CN113337327A - 一种调控界面摩擦的纳米润滑添加剂、制造方法和用途 - Google Patents

一种调控界面摩擦的纳米润滑添加剂、制造方法和用途 Download PDF

Info

Publication number
CN113337327A
CN113337327A CN202110605355.3A CN202110605355A CN113337327A CN 113337327 A CN113337327 A CN 113337327A CN 202110605355 A CN202110605355 A CN 202110605355A CN 113337327 A CN113337327 A CN 113337327A
Authority
CN
China
Prior art keywords
friction
microgel
lubricating additive
nano
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110605355.3A
Other languages
English (en)
Other versions
CN113337327B (zh
Inventor
刘国强
陈卓
冯杨
赵楠
刘维民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202110605355.3A priority Critical patent/CN113337327B/zh
Publication of CN113337327A publication Critical patent/CN113337327A/zh
Application granted granted Critical
Publication of CN113337327B publication Critical patent/CN113337327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Abstract

本发明属于功能材料及其制备技术领域,提供了一种调控界面摩擦的纳米润滑添加剂、制造方法和用途,包括以金纳米颗粒作为内核,温敏性聚合物交联网络作为外壳形成的核壳结构纳米球;其制造方法包括如下步骤:S1、金离子还原成金纳米颗粒制备得到金纳米颗粒溶液;S2、采用无皂乳液聚合方法合成复合微凝胶球分散液;S3、将S2合成得到的复合微凝胶球分散液进行纯化;复合微凝胶球分散在水中,作为水合润滑添加剂,能够响应近红外光刺激,用于制备实现低摩擦与高摩擦之间的快速切换的摩擦力切换剂。本发明采用无皂乳液聚合制造的纳米润滑添加剂能够响应近红外光刺激,从而实现低摩擦与高摩擦之间的快速切换,实现了远程调控微凝胶的摩擦性能。

Description

一种调控界面摩擦的纳米润滑添加剂、制造方法和用途
技术领域
本发明属于功能材料及其制造技术领域,具体涉及一种调控界面摩擦的纳米润滑添加剂、制造方法和用途。
背景技术
摩擦在日常生活中随处可见。当行走和拿东西时,摩擦需要增加。然而,在机器运行过程中,摩擦可能导致零件磨损和失效,需要采取有效的措施减少摩擦。因此,根据不同的需求对摩擦进行调节和控制是非常必要的理论上,摩擦取决于接触面的表面性质及其相互作用,通过调整接触面性质和相互作用,可以将不可控的摩擦转化为可控的摩擦。特别是界面摩擦控制可以通过各种外部刺激(如温度、pH值、电解质、磁场和光)以可逆的方式实现。
在水介质中,可通过调节水化润滑来实现界面控制。众所周知,水是自然界中最常见、最环保的润滑剂。然而,由于水的粘度很低,容易造成金属表面的腐蚀,因此水在润滑剂中的应用受到很大的限制。幸运的是,水分子可以在极性基团周围形成水合层,从而减少相对滑动界面之间的摩擦。这一水化层是水化润滑的必要条件。因此,开发了各种添加剂来提高水润滑的效果。其中,热敏材料,特别是聚(N-异丙基丙烯酰胺)(PNIPAM)基聚合物,已作为水相润滑添加剂调节界面摩擦。众所周知,PNIPAM是应用最广泛的热敏聚合物之一,其临界溶液温度(LCST)较低,约为32-33℃。在LCST以下,酰胺基团与水分子之间的氢键使PNIPAM周围形成水合层。在LCST上方,氢键断裂,水合层消失。PNIPAM由于其独特的热响应特性,已广泛应用于外部温度触发的摩擦调节。虽然PNIPAM基聚合物在摩擦控制中发挥了重要作用,但仍有两个问题需要解决。首先,电流模式的调节速率太慢,急需一个快速、灵敏的控制系统。第二,环境刺激条件必须与摩擦界面密切接触。这些案例可以在科学实验层面上操作,但在实际应用中很难实施。特别是在水下环境中控制界面摩擦时,除非摩擦副上固定有加热设备,否则很难改变滑动界面周围的局部温度,这将大大增加摩擦系统设计的复杂性。
为了解决这些问题,本发明引入近红外(NIR)光,通过光热效应来调节界面摩擦。在这种情况下,有几个好处:(1)摩擦控制可远程可逆实现;(2)无需增加加热设备直接接触摩擦界面;(3)该策略可用于水下摩擦控制。金纳米颗粒作为一种环境友好型光热制剂,在生物医学领域得到了广泛的应用,尤其是肿瘤的近红外光热治疗。受此启发,本发明选择金纳米颗粒作为智能润滑添加剂的近红外敏感核心。微凝胶是一种分子内交联的纳米或微尺度胶体粒子,在水中具有高度水化和溶胀性。由于胶体稳定性、剪切粘弹性和环境友好性,微凝胶已被证明是一种良好的水润滑添加剂,不仅表现出良好的润滑效果,还能实现外界刺激对界面摩擦的控制。基于此,本发明采用基于PNIPAM的微凝胶作为设计的润滑添加剂的热响应壳,当内部金纳米颗粒吸收近红外光并产生等离子体共振,将光能转化为热能,导致表面温度变化。外部热敏微凝胶感知温度变化,发生结构坍塌或膨胀,影响与摩擦控制相关的水化层的形成或消失。PNIPAM微凝胶和金纳米颗粒的结合为设计近红外光热润滑添加剂提供了一种简便的方法在近红外光照射下,这种基于PNIPAM和金纳米颗粒的近红外光响应微凝胶作为润滑添加剂在调节界面摩擦方面具有独特的能力。
发明内容
本发明的目的在于,针对现有功能性涂层纤维存在的上述问题,通过无皂乳液聚合合成出可以进行光热转换的微凝胶球来达到快速摩擦调控的目的。解决了以往利用温敏性或pH敏感聚合物进行摩擦调控时变化条件复杂且费时的困难,利用近红外光调控摩擦不需要额外的复杂装置即可进行远程可逆调节,且调节范围可控,调控效率高。
本发明的目的之一是提供一种调控界面摩擦的纳米润滑添加剂,包括以金纳米颗粒作为内核,温敏性聚合物交联网络作为外壳形成的核壳结构纳米球,所述纳米球为复合微凝胶纳米球。
本发明的目的之二是提供上述调控界面摩擦的纳米润滑添加剂的制造方法,包括如下步骤:
S1、利用柠檬酸三钠将四氯金酸溶液中的金离子还原成金纳米颗粒,制备得到金纳米颗粒溶液;
S2、采用无皂乳液聚合方法:将S1中得到的金纳米颗粒溶液与温敏性聚合物的单体、另一种亲水性单体、交联剂以及引发剂混合,在60~80℃的温度加热3~5h,合成得到核壳结构的复合微凝胶球分散液;
S3、将S2合成得到的复合微凝胶球分散液放入分子量截断量为8000-14000的透析袋中,在离子水中纯化36~72h,收集透析袋内的溶液,即为纳米润滑添加剂。
优选的,S1中,四氯金酸溶液的浓度为0.01~0.05wt.%,柠檬酸三钠:四氯金酸的质量比为4~7:2~3。
优选的,S2中,金纳米颗粒溶液:所述温敏性聚合物的单体、另一种亲水性单体:交联剂:引发剂的质量比为0.5~1.5:38~45:5~12:3~5:3~5。
优选的,S2中,所述温敏性聚合物的单体包括聚N-异丙基丙烯酰胺、聚[甲基丙烯酸-2-(N,N-二甲氨基)酯或聚乙烯吡咯烷酮。
优选的,S2中,所述亲水性单体包括丙烯酸、甲基丙烯酸或2-丙烯酰胺-2-甲基-1-丙磺酸。
优选的,S2中,所述交联剂包括过氧化二异丙苯N,N'-亚甲基双丙烯酰胺。
优选的,S2中,所述引发剂包括过氧化氢、过硫酸钾或过硫酸铵。
本发明的目的之三是提供上述纳米润滑添加剂的用途,所述复合微凝胶球能够分散在水中,作为水合润滑添加剂。
本发明的目的之四是提供上述纳米润滑添加剂的用途,所述纳米润滑添加剂能够响应近红外光刺激,用于制备实现低摩擦与高摩擦之间的快速切换的摩擦力切换剂。
本发明与现有技术相比,其有益效果在于:
1、本发明采用无皂乳液聚合,提高聚合物反应速率,且在整个乳液聚合反应过程中完全不含乳化剂,消除了亲水表面活性剂的影响,使微凝胶具有较好的物理、化学性能;使用水溶性聚合物单体,合成后的微凝胶球外部形成一层水化层,仅可以提高微凝胶分散液的稳定性,还能在水润滑的过程中起到至关重要的作用。
2、本发明制备的纳米润滑添加剂,以温敏性聚合物单体交联而成的聚合物网络的近红外响应复合微凝胶,其具有最低临界溶解温度(LCST)为36.5~37.2℃,在LCST以下,复合微凝胶为亲水的能与水分子之间以氢键相连形成水化层,达到水润滑效果,通过引入近红外光来调控界面摩擦可以远程可逆调控,内部的金纳米颗粒对光产生吸收发生等离子共振,并可以将光能转化为热能,导致表面温度的变化;同时,外部的温度敏感微凝胶感受到温度的变化后结构的收缩和膨胀,影响水化层的形成与消失,不需要在摩擦界面增加温控装置或者更换调控介质。
3、本发明制备的微凝胶球作为纳米润滑添加剂,能够快速地在低摩擦状态与高摩擦状态之间切换,作为润滑添加剂添加到水中增大了水的黏度,提高了水作为润滑剂的稳定性,微凝胶球在常温下是亲水的能形成水化层,起到水合润滑的作用,微凝胶是球形的,在水溶液中可以起到微轴承的作用;温度升高微凝胶球收缩但其仍然能够作为润滑添加剂在水中起到润滑效果,即温度升高微凝胶的摩擦系数还能低于水的摩擦系数。
附图说明
图1为本发明中制得复合微凝胶球的红外光谱图;
图2为本发明中制得复合微凝胶球及金纳米颗粒的紫外-可见光吸收曲线;
图3为本发明中制得复合微凝胶球及金纳米颗粒的形貌特征照片;
图4为本发明实施例1~3中微凝胶分散液在波长为808nm,照射功率为2.68W的近红外光照射下温度随照射时间的变化曲线;
图5为纯水以及本发明实施例1~3中微凝胶分散液在通用摩擦磨损试验机上分别在25℃和45℃测得的平均摩擦系数;
图6为本发明中实施例4~7制得复合微凝胶球形貌特征照片,(1)~(4)分别对应实施例4~7。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围,除非另有特别说明,本发明以下各实施例中用到的各种原料、试剂、仪器和设备均可通过市场购买得到或者通过现有方法制备得到。下述实例中所使用的温敏性聚合物单体均为N-异丙基丙烯酰胺、亲水性单体均为丙烯酸、交联剂均为N,N'-亚甲基双丙烯酰胺、引发剂均为过硫酸钾。所有制备过程均在去离子水中进行。
实施例1
一种调控界面摩擦的纳米润滑添加剂,包括以金纳米颗粒作为内核,温敏性聚合物交联网络作为外壳形成的核壳结构纳米球,纳米球为复合微凝胶纳米球。
上述调控界面摩擦的纳米润滑添加剂的制造方法,包括如下步骤:
S1、将50mL四氯金酸溶液(0.01wt.%)加热至沸腾后缓慢滴入0.3mL柠檬酸三钠溶液(1.0wt.%),溶液先由淡黄色变为深蓝色,再变为深红色,此时金纳米颗粒被还原出来。15min后反应完全结束,得到50mL含金纳米颗粒的溶液,计算得出其质量分数为1.0wt.%;
S2、利用无皂乳液聚合方法合成复合微凝胶球(记作PTMGs),具体做法:称取N-异丙基丙烯酰胺0.2g,丙烯酸0.05g,N,N'-亚甲基双丙烯酰胺20mg后,与S1中合成的金纳米颗粒溶液一起加入到100mL的三口烧瓶内,配有磁力转子、蛇形冷凝管和通气口,通入氮气30分钟以除去体系中的氧气。随后加入20mg过硫酸钾,在70℃下聚合4小时;
S3、将S2中合成的微凝胶分散体放入分子量截断量为8000-14000的透析袋中,在1000mL去离子水中纯化48h,每12h换水一次,最后收集透析袋内的微凝胶分散溶液,即为质量分数为1.0wt%纳米润滑添加剂。
实施例2
制备方法同实施例1,区别在于:向纳米润滑添加剂加入相同体积的去离子水,充分超声分散,将微凝胶悬浮液的质量分数稀释为0.5wt.%,得到质量分数为1.0wt%的纳米润滑添加剂。
实施例3
制备方法同实施例1,区别在于:取出部分合成出的微凝胶分散液,蒸发出一半的去离子水,将微凝胶悬浮液的质量分数浓缩为2.0wt.%,得到质量分数为2.0wt%的纳米润滑添加剂。
实施例4
一种调控界面摩擦的纳米润滑添加剂,包括以金纳米颗粒作为内核,温敏性聚合物交联网络作为外壳形成的核壳结构纳米球,纳米球为复合微凝胶纳米球。
上述调控界面摩擦的纳米润滑添加剂的制造方法,包括如下步骤:
S1、将30mL四氯金酸溶液(0.05wt.%)加热至沸腾后缓慢滴入0.3mL柠檬酸三钠溶液(1.0wt.%),溶液先由淡黄色变为深蓝色,再变为深红色,此时金纳米颗粒被还原出来。15min后反应完全结束,得到30mL含金纳米颗粒的溶液,计算得出其质量分数为1.5wt.%;
S2、利用无皂乳液聚合方法合成复合微凝胶球(记作PTMGs)。具体做法:准确称取N-异丙基丙烯酰胺0.114g,丙烯酸0.015g,N,N'-亚甲基双丙烯酰胺9mg后,与S1中合成的金纳米颗粒溶液一起加入到100mL的三口烧瓶内,配有磁力转子、蛇形冷凝管和通气口,通入氮气30分钟以除去体系中的氧气。随后加入9mg过硫酸钾,在60℃下聚合5小时;
S3、将S2中合成的微凝胶分散体放入分子量截断量为8000-14000的透析袋中,在1000mL去离子水中纯化72h,每12h换水一次,最后收集透析袋内的微凝胶分散溶液,即为质量分数为1.0wt%纳米润滑添加剂。
实施例5
一种调控界面摩擦的纳米润滑添加剂,包括以金纳米颗粒作为内核,温敏性聚合物交联网络作为外壳形成的核壳结构纳米球,纳米球为复合微凝胶纳米球。
上述调控界面摩擦的纳米润滑添加剂的制造方法,包括如下步骤:
S1、将50mL四氯金酸溶液(0.01wt.%)加热至沸腾后缓慢滴入0.3mL柠檬酸三钠溶液(1.0wt.%),溶液先由淡黄色变为深蓝色,再变为深红色,此时金纳米颗粒被还原出来。15min后反应完全结束,得到50mL含金纳米颗粒的溶液,计算得出其质量分数为1.0wt.%;
S2、利用无皂乳液聚合方法合成复合微凝胶球(记作PTMGs)。具体做法:准确称取N-异丙基丙烯酰胺0.2g,丙烯酸0.05g,N,N'-亚甲基双丙烯酰胺20mg后,与S1中合成的金纳米颗粒溶液一起加入到100mL的三口烧瓶内,配有磁力转子、蛇形冷凝管和通气口,通入氮气30分钟以除去体系中的氧气。随后加入20mg过硫酸钾,在80℃下聚合3小时;
S3、将S2中合成的微凝胶分散体放入分子量截断量为8000-14000的透析袋中,在1000mL去离子水中纯化36h,每12h换水一次,最后收集透析袋内的微凝胶分散溶液,即为质量分数为1.0wt%纳米润滑添加剂。
实施例6
一种调控界面摩擦的纳米润滑添加剂,包括以金纳米颗粒作为内核,温敏性聚合物交联网络作为外壳形成的核壳结构纳米球,纳米球为复合微凝胶纳米球。
上述调控界面摩擦的纳米润滑添加剂的制造方法,包括如下步骤:
S1、将40mL四氯金酸溶液(0.03wt.%)加热至沸腾后缓慢滴入0.3mL柠檬酸三钠溶液(1.0wt.%),溶液先由淡黄色变为深蓝色,再变为深红色,此时金纳米颗粒被还原出来。15min后反应完全结束,得到50mL含金纳米颗粒的溶液,计算得出其质量分数为1.2wt.%;
S2、利用无皂乳液聚合方法合成复合微凝胶球(记作PTMGs)。具体做法:准确称取N-异丙基丙烯酰胺0.2g,丙烯酸0.05g,N,N'-亚甲基双丙烯酰胺20mg后,与S1中合成的金纳米颗粒溶液一起加入到100mL的三口烧瓶内,配有磁力转子、蛇形冷凝管和通气口,通入氮气30分钟以除去体系中的氧气。随后加入20mg过硫酸钾,在70℃下聚合4小时;
S3、将S2中合成的微凝胶分散体放入分子量截断量为8000-14000的透析袋中,在1000mL去离子水中纯化48h,每12h换水一次,最后收集透析袋内的微凝胶分散溶液,即为质量分数为1.0wt%纳米润滑添加剂。
实施例7
一种调控界面摩擦的纳米润滑添加剂,包括以金纳米颗粒作为内核,温敏性聚合物交联网络作为外壳形成的核壳结构纳米球,纳米球为复合微凝胶纳米球。
上述调控界面摩擦的纳米润滑添加剂的制造方法,包括如下步骤:
S1、将30mL四氯金酸溶液(0.05wt.%)加热至沸腾后缓慢滴入0.3mL柠檬酸三钠溶液(1.0wt.%),溶液先由淡黄色变为深蓝色,再变为深红色,此时金纳米颗粒被还原出来。15min后反应完全结束,得到50mL含金纳米颗粒的溶液,计算得出其质量分数为1.5wt.%;
S2、利用无皂乳液聚合方法合成复合微凝胶球(记作PTMGs)。具体做法:准确称取N-异丙基丙烯酰胺0.045g,丙烯酸0.012g,N,N'-亚甲基双丙烯酰胺5mg后,与S1中合成的金纳米颗粒溶液一起加入到100mL的三口烧瓶内,配有磁力转子、蛇形冷凝管和通气口,通入氮气30分钟以除去体系中的氧气。随后加入5mg过硫酸钾,在70℃下聚合5小时;
S3、将S2中合成的微凝胶分散体放入分子量截断量为8000-14000的透析袋中,在1000mL去离子水中纯化72h,每12h换水一次,最后收集透析袋内的微凝胶分散溶液,即为质量分数为1.0wt%纳米润滑添加剂。
为了证实实施例1中微凝胶球的成功合成,即制备出了纳米润滑添加剂,对其化学成分进行分析。结果如图1和图2所示,从微凝胶红外光谱图中可以看出,其特征峰位与N-异丙基丙烯酰胺和丙烯酸单体的官能团特征峰位一致,说明合成的微凝胶由N-异丙基丙烯酰胺和丙烯酸交联而成。如图2所示,从紫外-可见光吸收曲线可以看出金纳米颗粒在微凝胶分散液中存在,测量使用的微凝胶和纯金纳米颗粒的质量分数都为1.0wt.%,在520nm处出现了金纳米颗粒的特征吸收峰,而复合微凝胶在550nm左右处出现了吸收峰,相对于纯金纳米颗粒的吸收峰而言,复合微凝胶的吸收峰向波长更长的方向移动,即出现了红移现象,这是由于聚合物网络的存在引入了双键,分子发生共轭作用,使得溶液的极性变大。除此之外还观察到,在纯金纳米颗粒溶液与复合微凝胶分散液中具有相同质量分数的金纳米颗粒,但复合微凝胶溶液的吸收峰相较于纯金纳米颗粒溶液的吸收峰峰值较低,这不仅表明了合成的微凝胶内含有金纳米颗粒,还证明了金纳米颗粒是被包裹在聚合物网络内。
其中图3A展示了纯金纳米颗粒的TEM图像,大小均一地分散在水溶液中,每个金纳米颗粒的尺寸为50±3nm,图3B为复合微凝胶的SEM图像,可以看出微凝胶球大小均一,形状均匀,分散性较好。图3C和图3D展示了复合微凝胶的TEM图像,其中图3D是微凝胶球的放大图,可以清晰地看出微凝胶球的核壳结构,几乎每个聚合物球内都包裹着一个金纳米颗粒,且大小均一,在水中均匀地分散开,经测量后每个微凝胶球的直径为600±30nm。
试验例1
对本发明实施例1~3中微凝胶分散液在波长为808nm,照射功率为2.68W的近红外光进行照射,照射距离为10cm,光斑直径为8mm。
从图4中的结果来看,当复合微凝胶质量分数越大,微凝胶的光热转换效率越高。从光热转换结果来看,复合微凝胶对近红外具有良好的光热转换效率,换句话说,具有优异的近红外光响应性能复合微凝胶被成功地合成出来。
试验例2
对纯水以及本发明实施例1~3中微凝胶分散液在通用摩擦磨损试验机上分别在LCST以上和LCST以下的温度时摩擦系数与时间的变化规律,在本试验中采用LCST以下的温度为25℃和LCST以上的温度为45℃测得的平均摩擦系数。
摩擦副选择直径为6mm的聚二甲基硅氧烷(PDMS)半球和1*2cm的玻璃板,当载荷恒定为3N,滑动频率为1Hz,振幅为5mm。微凝胶分散液温度由近红外光控制,持续照射五分钟时温度上升至45℃,达到LCST以上微凝胶球会发生结构塌缩。每组实验进行三次以减小误差,黑色代表纯水的摩擦系数,红色代表微凝胶分散性在25℃时的摩擦系数,蓝色代表微凝胶分散性在45℃时的摩擦系数。纯水以及本发明实施例1~3中微凝胶分散液分别在25℃和45℃测得的平均摩擦系数如表1所示:
表1纯水及不同质量浓度的微凝胶分散液分别在25℃和45℃测得的平均摩擦系数
Figure BDA0003093916610000101
从表1和图5中平均摩擦系数变化规律的结果来看,无论在25℃还是45℃,复合微凝胶的平均摩擦系数都呈现出不断减小的趋势且始终低于纯水的摩擦系数。这是由于当微凝胶的质量分数增大时,相同体积内的微凝胶球数量增多,作为水溶液中的微轴承作用更加明显,其水化能力也相应增大,同时在摩擦副运动过程中吸附到界面上的微凝胶数量也增大,综合以上几个原因,当复合微凝胶的质量分数增大时,摩擦系数会相应减小。并且可以看到三种不同质量分数的微凝胶悬浮液在45℃时的平均摩擦系数均高于25℃时的平均摩擦系数。这种结果证明温度对摩擦控制是成功的,能够快速地在低摩擦状态与高摩擦状态之间切换。由于温度升高微凝胶球收缩但其仍然能够作为润滑添加剂在水中起到润滑效果,因此即使温度升高微凝胶的摩擦系数还能低于水的摩擦系数。
实施例4~7制备的调控界面摩擦的纳米润滑添加剂,红外光谱图结果如图1。图6中,(1)、(2)、(3)、(4)分别为实施例4~7制备质量分数相同的复合微凝胶的SEM图像,可以看出微凝胶球大小均一,形状均匀,分散性较好。
对本发明实施例4~7微凝胶分散液在通用摩擦磨损试验机上分别在LCST以上和LCST以下的温度时摩擦系数与时间的变化规律,其方法同试验例2,如表2所示:
表2实施例4~7微凝胶分散液分别在25℃和45℃测得的平均摩擦系数
Figure BDA0003093916610000111
从表2中平均摩擦系数变化规律的结果来看,实施例4~7制造的复合微凝胶,复合微凝胶的质量分数相同时,无论在25℃还是45℃,平均摩擦系数都变化相差不大,且始终低于纯水的摩擦系数。并且可以看到复合微凝胶的质量分数相同的微凝胶悬浮液在45℃时的平均摩擦系数均高于25℃时的平均摩擦系数。这种结果证明温度对摩擦控制是成功的,能够快速地在低摩擦状态与高摩擦状态之间切换。由于温度升高微凝胶球收缩但其仍然能够作为润滑添加剂在水中起到润滑效果,因此即使温度升高微凝胶的摩擦系数还能低于水的摩擦系数。
需要说明的是,本发明中涉及数值范围时,应理解为每个数值范围的两个端点以及两个端点之间任何一个数值均可选用,由于采用的步骤方法与实施例相同,为了防止赘述,本发明描述了优选的实施例。尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种调控界面摩擦的纳米润滑添加剂,其特征在于,包括以金纳米颗粒作为内核,温敏性聚合物交联网络作为外壳形成的核壳结构纳米球,所述纳米球为复合微凝胶纳米球。
2.一种权利要求1所述调控界面摩擦的纳米润滑添加剂的制造方法,其特征在于,包括如下步骤:
S1、利用柠檬酸三钠将四氯金酸溶液中的金离子还原成金纳米颗粒,制备得到金纳米颗粒溶液;
S2、采用无皂乳液聚合方法:将S1中得到的金纳米颗粒溶液与温敏性聚合物的单体、亲水性单体、交联剂以及引发剂混合,在60~80℃的温度加热3~5h,合成得到核壳结构的复合微凝胶球分散液;
S3、将S2合成得到的复合微凝胶球分散液放入分子量截断量为8000-14000的透析袋中,在离子水中透析36~72h,收集透析袋内的溶液,即为纳米润滑添加剂。
3.根据权利要求2所述调控界面摩擦的纳米润滑添加剂的制造方法,其特征在于,S1中所述四氯金酸溶液的浓度为0.01~0.05wt.%,柠檬酸三钠:四氯金酸的质量比为4~7:2~3。
4.根据权利要求3所述调控界面摩擦的纳米润滑添加剂的制造方法,其特征在于,S2中,金纳米颗粒:温敏性聚合物的单体:另一种亲水性单体:交联剂:引发剂的质量比为0.5~1.5:38~45:5~12:3~5:3~5。
5.根据权利要求4所述调控界面摩擦的纳米润滑添加剂的制造方法,其特征在于,S2中,所述温敏性聚合物的单体包括聚N-异丙基丙烯酰胺或聚[甲基丙烯酸-2-(N,N-二甲氨基)酯、聚乙烯吡咯烷酮。
6.根据权利要求5所述调控界面摩擦的纳米润滑添加剂的制造方法,其特征在于,S2中,所述亲水性单体包括丙烯酸、甲基丙烯酸或2-丙烯酰胺-2-甲基-1-丙磺酸。
7.根据权利要求6所述调控界面摩擦的纳米润滑添加剂的制造方法,其特征在于,S2中,所述交联剂包括过氧化二异丙苯或N,N'-亚甲基双丙烯酰胺。
8.根据权利要求7所述调控界面摩擦的纳米润滑添加剂的制造方法,其特征在于,S2中,所述引发剂包括过氧化氢、过硫酸钾或过硫酸铵。
9.一种权利要求1所述的纳米润滑添加剂的用途,其特征在于,所述复合微凝胶球能够分散在水中,作为水合润滑添加剂。
10.一种权利要求1所述的纳米润滑添加剂的用途,其特征在于,所述纳米润滑添加剂能够响应近红外光刺激,用于制备实现低摩擦与高摩擦之间的快速切换的摩擦力切换剂。
CN202110605355.3A 2021-05-31 2021-05-31 一种调控界面摩擦的纳米润滑添加剂、制造方法和用途 Active CN113337327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110605355.3A CN113337327B (zh) 2021-05-31 2021-05-31 一种调控界面摩擦的纳米润滑添加剂、制造方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110605355.3A CN113337327B (zh) 2021-05-31 2021-05-31 一种调控界面摩擦的纳米润滑添加剂、制造方法和用途

Publications (2)

Publication Number Publication Date
CN113337327A true CN113337327A (zh) 2021-09-03
CN113337327B CN113337327B (zh) 2023-01-24

Family

ID=77473633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110605355.3A Active CN113337327B (zh) 2021-05-31 2021-05-31 一种调控界面摩擦的纳米润滑添加剂、制造方法和用途

Country Status (1)

Country Link
CN (1) CN113337327B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667066A (zh) * 2021-09-17 2021-11-19 西北工业大学 一种刷状微凝胶类水润滑添加剂及其制备方法和应用
CN113801569A (zh) * 2021-09-17 2021-12-17 西北工业大学 一种调控润滑涂层及制备方法、应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051669A1 (en) * 1998-10-07 2001-12-13 Mcghee Diane Lubricious coating
US20060275690A1 (en) * 2005-03-24 2006-12-07 Achim Fessenbecker Use of crosslinked microgels for modifying the temperature-dependent behavior of non-crosslinkable organic media
WO2007068102A2 (en) * 2005-12-12 2007-06-21 Queen's University At Kingston Oil dispersible polymer nanoparticles
CN101664557A (zh) * 2009-09-23 2010-03-10 厦门大学 一种兼具光敏性和温敏性的纳米水凝胶药物载体材料
WO2010083041A1 (en) * 2009-01-15 2010-07-22 Cornell University Nanoparticle organic hybrid materials (nohms)
CN102258983A (zh) * 2011-05-25 2011-11-30 湖北大学 吸附性凝胶球及其制备方法
CN102675532A (zh) * 2012-05-15 2012-09-19 南京工业大学 一种纳米金复合水凝胶智能材料的原位合成法
WO2012125854A1 (en) * 2011-03-15 2012-09-20 Peerless Worldwide, Llc Facile synthesis of graphene, graphene derivatives and abrasive nanoparticles and their various uses, including as tribologically-beneficial lubricant additives
CN102827669A (zh) * 2011-06-17 2012-12-19 世纪战斧节能环保技术(北京)有限公司 金属磨损自修复添加剂的制备方法、添加剂及润滑油
CN104194863A (zh) * 2014-08-29 2014-12-10 渤海大学 纳米铜@二氧化钛核壳结构润滑油添加剂的制备方法
CN105131207A (zh) * 2015-07-16 2015-12-09 复旦大学 一种具有双重响应性的核晕/核壳晕结构的荧光微凝胶及其制备方法
JP2016155889A (ja) * 2015-02-23 2016-09-01 株式会社ダイセル ナノダイヤモンドとポリビニルピロリドンの複合体
CN111944586A (zh) * 2020-08-26 2020-11-17 合肥工业大学 一种金属加工水润滑纳米添加剂及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051669A1 (en) * 1998-10-07 2001-12-13 Mcghee Diane Lubricious coating
US20060275690A1 (en) * 2005-03-24 2006-12-07 Achim Fessenbecker Use of crosslinked microgels for modifying the temperature-dependent behavior of non-crosslinkable organic media
WO2007068102A2 (en) * 2005-12-12 2007-06-21 Queen's University At Kingston Oil dispersible polymer nanoparticles
WO2010083041A1 (en) * 2009-01-15 2010-07-22 Cornell University Nanoparticle organic hybrid materials (nohms)
CN101664557A (zh) * 2009-09-23 2010-03-10 厦门大学 一种兼具光敏性和温敏性的纳米水凝胶药物载体材料
WO2012125854A1 (en) * 2011-03-15 2012-09-20 Peerless Worldwide, Llc Facile synthesis of graphene, graphene derivatives and abrasive nanoparticles and their various uses, including as tribologically-beneficial lubricant additives
CN102258983A (zh) * 2011-05-25 2011-11-30 湖北大学 吸附性凝胶球及其制备方法
CN102827669A (zh) * 2011-06-17 2012-12-19 世纪战斧节能环保技术(北京)有限公司 金属磨损自修复添加剂的制备方法、添加剂及润滑油
CN102675532A (zh) * 2012-05-15 2012-09-19 南京工业大学 一种纳米金复合水凝胶智能材料的原位合成法
CN104194863A (zh) * 2014-08-29 2014-12-10 渤海大学 纳米铜@二氧化钛核壳结构润滑油添加剂的制备方法
JP2016155889A (ja) * 2015-02-23 2016-09-01 株式会社ダイセル ナノダイヤモンドとポリビニルピロリドンの複合体
CN105131207A (zh) * 2015-07-16 2015-12-09 复旦大学 一种具有双重响应性的核晕/核壳晕结构的荧光微凝胶及其制备方法
CN111944586A (zh) * 2020-08-26 2020-11-17 合肥工业大学 一种金属加工水润滑纳米添加剂及其制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ATSUSHI SUZUKI等: "Surface friction of thermoresponsive poly(N-isopropylacrylamide) gels in water", 《COLLOID AND POLYMER SCIENCE》 *
J. RUBEN MORONES等: "Room temperature synthesis of an optically and thermally responsive hybrid PNIPAM–gold nanoparticle", 《JOURNAL OF NANOPARTICLE RESEARCH》 *
SANTANU BHATTACHARYA等: "Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications", 《CHEMICAL REVIEWS》 *
刘雯: "纳米金/聚N-异丙基丙烯酰胺复合纳米水凝胶的制备方法", 《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》 *
吕美丽等: "温敏性P(St-NIPAM)/PNIPAM-Ag复合微凝胶制备及性能研究", 《化学学报》 *
姜芮等: "含纳米金聚乙烯基吡咯烷酮/聚(N-异丙基丙烯酰胺)智能杂化微凝胶的合成", 《当代化工》 *
柴春鹏等: "《高分子合成材料学》", 31 January 2019, 北京理工大学出版社 *
蒋彩云等: "纳米金-PNIPAM类智能凝胶", 《化学进展》 *
陈汝盼等: "纳米金属复合水凝胶的研究进展", 《黎明职业大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667066A (zh) * 2021-09-17 2021-11-19 西北工业大学 一种刷状微凝胶类水润滑添加剂及其制备方法和应用
CN113801569A (zh) * 2021-09-17 2021-12-17 西北工业大学 一种调控润滑涂层及制备方法、应用
CN113801569B (zh) * 2021-09-17 2022-05-31 西北工业大学 一种调控润滑涂层及制备方法、应用

Also Published As

Publication number Publication date
CN113337327B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
CN113337327B (zh) 一种调控界面摩擦的纳米润滑添加剂、制造方法和用途
Ma et al. Hydrophilic dual‐responsive magnetite/PMAA core/shell microspheres with high magnetic susceptibility and ph sensitivity via distillation‐precipitation polymerization
Jaiswal et al. Thermal behavior of magnetically modalized poly (N-isopropylacrylamide)-chitosan based nanohydrogel
Dallas et al. Interfacial polymerization of pyrrole and in situ synthesis of polypyrrole/silver nanocomposites
Yang et al. Synthesis of novel sunflower-like silica/polypyrrole nanocomposites via self-assembly polymerization
Xu et al. From hybrid microgels to photonic crystals
CN111944586B (zh) 一种金属加工水润滑纳米添加剂及其制备方法
CN111440651B (zh) 黑磷烯/氧化石墨烯复合水基润滑添加剂的制备方法
Cai et al. Preparation and characterization of multiresponsive polymer composite microspheres with core–shell structure
CN113999476A (zh) 一种双重刺激响应性导电复合水凝胶及其制备方法和应用
Piao et al. Sulfonated polystyrene nanoparticles coated with conducting polyaniline and their electro-responsive suspension characteristics under electric fields
Han et al. Poly (diphenylamine)/polyaniline core/shell composite nanospheres synthesized using a reactive surfactant and their electrorheology
Gao et al. Hollow submicron-sized spherical conducting polyaniline particles and their suspension rheology under applied electric fields
Salarizadeh et al. Modification of silica nanoparticles with hydrophilic sulfonated polymers by using surface-initiated redox polymerization
Wu et al. Poly (N-isopropylacrylamide) modified Fe3O4@ Au nanoparticles with magnetic and temperature responsive properties
Wu et al. Achieving near-infrared-light-mediated switchable friction regulation on MXene-based double network hydrogels
CN113087925B (zh) 一种刺激响应型水凝胶及快速、高效制备该刺激响应型水凝胶的方法
Liu et al. Facile design of renewable lignin copolymers by photoinitiated RAFT polymerization as Pickering emulsion stabilizers
Li et al. Polysilsesquioxane precursors stabilizing chlorotrifluoroethylene copolymerization for waterborne hybrid fluorocarbon coatings with excellent synergistic performances
Zhang et al. Preparation of thermosensitive PNIPAM microcontainers and a versatile method to fabricate PNIPAM shell on particles with silica surface
Zhou et al. Thermo-sensitive ionic microgels via post quaternization cross-linking: fabrication, property, and potential application
Ahmad et al. Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field
Sun et al. Tribological behavior of thermal-and pH-sensitive microgels under steel/CoCrMo alloy contacts
Kawamura et al. Design of molecule-responsive organic–inorganic hybrid nanoparticles bearing cyclodextrin as ligands
CN115305076A (zh) 一种复合降凝剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant