CN113292733A - 一种导电金属有机框架纳米棒阵列复合材料及制备和应用 - Google Patents

一种导电金属有机框架纳米棒阵列复合材料及制备和应用 Download PDF

Info

Publication number
CN113292733A
CN113292733A CN202110559672.6A CN202110559672A CN113292733A CN 113292733 A CN113292733 A CN 113292733A CN 202110559672 A CN202110559672 A CN 202110559672A CN 113292733 A CN113292733 A CN 113292733A
Authority
CN
China
Prior art keywords
nanorod array
organic framework
metal organic
composite material
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110559672.6A
Other languages
English (en)
Other versions
CN113292733B (zh
Inventor
刘宏芳
江立培
王正运
李广芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202110559672.6A priority Critical patent/CN113292733B/zh
Publication of CN113292733A publication Critical patent/CN113292733A/zh
Application granted granted Critical
Publication of CN113292733B publication Critical patent/CN113292733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米材料技术领域,具体涉及一种导电金属有机框架纳米棒阵列复合材料及制备和应用。本发明制备方法包括以下步骤:(s1)将氢氧化物纳米棒阵列与导电有机配体通过水热反应自组装获得核壳结构纳米棒阵列;(s2)将核壳结构纳米棒阵列进行原位电化学还原,即可得到所述导电金属有机框架纳米棒阵列复合材料。本发明通过刻蚀、外延生长以及原位电还原方法合成导电金属有机框架纳米棒阵列复合材料,完成了导电金属有机框架的定向生长,金属氧化物的生成以及与金属有机框架的有效复合,由原位电化学还原法完成了导电金属有机框架与金属氧化物的复合,作为检测传感平台,具有广阔的应用前景。

Description

一种导电金属有机框架纳米棒阵列复合材料及制备和应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种导电金属有机框架纳米棒阵列复合材料及制备和应用。
背景技术
金属有机骨架(MOFs)是一种由金属离子和有机配体组成的晶体材料,具有大的表面积、可定制的成分和多孔结构,因而具有高的表面化学活性、大的化学吸附能力和高的表面-体积比,在分子识别、能源、气体分离等方面显示出巨大的潜力。尤其作为催化剂,金属有机框架材料具备一定的选择性和较好的催化活性。然而,绝大多数金属有机框架材料导电性较差,这严重限制了其在电化学传感上的应用。因此,一种十分可取的策略是开发导电金属有机框框架复合金属氧化物材料,提升材料导电性,将其作为高效的过氧化氢检测传感元。
近年来,类石墨烯的二维导电金属有机框架引起了科研人员的关注。这类二维金属有机框架材料是由三苯基配体分子和金属离子(如Cu2+、Ni2+、Co2+、Pt2+)配位形成的,具有类似石墨烯的六边形拓扑结构层,其导电性优异。尤其是该类晶体材料具备高孔隙率和均匀分布的金属活性位点,可以直接用作电催化剂,但难点是目前常规方法无法可控合成导电金属有机框架/金属氧化物的复合材料。
CN112300402A公开了一种二维导电金属有机框架电磁波吸收剂的制备方法,具体公开了以氧化亚铜和4-羟基苯硫酚为原料通过溶剂热回流法制备二维导电金属有机杂化层状配合物Cu(SPhOH),将制备的Cu(SPhOH)粉末与切片石蜡在超声加热分散,通过模压得到结构件。该技术方案提供了一种导电金属有机框架/金属氧化物,制备得到的产品能够作为电磁波吸收剂,但不具有催化能力。
CN112376080A公开了一种基于三环喹唑啉的二维导电金属有机框架材料及制备方法,具体公开了将2,3,7,8,12,13-六羟基三环喹唑啉与二价金属离子M2+溶于溶剂中,反应得到一种基于三环喹唑啉的二维导电金属有机框架材料M3(HHTQ)2(M=Cu,Ni,Co,Mn,Fe),具有式II所示结构。该技术方案合成步骤简单,所需条件温和,获得的是具有蜂窝状孔道的二维片层结构,具有高电导率,高结晶性,高稳定性等优势,但是导电金属有机框架材料和金属离子的结合力不够强,导电金属有机框架材料上的催化位点也不够多,催化能力还存在改进空间。
综上所述,现有技术仍缺乏一种催化效率高催化能力强的金属有机框架复合材料。
发明内容
针对现有技术的以上缺陷,本发明提供了一种导电金属有机框架纳米棒阵列复合材料的制备方法,通过刻蚀、外延生长以及原位电还原方法合成导电金属有机框架纳米棒阵列复合材料,由原位电化学还原法完成了导电金属有机框架与金属氧化物的复合,由此解决了金属有机框架材料导电性差,难以与金属氧化物复合,电催化性能不理想等问题。本发明的详细技术方案如下所述。
为实现上述目的,按照本发明的一个方面,提供了一种导电金属有机框架纳米棒阵列复合材料的制备方法,其特征在于,包括以下步骤:
(s1)将氢氧化物纳米棒阵列与导电有机配体通过水热反应自组装获得核壳结构纳米棒阵列;
(s2)将核壳结构纳米棒阵列进行原位电化学还原,即可得到所述导电金属有机框架纳米棒阵列复合材料。
作为优选,步骤(s1)中所述导电有机配体包括2,3,6,7,10,11-六羟基三苯、六氨基三亚苯和六亚氨基苯中的任意一种。
作为优选,所述导电有机配体的浓度为0.006mol/L-0.01mol/L,所述导电有机配体的溶剂为甲醇或乙醇。
作为优选,所述水热反应的时间为12h-24h,温度为60℃-90℃。
作为优选,步骤(s2)中所述电化学还原的电还原电压为(-0.8)V-(-0.3)V,电还原时间为1h-3h,优选的,步骤(s2)中电解质为PBS溶液或KHCO3溶液。
作为优选,所述氢氧化物纳米棒阵列是将泡沫金属进行刻蚀制备而成,优选的,所述泡沫金属为金属铜。
作为优选,所述氢氧化物纳米棒阵列是将泡沫金属进行刻蚀,然后与第二金属盐进行离子交换;优选的,所述泡沫金属为金属铜,所述第二金属为镍、钴、锰和铁中的任意一种。
作为优选,将泡沫金属刻蚀前进行了预处理,所述预处理为使用醇和酸的混合溶液超声清洗,优选的,所述醇为乙醇、丙醇和异丙醇中的至少一种;所述酸为盐酸、硫酸和硝酸中的至少一种;所述超声清洗的时间为10-30min。
按照本发明的另一方面,提供了一种导电金属有机框架纳米棒阵列复合材料,根据前面所述的制备方法制备而成。
按照本发明的另一方面,提供了一种所述的导电金属有机框架纳米棒阵列复合材料在催化剂领域或传感器领域中的应用。
本发明的有益效果有:
(1)本发明通过刻蚀、外延生长以及原位电还原方法合成导电金属有机框架纳米棒阵列复合材料,创造性地完成了导电金属有机框架的定向生长,金属氧化物的生成以及与金属有机框架的有效复合,由原位电化学还原法完成了导电金属有机框架与金属氧化物的复合,由此解决了金属有机框架材料导电性差,难以与金属氧化物复合,电催化性能不理想等问题。
(2)本发明制备获得的纳米棒阵列复合材料,能拥有预先设计的三维分层定向结构,具有较大的比表面积,不仅能够暴露大量的活性位点,而且可以有效地阻止纳米粒子的聚集,其独特的组装结构为优化电极性能提供了新的视角。
(3)本发明制备获得的纳米棒阵列复合材料催化活性位点分散,能提高活性位点的利用率,具有优异的电催化H2O2传感性能,灵敏度极高(8150.6μA mM-1),线性范围宽(0.1μM-5mM),检出限低(0.05μM),选择性良好,可以作为检测传感平台,具有广阔的应用前景。
附图说明
图1是实施例1制备的产物扫描电镜(SEM)图,其中,图1中的A和图1中的B分别为放大5千倍和1万倍的表面沉积Cu(OH)2纳米棒阵列的泡沫铜的平面扫描电镜(SEM)图,图1中的C和图1中的D分别为放大1万倍和5万倍的Cu2O/CuHHTP核壳结构纳米棒阵列,图1中的E和图1中的F分别为放大1万倍和5万倍的Cu2O颗粒镶嵌的Cu2O/CuHHTP/Cu2O NP纳米棒阵列。
图2是实施例1中的Cu2O/CuHHTP/Cu2O NP纳米棒阵列复合材料的X射线衍射谱图(XRD),纵坐标为峰强度,横坐标为两倍衍射角。
图3是实施例1制备的Cu2O/CuHHTP/Cu2O NP纳米棒阵列复合材料作为电极在PBS(pH=7.4)缓冲溶液中对不同浓度的过氧化氢的计时电流响应曲线图。
图4是由实施例1制备的Cu2O/CuHHTP/Cu2O NP纳米棒阵列复合材料作为电极在PBS(pH=7.4)缓冲溶液中对不同浓度的过氧化氢的计时电流响应曲线图所得到的线性范围拟合图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
制备铜基有机框架纳米复合材料Cu2O/CuHHTP/Cu2O NP,包括以下步骤:
(1)使用乙醇、3mol/L的盐酸和去离子水超声清洗泡沫铜,超声时间为10min;
(2)将步骤(1)中得到的泡沫铜作为支撑衬底置于2.5mol/L NaOH和0.2mol/L(NH4)2S2O8的混合溶液中化学氧化30min得到泡沫铜支撑的Cu(OH)2纳米棒阵列,如图1中的A和图1中的B所示;
(3)再将步骤(2)中得到的的泡沫铜/氢氧化铜浸泡于HHTP的甲醇溶液(HHTP浓度为0.006mol/L)中水热12h,生成Cu2O/CuHHTP核壳结构纳米棒阵列,如图1中的C和图1中的D所示;
(4)将步骤(3)中生成的泡沫铜/Cu2O/CuHHTP核壳结构纳米棒阵列与0.1M PBS(ph=7.4)溶液中于-0.6V下电还原2h得到Cu2O颗粒镶嵌的Cu2O/CuHHTP/Cu2O NP纳米棒阵列,如图1中的E和图1中的F所示。
将步骤(2)、步骤(3)和步骤(4)制备的产物进行扫描电镜测试,得到图1所示的结果,其中,图1中的A和图1中的B分别为放大5千倍和1万倍的表面沉积Cu(OH)2纳米棒阵列的泡沫铜的平面扫描电镜(SEM)图,图1中的C和图1中的D分别为放大1万倍和5万倍的Cu2O/CuHHTP核壳结构纳米棒阵列,图1中的E和图1中的F分别为放大1万倍和5万倍的Cu2O颗粒镶嵌的Cu2O/CuHHTP/Cu2O NP纳米棒阵列。
由图1可知,泡沫铜表面经过化学刻蚀后生长出均匀、致密的氢氧化铜纳米棒阵列,并且氢氧化铜纳米棒表面光滑平整。在与配体反应生成后,其表面生成了粗糙多孔的MOF层,经过电化学还原以后,MOF表面的粗造度明显减小,并且生成了均匀分布的Cu2O纳米颗粒。
图2为本实施例制备得到的Cu2O/CuHHTP/Cu2O NP纳米棒阵列复合材料的XRD谱图,可以看出,各样品分别有明显的的特征峰。
实施例2
本实施例与实施例1不同之处在于,步骤(3所用的导电金属有机框架配体不同,具体如下所述。
(1)使用乙醇、3mol/L的盐酸和去离子水超声清洗泡沫铜,超声时间为10min;
(2)将步骤(1)中得到的泡沫铜作为支撑衬底置于2.5mol/L NaOH和0.2mol/L(NH4)2S2O8的混合溶液中化学氧化30min得到泡沫铜支撑的Cu(OH)2纳米棒阵列;
(3)再将步骤(2)中得到的的泡沫铜/氢氧化铜浸泡于HITP的甲醇溶液(HITP浓度为0.006mol/L)中水热12h,生成Cu2O/CuHITP核壳结构纳米棒阵列;
(4)将步骤(3)中生成的泡沫铜/Cu2O/CuHITP核壳结构纳米棒阵列与0.1M PBS(ph=7.4)溶液中于-0.6V下电还原2h得到Cu2O颗粒镶嵌的Cu2O/CuHITP/Cu2O NP纳米棒阵列。
实施例3
本实施例与实施例1不同之处在于,电化学还原的电还原电压和电还原时间不同,具体如下所述。
(1)使用乙醇、3mol/L的盐酸和去离子水超声清洗泡沫铜,超声时间为10min;
(2)将步骤(1)中得到的泡沫铜作为支撑衬底置于2.5mol/L NaOH和0.2mol/L(NH4)2S2O8的混合溶液中化学氧化30min得到泡沫铜支撑的Cu(OH)2纳米棒阵列;
(3)再将步骤(2)中得到的的泡沫铜/氢氧化铜浸泡于HHTP的甲醇溶液(HHTP浓度为0.006mol/L)中水热3h,生成Cu2O/CuHHTP核壳结构纳米棒阵列;
(4)将步骤(3)中生成的泡沫铜/Cu2O/CuHHTP核壳结构纳米棒阵列与0.1M PBS(ph=7.4)溶液中于-0.8V下电还原1h得到Cu2O颗粒镶嵌的Cu2O/CuHHTP/Cu2O NP纳米棒阵列。
实施例4
本实施例与实施例1不同之处在于,步骤(4)电化学还原电解质不同,具体如下所述。
(1)使用乙醇、3mol/L的盐酸和去离子水超声清洗泡沫铜,超声时间为10min;
(2)将步骤(1)中得到的泡沫铜作为支撑衬底置于2.5mol/L NaOH和0.2mol/L(NH4)2S2O8的混合溶液中化学氧化2min得到泡沫铜支撑的Cu(OH)2纳米棒阵列;
(3)再将步骤(2)中得到的的泡沫铜/氢氧化铜浸泡于HHTP的甲醇溶液(HHTP浓度为0.006mol/L)中水热3h,生成Cu2O/CuHHTP核壳结构纳米棒阵列;
(4)将步骤(3)中生成的泡沫铜/Cu2O/CuHHTP核壳结构纳米棒阵列与0.1M KHCO3(ph=8)溶液中于-0.4V下电还原3h得到Cu2O颗粒镶嵌的Cu2O/CuHHTP/Cu2O NP纳米棒阵列。
实施例5
本实施例与实施例1不同之处在于,步骤(2)刻蚀反应时间不同,具体如下所述。
(1)使用乙醇、3mol/L的盐酸和去离子水超声清洗泡沫铜,超声时间为10min;
(2)将步骤(1)中得到的泡沫铜作为支撑衬底置于2.5mol/L NaOH和0.2mol/L(NH4)2S2O8的混合溶液中化学氧化2min得到泡沫铜支撑的Cu(OH)2纳米棒阵列;
(3)再将步骤(2)中得到的的泡沫铜/氢氧化铜浸泡于HHTP的甲醇溶液(HHTP浓度为0.006mol/L)中水热3h,生成Cu2O/CuHHTP核壳结构纳米棒阵列;
(4)将步骤(3)中生成的泡沫铜/Cu2O/CuHHTP核壳结构纳米棒阵列与0.1M PBS(ph=7.4)溶液中于-0.4V下电还原3h得到Cu2O颗粒镶嵌的Cu2O/CuHHTP/Cu2O NP纳米棒阵列。
实施例6
本实施例与实施例1不同之处在于,通过离子交换的方法使氢氧化铜纳米棒阵列转化为氢氧化钴纳米棒阵列,氢氧化钴纳米棒阵列再与配体反应生成CoO/CoHHTP纳米棒阵列,最后电还原生成CoO/CoHHTP/Co NP纳米棒阵列。
(1)使用乙醇、3mol/L的盐酸和去离子水超声清洗泡沫铜,超声时间为10min;
(2)将步骤(1)中得到的泡沫铜作为支撑衬底置于2.5mol/L NaOH和0.2mol/L(NH4)2S2O8的混合溶液中化学氧化30min得到泡沫铜支撑的Cu(OH)2纳米棒阵列;
(3)将1.36mg CoCl2·6H2O加入70毫升乙醇/水(3:4,v/v)混合溶剂形成悬浮液,然后加入40ml的Na2S2O3·5H2O(1.5M)溶液,连续搅拌20min后,将生长了氢氧化铜纳米棒阵列的泡沫铜浸入上述悬浮液中,室温浸泡1h。然后取出泡沫铜,用去离子水和乙醇反复洗涤,在80℃的真空中烘干,得到泡沫铜支撑的Co(OH)2纳米棒阵列;
(4)再将步骤(3)中得到的的泡沫铜/氢氧化钴浸泡于HHTP的甲醇溶液(HHTP浓度为0.006mol/L)中水热12h,生成CoO/CoHHTP核壳结构纳米棒阵列;
(5)将步骤(3)中生成的泡沫铜/CoO/CoHHTP核壳结构纳米棒阵列与0.1M PBS(ph=7.4)溶液中于-0.6V下电还原2h得到CoO颗粒镶嵌的CoO/CoHHTP/CoO NP纳米棒阵列。
实施例7
本实施例与实施例1不同之处在于,通过离子交换的方法使氢氧化铜纳米棒阵列转化为氢氧化镍纳米棒阵列,氢氧化镍纳米棒阵列再与配体反应生成NiO/NiHHTP纳米棒阵列,最后电还原生成NiO/NiHHTP/NiO NP纳米棒阵列。
(1)使用乙醇、3mol/L的盐酸和去离子水超声清洗泡沫铜,超声时间为10min;
(2)将步骤(1)中得到的泡沫铜作为支撑衬底置于2.5mol/L NaOH和0.2mol/L(NH4)2S2O8的混合溶液中化学氧化30min得到泡沫铜支撑的Cu(OH)2纳米棒阵列;
(3)将1.36mg NiCl2·6H2O加入70毫升乙醇/水(3:4,v/v)混合溶剂形成悬浮液,然后加入40ml的Na2S2O3·5H2O(1.5M)溶液,连续搅拌20min后,将生长了氢氧化铜纳米棒阵列的泡沫铜浸入上述悬浮液中,室温浸泡1h。然后取出泡沫铜,用去离子水和乙醇反复洗涤,在80℃的真空中烘干,得到泡沫铜支撑的Ni(OH)2纳米棒阵列。
(4)再将步骤(3)中得到的的泡沫铜/氢氧化镍浸泡于HHTP的甲醇溶液(HHTP浓度为0.006mol/L)中水热12h,生成NiO/NiHHTP核壳结构纳米棒阵列;
(5)将步骤(3)中生成的泡沫铜/NiO/NiHHTP核壳结构纳米棒阵列与0.1M PBS(ph=7.4)溶液中于-0.6V下电还原2h得到NiO颗粒镶嵌的NiO/NiHHTP/NiO NP纳米棒阵列。
应用实施例
实施例1制备的将泡沫铜支撑Cu2O/CuHHTP/Cu2O NP纳米棒阵列复合材料电极应用于过氧化氢电化学传感器,检测灵敏度和检测限。
构建三电极体系,工作电极为泡沫铜支撑Cu2O/CuHHTP/Cu2O NP纳米棒阵列复合材料电极,辅助电极为铂电极,参比银/氯化银电极,测试溶液为PBS缓冲溶液,测量其计时电流曲线。如图3所示,随着过氧化氢浓度的增加,电流逐渐增加,呈现阶梯上升;如图4所示,线性范围良好。
由图3和图4可以看出,以上结果表明看出泡沫铜支撑分Cu2O/CuHHTP/Cu2O NP纳米棒阵列复合材料电极应用于过氧化氢电化学传感器,电化学传感性能良好,电化学传感性能良好,线性范围为0.1μM-6.661mM,检测限为0.05μM。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种导电金属有机框架纳米棒阵列复合材料的制备方法,其特征在于,包括以下步骤:
(s1)将氢氧化物纳米棒阵列与导电有机配体通过水热反应自组装获得核壳结构纳米棒阵列;
(s2)将核壳结构纳米棒阵列进行原位电化学还原,即可得到所述导电金属有机框架纳米棒阵列复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(s1)中所述导电有机配体包括2,3,6,7,10,11-六羟基三苯、六氨基三亚苯和六亚氨基苯中的任意一种。
3.根据权利要求2所述的制备方法,其特征在于,所述导电有机配体的浓度为0.006mol/L-0.01mol/L,所述导电有机配体的溶剂为甲醇或乙醇。
4.根据权利要求2或3所述的制备方法,其特征在于,所述水热反应的时间为12h-24h,温度为60℃-90℃。
5.根据权利要求1或2或3所述的制备方法,其特征在于,步骤(s2)中所述电化学还原的电还原电压为(-0.8)V-(-0.3)V,电还原时间为1h-3h,优选的,步骤(s2)中电解质为PBS溶液或KHCO3溶液。
6.根据权利要求1所述的制备方法,其特征在于,所述氢氧化物纳米棒阵列是将泡沫金属进行刻蚀制备而成,优选的,所述泡沫金属为金属铜。
7.根据权利要求1所述的制备方法,其特征在于,所述氢氧化物纳米棒阵列是将泡沫金属进行刻蚀,然后与第二金属盐进行离子交换;优选的,所述泡沫金属为金属铜,所述第二金属为镍、钴、锰和铁中的任意一种。
8.根据权利要求6或7所述的制备方法,其特征在于,将泡沫金属刻蚀前进行了预处理,所述预处理为使用醇和酸的混合溶液超声清洗,优选的,所述醇为乙醇、丙醇和异丙醇中的至少一种;所述酸为盐酸、硫酸和硝酸中的至少一种;所述超声清洗的时间为10-30min。
9.一种导电金属有机框架纳米棒阵列复合材料,其特征在于,根据权利要求1-8任一项所述的制备方法制备而成。
10.根据权利要求9所述的导电金属有机框架纳米棒阵列复合材料在催化剂领域或传感器领域中的应用。
CN202110559672.6A 2021-05-21 2021-05-21 一种导电金属有机框架纳米棒阵列复合材料及制备和应用 Active CN113292733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110559672.6A CN113292733B (zh) 2021-05-21 2021-05-21 一种导电金属有机框架纳米棒阵列复合材料及制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110559672.6A CN113292733B (zh) 2021-05-21 2021-05-21 一种导电金属有机框架纳米棒阵列复合材料及制备和应用

Publications (2)

Publication Number Publication Date
CN113292733A true CN113292733A (zh) 2021-08-24
CN113292733B CN113292733B (zh) 2022-03-29

Family

ID=77323884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110559672.6A Active CN113292733B (zh) 2021-05-21 2021-05-21 一种导电金属有机框架纳米棒阵列复合材料及制备和应用

Country Status (1)

Country Link
CN (1) CN113292733B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698619A (zh) * 2021-09-07 2021-11-26 中新国际联合研究院 应用于锌离子电池的导电金属有机框架材料的合成方法
CN114280110A (zh) * 2021-12-24 2022-04-05 中国科学院上海微系统与信息技术研究所 一种mof-聚苯乙烯微球复合材料及其制备方法和用途
CN114920947A (zh) * 2022-05-18 2022-08-19 南方科技大学 一种海水淡化用mof材料及其制备方法、基于mof材料海水淡化装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160231233A1 (en) * 2015-02-09 2016-08-11 Oregon State University Sensor devices comprising a metal-organic framework material and methods of making and using the same
US20180011010A1 (en) * 2015-02-09 2018-01-11 Oregon State University Sensor devices comprising a metal-organic framework material and methods of making and using the same
CN110183674A (zh) * 2019-04-30 2019-08-30 华中科技大学 树状自相似性金属有机框架复合材料及其制备与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160231233A1 (en) * 2015-02-09 2016-08-11 Oregon State University Sensor devices comprising a metal-organic framework material and methods of making and using the same
US20180011010A1 (en) * 2015-02-09 2018-01-11 Oregon State University Sensor devices comprising a metal-organic framework material and methods of making and using the same
CN110183674A (zh) * 2019-04-30 2019-08-30 华中科技大学 树状自相似性金属有机框架复合材料及其制备与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAN FANG等: "《MetalOrganic Framework-Based Sensors for Environmental Contaminant Sensing》", 《NANO-MICRO LETTERS》 *
YUAN WEI等: "《CuO nanoflowers/copper fiber felt integrated porous electrode for lithium-ion batteries》", 《SCIENCE CHINA(TECHNOLOGICAL SCIENCES)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698619A (zh) * 2021-09-07 2021-11-26 中新国际联合研究院 应用于锌离子电池的导电金属有机框架材料的合成方法
CN114280110A (zh) * 2021-12-24 2022-04-05 中国科学院上海微系统与信息技术研究所 一种mof-聚苯乙烯微球复合材料及其制备方法和用途
CN114280110B (zh) * 2021-12-24 2024-01-12 中国科学院上海微系统与信息技术研究所 一种mof-聚苯乙烯微球复合材料及其制备方法和用途
CN114920947A (zh) * 2022-05-18 2022-08-19 南方科技大学 一种海水淡化用mof材料及其制备方法、基于mof材料海水淡化装置

Also Published As

Publication number Publication date
CN113292733B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
Li et al. Recent progress in metal–organic frameworks (MOFs) for electrocatalysis
CN113292733B (zh) 一种导电金属有机框架纳米棒阵列复合材料及制备和应用
Yang et al. Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications
Li et al. Mesoporous hollow Cu–Ni alloy nanocage from core–shell Cu@ Ni nanocube for efficient hydrogen evolution reaction
Wang et al. A review of non-noble metal-based electrocatalysts for CO2 electroreduction
Min et al. Defect-rich Fe-doped Co3O4 derived from bimetallic-organic framework as an enhanced electrocatalyst for oxygen evolution reaction
CN111229232A (zh) 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用
Yang et al. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide
Rong et al. Self-directed hierarchical Cu3 (PO4) 2/Cu-BDC nanosheets array based on copper foam as an efficient and durable electrocatalyst for overall water splitting
CN104549242B (zh) 一种纳米钯‑石墨烯三维多孔复合电催化剂的制备方法
Wan et al. Activating hematite nanoplates via partial reduction for electrocatalytic oxygen reduction reaction
Gong et al. ACo2O4 (A= Ni, Zn, Mn) nanostructure arrays grown on nickel foam as efficient electrocatalysts for oxygen evolution reaction
Wang et al. Polymer-Mediated Self-Assembly of Amorphous Metal–Organic Complexes toward Fabrication of Three-Dimensional Graphene Supported CoP Nanoparticle-Embedded N-Doped Carbon as a Superior Hydrogen Evolution Catalyst
Jiang et al. Recent advances in solid–liquid–gas three‐phase interfaces in electrocatalysis for energy conversion and storage
Gao et al. Electrochemical synthesis of catalytic materials for energy catalysis
Qian et al. Fe-doped NiCo2S4 catalyst derived from ZIF–67 towards efficient hydrogen evolution reaction
Paygozar et al. Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production
CN110468427A (zh) 一种自支撑掺杂金属氢氧化物纳米片电极材料、其制备方法及用途
Shuai et al. MOF-directed fabrication of nickel/cobalt bimetallic phosphides as robust electrocatalyst for oxygen evolution reaction
Zhang et al. Deep eutectic solvent-mediated hierarchically structured Fe-based organic–inorganic hybrid catalyst for oxygen evolution reaction
CN109926054A (zh) 一种高分散NiCo合金-石墨烯纳米复合催化剂的制备方法
CN113638002A (zh) 一种FeCo LDH/Ti3C2 MXene/NF复合材料及其制备方法和应用
Dong et al. The in situ derivation of a NiFe-LDH ultra-thin layer on Ni-BDC nanosheets as a boosted electrocatalyst for the oxygen evolution reaction
CN110965076A (zh) 一种双功能三维分层核壳结构电解水电极的制备方法
CN108126703A (zh) 绣球状CuZnOX纳米材料的制备方法及其在电催化中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant