颗粒的过程中加入蛋白,在制备磷酸钙纳米颗粒的同时将蛋白实现有效地包覆。
为达到上述目的之一,本发明的解决方案是:
将蛋白溶解在Tris-HCL缓冲溶液中,逐滴加入氯化钙溶液、氯化镁溶液及磷酸氢二钠溶液,混合均匀后可见大量沉淀,高速离心,收集沉淀用双蒸水反复清洗,沉淀冷冻干燥,冰箱冷冻保存。具体地,
一种负载蛋白的生物活性磷酸钙纳米颗粒的制备方法,其包括如下步骤:
(1)、将蛋白溶解在三羟甲基氨基甲烷盐酸盐(Tris-HCL)的缓冲溶液中,得到第一混合液;
(2)、在第一混合液内加入氯化钙溶液,得到第二混合液;
(3)、在第二混合液内加入氯化镁溶液,得到第三混合液;
(4)、在第三混合液内加入磷酸氢二钠溶液,离心去除上清液,得到沉淀物;
(5)、将沉淀物清洗多次,冷冻干燥,得到负载蛋白的生物活性磷酸钙纳米颗粒。
作为本发明的一种优选实施例,步骤(1)中,蛋白包括生长因子和模式蛋白。
作为本发明的一种优选实施例,生长因子为胰岛素样生长因子-1(IGF-1)。
作为本发明的一种优选实施例,模式蛋白为牛血清白蛋白或者细胞色素C。
作为本发明的一种优选实施例,步骤(1)中,蛋白的浓度为0.1-2mg/mL。
作为本发明的一种优选实施例,步骤(4)中,离心的转速为5000-8000rpm,离心的时间为10±0.1min。
作为本发明的一种优选实施例,步骤(5)中,冷冻干燥的时间大于10h。
作为本发明的一种优选实施例,步骤(5)中,负载蛋白的生物活性磷酸钙纳米颗粒的平均粒径为10-100nm。
作为本发明的一种优选实施例,步骤(5)中,负载蛋白的生物活性磷酸钙纳米颗粒的平均粒径为40.23nm。
为达到上述目的之二,本发明的解决方案是:
一种负载蛋白的生物活性磷酸钙纳米颗粒,其由上述的制备方法得到。
由于采用上述方案,本发明的有益效果是:
第一、本发明的方法通过简单地混合蛋白及无机盐成分,在敞开环境下快速反应制备具有生物活性的磷酸钙纳米颗粒,该方法避免了高温高压等苛刻条件,不引入其他有毒成分、操作简单、反应快速,能够有效保护生长因子活性,并且实现生长因子的有效负载及释放的优点,为后续的用于临床应用提供基础。
第二、本发明的生物活性磷酸钙纳米颗粒尺寸为40nm左右,生物相容性较好,可以有效地保留生长因子活性,促进细胞的增殖、分化。
附图说明
图1为本发明的负载生长因子IGF-1的磷酸钙纳米颗粒的透射电镜图(Bar=100nm)。
图2为本发明的负载生长因子IGF-1的磷酸钙纳米颗粒的扫描电镜图(Bar=300nm)。
图3为本发明的负载生长因子IGF-1的磷酸钙纳米颗粒的傅立叶-近红外光谱(FTIR)图。
图4为本发明以牛血清白蛋白(BSA)为模式蛋白的检测缓释曲线图(纵坐标Released amount为释放量)。
图5为本发明以细胞色素C为模式蛋白,不同pH的Tris-HCL缓冲液中合成的磷酸钙纳米颗粒的蛋白释放图(纵坐标Released Amount为释放量)。
图6为本发明以细胞色素C为模式蛋白,不同蛋白浓度合成样本光学照片及对应负载量图。
图7为本发明以细胞色素C为模式蛋白,不同蛋白浓度合成的磷酸钙纳米颗粒的蛋白释放图(纵坐标Released Amount为释放量)。
图8为本发明以细胞色素C为模式蛋白检测圆二色谱(CD)图(cytochrome C为细胞色素C)。
图9为本发明本发明的纳米颗粒与MC3T3-E1细胞共培养示意图。
图10为本发明负载生长因子IGF-1的纳米颗粒与MC3T3-E1共培养示意图(T0:未负载IGF-1的纳米颗粒;TI:负载IGF-1的纳米颗粒)。
具体实施方式
本发明提供了一种负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法。
<负载蛋白的生物活性磷酸钙纳米颗粒的制备方法>
本发明的负载蛋白的生物活性磷酸钙纳米颗粒的制备方法包括如下步骤:
(1)、将蛋白溶解在三羟甲基氨基甲烷盐酸盐(Tris-HCL)的缓冲溶液中,磁力搅拌混匀,使生长因子(或模式蛋白)溶液平衡,得到第一混合液;
(2)、在第一混合液内加入氯化钙溶液,磁力搅拌混匀,得到第二混合液;
(3)、在第二混合液内加入氯化镁溶液,继续吹打混匀,得到第三混合液;
(4)、在第三混合液内加入磷酸氢二钠溶液,混匀可见大量沉淀产生,将反应体系离心去除上清液,得到沉淀物;
(5)、沉淀物中加入双蒸水反复洗涤3次,冷冻干燥过夜,得到负载蛋白的生物活性磷酸钙纳米颗粒。
其中,在步骤(1)中,生长因子为胰岛素样生长因子-1(IGF-1),模式蛋白为牛血清白蛋白(BSA)或者细胞色素C。因模式蛋白与生长因子均为蛋白,具有相似的蛋白活性特点,因此本发明前期为验证方法的可实施性,利用模式蛋白BSA或细胞色素C等进行合成,并检测释放功能。
在步骤(1)中,蛋白的浓度为0.1-2mg/mL。
在步骤(4)中,离心的转速为5000-8000rpm,离心的时间为10±0.1min。
在步骤(5)中,冷冻干燥的时间大于10h。
在步骤(5)中,负载蛋白的生物活性磷酸钙纳米颗粒的平均粒径为10-100nm,优选为40.23nm。
<负载蛋白的生物活性磷酸钙纳米颗粒>
由上述的制备方法得到本发明的负载蛋白的生物活性磷酸钙纳米颗粒。如图1所示,该生物活性磷酸钙纳米颗粒的形貌均一,粒径约为40.23nm(Bar=100nm)。如图2所示,该生物活性磷酸钙纳米颗粒的颗粒形貌均一(Bar=300nm)。如图3所示,ACP未负载生长因子的蛋白磷酸钙颗粒未表现蛋白特征峰,而ACP-IGF-1负载了生长因子的磷酸钙颗粒可见蛋白特征峰,该生物活性磷酸钙纳米颗粒证实颗粒中生长因子的有效负载。
如图4所示,900h内该纳米颗粒持续进行蛋白释放。
其中,缓释过程为:离心管中将已负载BSA的纳米颗粒样品按照浓度为1mg/mL的浓度溶解在磷酸盐缓冲液(PBS,pH=7.2-7.4)中,之后放置在37℃、120-200rpm的恒温摇床中反应;在特定时间点离心收集上清液置于-20℃冰箱保存,并加入等量的PBS缓冲液,在恒温摇床中继续反应;当各时间点上清均收集后,利用BCA蛋白浓度检测试剂盒测量上清液中蛋白浓度并计算绘图。
以下结合实施例对本发明作进一步的说明。
实施例1:
本实施例的负载蛋白的生物活性磷酸钙纳米颗粒的制备方法包括如下步骤:
(1)、称取适量蛋白,溶解在pH=8.0的Tris-HCL缓冲溶液中,搅拌混匀后,配成浓度为1mg/mL的第一混合液。
(2)、在第一混合液内逐滴加入氯化钙溶液至终浓度25mmol/L,继续搅拌,得到第二混合液;
(3)、在第二混合液内逐滴加入氯化镁至终浓度25mmol/L,搅拌均匀,得到第三混合液;
(4)、在第三混合液内逐滴加入磷酸氢二钠至终浓度15mmol/L,产生大量沉淀,在8000rpm下高速离心10min,去除上清液,得到沉淀物;
(5)、将收集到的沉淀物用双蒸水反复洗涤3次,冷冻干燥至少10h,得到负载蛋白的生物活性磷酸钙纳米颗粒,并进行理化性质检验和生物学性能检测。
实施例2:
改变实施例1中Tri-HCL的pH值,得到不同蛋白负载量的磷酸钙纳米颗粒。研究证实其负载量超过10%,约为15.64%。
如图5所示,不同pH的Tris-HCL缓冲液中合成的磷酸钙纳米颗粒的蛋白释放图,pH越大,负载量越高,释放值越低。pH=8.0时,负载量为13.79%;pH=9.0时,负载量为15.64%。
缓释过程:离心管中将已负载细胞色素C的纳米颗粒样品按照浓度为1mg/mL的浓度溶解在不同pH的PBS缓冲液中(pH=4.1、6.1、7.2),之后放置在37℃、120-200rpm的恒温摇床中反应;在特定时间点离心收集上清液置于-20℃冰箱保存,并加入等量的PBS缓冲液,在恒温摇床中继续反应;当各时间点上清均收集后,利用BCA蛋白浓度检测试剂盒测量上清液中蛋白浓度并计算绘图。
实施例3:
改变实施例1中蛋白浓度分别为0.1mg/mL、1mg/mL和2mg/mL,得到不同蛋白负载量的磷酸钙纳米颗粒。
如图6所示,不同蛋白浓度合成样本光学照片及对应负载量,浓度越大,负载量越高。
材料负载量检测方法为:称取1mg材料溶解在1mL的1%乳酸中,充分溶解后,高速离心(10000rpm,10min),吸取上清后BCA试剂盒检测蛋白浓度。
如图7所示,不同蛋白浓度合成的磷酸钙纳米颗粒的蛋白释放图,浓度越小,释放量越高,但结果无统计学差异。
缓释过程:离心管中将不同蛋白浓度(浓度为0.1mg/mL、1mg/mL、mg/mL)制备的负载细胞色素C纳米颗粒样品按照浓度为1mg/mL的浓度溶解在PBS缓冲液中(pH=7.2-7.4),之后放置于37℃、120-200rpm的恒温摇床中反应;在特定时间点离心收集上清液置于-20℃冰箱保存,并加入等量的PBS缓冲液,在恒温摇床中继续反应;当各时间点上清均收集后,利用BCA蛋白浓度检测试剂盒测量上清液中蛋白浓度并计算绘图。
图8显示缓释出的蛋白空间结构与标准蛋白基本一致,证实蛋白活性得以保存。
图9显示该纳米颗粒的生物相容性较好。计算好MC3T3-E1细胞数目后,接种在细胞培养皿中;24h后,待细胞完全贴壁,将材料加入细胞培养液进行共培养,3天后利用CCK-8检测试剂盒测量细胞增殖能力。
图10显示负载了生长因子的纳米颗粒较未负载的可显著促进细胞增殖。计算好MC3T3-E1细胞数目后,接种在细胞培养皿中;24h后,待细胞完全贴壁,将材料加入细胞培养液进行共培养,1天和3天后利用CCK-8检测试剂盒测量细胞增殖能力。
综上,本发明利用简单的化学沉淀反应,实现了蛋白与磷酸钙颗粒的有效结合,该反应时间短,且无有毒成分,在尽可能保存蛋白活性的基础上,实现了生长因子的有效负载。研究证实其负载量超过10%,约为15.64%;缓释时间较长,可达900h左右;由于反应时间短且条件温和,蛋白活性得到了最大程度保留。生物实验结果证实制备的生物活性纳米颗粒的生物相容性较好,并且可以显著促进细胞增殖。
上述对实施例的描述是为了便于该技术领域的普通技术人员能理解和使用本发明。熟悉本领域技术人员显然可以容易的对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中,而不必经过创造性的劳动。因此,本发明不限于上述实施例。本领域技术人员根据本发明的原理,不脱离本发明的范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种负载蛋白的生物活性磷酸钙纳米颗粒的制备方法,其特征在于:其包括如下步骤:
(1)、将蛋白溶解在三羟甲基氨基甲烷盐酸盐的缓冲溶液中,得到第一混合液;
(2)、在所述第一混合液内加入氯化钙溶液,得到第二混合液;
(3)、在所述第二混合液内加入氯化镁溶液,得到第三混合液;
(4)、在所述第三混合液内加入磷酸氢二钠溶液,离心去除上清液,得到沉淀物;
(5)、将所述沉淀物清洗,冷冻干燥,得到负载蛋白的生物活性磷酸钙纳米颗粒。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,所述蛋白包括生长因子和模式蛋白。
3.根据权利要求2所述的制备方法,其特征在于:所述生长因子为胰岛素样生长因子-1。
4.根据权利要求2所述的制备方法,其特征在于:所述模式蛋白为牛血清白蛋白或者细胞色素C。
5.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,所述蛋白的浓度为0.1-2mg/mL。
6.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,所述离心的转速为5000-8000rpm,所述离心的时间为10±0.1min。
7.根据权利要求1所述的制备方法,其特征在于:步骤(5)中,所述冷冻干燥的时间大于10h。
8.根据权利要求1所述的制备方法,其特征在于:步骤(5)中,所述负载蛋白的生物活性磷酸钙纳米颗粒的平均粒径为10-100nm。
9.根据权利要求1所述的制备方法,其特征在于:步骤(5)中,所述负载蛋白的生物活性磷酸钙纳米颗粒的平均粒径为40.23nm。
10.一种负载蛋白的生物活性磷酸钙纳米颗粒,其特征在于:其由权利要求1-9任一项所述的制备方法得到。
CN202110692136.3A 2021-06-22 2021-06-22 负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法 Pending CN113368302A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110692136.3A CN113368302A (zh) 2021-06-22 2021-06-22 负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110692136.3A CN113368302A (zh) 2021-06-22 2021-06-22 负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法

Publications (1)

Publication Number Publication Date
CN113368302A true CN113368302A (zh) 2021-09-10

Family

ID=77578364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110692136.3A Pending CN113368302A (zh) 2021-06-22 2021-06-22 负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法

Country Status (1)

Country Link
CN (1) CN113368302A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628767A (zh) * 2019-07-26 2019-12-31 华中农业大学 一种生物矿化的CRISPR/Cas9 RNPs纳米颗粒、制备方法及其用于基因编辑

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862337A (zh) * 2015-05-25 2015-08-26 中国药科大学 聚阴离子聚合物/磷酸钙纳米基因递送系统及制备方法
CN107141022A (zh) * 2017-04-14 2017-09-08 华南理工大学 一种在磷酸钙类生物陶瓷基体表面构建的白磷钙石涂层及其制备方法
WO2017209823A2 (en) * 2016-03-14 2017-12-07 The University Of Chicago Injectable pastes based on oppositely charged polymer/calcium phosphate hybrid nanoparticles
CN108295306A (zh) * 2017-12-22 2018-07-20 香港大学深圳医院 一种含介孔纳米磷酸钙颗粒填料的三维打印水凝胶材料及其制备方法
CN110859824A (zh) * 2019-11-25 2020-03-06 重庆医科大学 一种基于磷酸钙矿化制备热稳定性疫苗的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104862337A (zh) * 2015-05-25 2015-08-26 中国药科大学 聚阴离子聚合物/磷酸钙纳米基因递送系统及制备方法
WO2017209823A2 (en) * 2016-03-14 2017-12-07 The University Of Chicago Injectable pastes based on oppositely charged polymer/calcium phosphate hybrid nanoparticles
CN107141022A (zh) * 2017-04-14 2017-09-08 华南理工大学 一种在磷酸钙类生物陶瓷基体表面构建的白磷钙石涂层及其制备方法
CN108295306A (zh) * 2017-12-22 2018-07-20 香港大学深圳医院 一种含介孔纳米磷酸钙颗粒填料的三维打印水凝胶材料及其制备方法
CN110859824A (zh) * 2019-11-25 2020-03-06 重庆医科大学 一种基于磷酸钙矿化制备热稳定性疫苗的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628767A (zh) * 2019-07-26 2019-12-31 华中农业大学 一种生物矿化的CRISPR/Cas9 RNPs纳米颗粒、制备方法及其用于基因编辑
CN110628767B (zh) * 2019-07-26 2023-07-07 华中农业大学 一种生物矿化的CRISPR/Cas9 RNPs纳米颗粒、制备方法及其用于基因编辑

Similar Documents

Publication Publication Date Title
Lee et al. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies
Purohit et al. Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering
Uswatta et al. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration
Zhou et al. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide
Couto et al. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles
Kumar et al. Flower-like hydroxyapatite nanostructure obtained from eggshell: A candidate for biomedical applications
Bernhardt et al. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate–gelatine–hydroxyapatite scaffolds with anisotropic pore structure
Adithya et al. Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering
CN111939317B (zh) 一种构建骨形态发生蛋白缓释系统的方法
Wu et al. Functionalization of bone implants with nanodiamond particles and angiopoietin-1 to improve vascularization and bone regeneration
Van et al. Injectable hydrogel composite based gelatin-PEG and biphasic calcium phosphate nanoparticles for bone regeneration
Liu et al. Phosphocreatine-modified chitosan porous scaffolds promote mineralization and osteogenesis in vitro and in vivo
Ye et al. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing
Chen et al. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects
Aghajanpour et al. Impact of oxygen-calcium-generating and bone morphogenetic protein-2 nanoparticles on survival and differentiation of bone marrow-derived mesenchymal stem cells in the 3D bio-printed scaffold
Chen et al. Synthesis, characterization and osteoconductivity properties of bone fillers based on alendronate-loaded poly (ε-caprolactone)/hydroxyapatite microspheres
Tithito et al. Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly (methyl methacrylate) for bone tissue engineering
BR112015020439B1 (pt) material de substituição óssea para cirurgia óssea e dentária e processo de preparação de um material de substituição óssea
Yuan et al. The incorporation of strontium in a sodium alginate coating on titanium surfaces for improved biological properties
CN113368302A (zh) 负载蛋白的生物活性磷酸钙纳米颗粒及其制备方法
Song et al. Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration
Deng et al. In vitro biocompability/osteogenesis and in vivo bone formation evalution of peptide-decorated apatite nanocomposites assisted via polydopamine
CN107137771B (zh) 一种纳米磷酸钙骨水泥及其制备方法
Khodaei et al. Controlled gentamicin-strontium release as a dual action bone agent: combination of the porous titanium scaffold and biodegradable polymers
Zhang et al. Electrochemical deposition of calcium phosphate/chitosan/gentamicin on a titanium alloy for bone tissue healing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210910