CN113284243A - 三维表面模型的统计形状模型建立方法、系统、存储介质、终端 - Google Patents

三维表面模型的统计形状模型建立方法、系统、存储介质、终端 Download PDF

Info

Publication number
CN113284243A
CN113284243A CN202110231851.7A CN202110231851A CN113284243A CN 113284243 A CN113284243 A CN 113284243A CN 202110231851 A CN202110231851 A CN 202110231851A CN 113284243 A CN113284243 A CN 113284243A
Authority
CN
China
Prior art keywords
surface model
dimensional surface
points
model
physical space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110231851.7A
Other languages
English (en)
Inventor
李泽忠
赵语云
王润泽
刘积昊
郑国焱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202110231851.7A priority Critical patent/CN113284243A/zh
Publication of CN113284243A publication Critical patent/CN113284243A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • G06T17/205Re-meshing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/344Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving models

Abstract

本发明提供一种三维表面模型的统计形状模型建立方法、系统、存储介质、终端,包括以下步骤:对三维表面模型进行数据预处理;将数据预处理后的三维表面模型配准到同一物理空间,获取统一物理空间后表面模型数据集;将所述统一物理空间后表面模型数据集对齐,建立所述三维表面模型中点的一一对应关系;根据所述点的一一对应关系构建协方差矩阵,并计算所述协方差矩阵的特征值和特征向量;所述对统一物理空间后表面模型数据集求平均值,根据所述平均值、所述特征值和特征向量构建所述三维表面模型的统计形状模型。本发明的三维表面模型的统计形状模型建立方法、系统、存储介质、终端实现了三维表面模型的统计形状模型的有效建立。

Description

三维表面模型的统计形状模型建立方法、系统、存储介质、 终端
技术领域
本发明涉及统计形状模型建立的技术领域,特别是涉及一种三维表面模型的统计形状模型建立方法、系统、存储介质、终端。
背景技术
统计形状模型(Statistical Shape Model)是一种通过平均形状和允许的形变来表示物体形状的方法,也被理解为表示边界点属性的点分布模型。统计形状模型在医学图像分析和临床实践中有大量的应用,尤其是应用于医学图像分割和仿生假体制造。
统计形状模型的建立需要大量样本形状,现有技术已经可以实现大量精准样本形状的获取,如基于深度学习方法的图像分割技术,可以稳定的提取高质量的样本形状表面模型数据。
统计形状模型的建立的难点在于如何全自动寻找不同表面模型之间点的一一对应关系。现有技术中,统计形状模型的建模流程通常有以下几种建立点的一一对应关系的方法:
1)对于二维形状手动进行一一对应关系寻找,但该方法费时且主观性强;
2)等间距点法和参数化方法,这两种方法虽然能实现自动寻找一一对应关系但是鲁棒性弱;
3)手动初始化位姿的配准法,此方法虽然鲁棒性好但是需要人工干预,不能实现全自动化。
另外,申请号为201310450402的中国发明专利《对三维目标建立统计形状模型的方法》公开一种对三维目标建立统计形状模型的方法,包括以下步骤:S10、基于医学成像技术获取所述目标的二值原始体数据;S20、采用形态学闭操作去除所述原始体数据中的孔洞;S30、对去除孔洞后的原始体数据进行平滑处理;S40、采用等值面提取算法将平滑后的原始体数据转换为三角化表面三维数据;S50、采用保角映射算法将所述三角化表面三维数据映射至单位球体表面;S60、获取与所述单位球体表面顶点距离最短的点集,并进行逆映射以及初始对齐操作,得到第一形状训练集;S70、采用体素化算法将所述第一形状训练集转换为中间体数据;S80、对所述中间体数据采用两次非参数化弹性配准方法,得到建立对应关系的第二形状训练集;S90、对所述第二形状训练集运行主成分分析,获取其平均值、非零单位特征根以及特征向量;步骤S80具体包括以下步骤:第一次配准、随机选取所述中间体数据中的一例形状作为参考图像,将其余体数据与参考图像进行Demons弹性配准,得到第一形变场,采用所述第一形变场对所述第一形状训练集中的三角化表面形状进行弹性形变,得到中间形状训练集;第二次配准、求取所述中间形状训练集的平均形状,采用体素化算法将所述平均形状与中间形状训练集转化为二值图像体数据A、B,以A为参考图像,将B中体数据与参考图像进行Demons弹性配准,得到第二形变场,采用所述第二形变场对中间形状训练集中的三角化表面形状进行弹性形变,得到所述第二形状训练集。但是上述专利的配准过程首先需要将三角化表面三维数据体素化为中间体数据,然后再通过中间体数据实现配准以及一一对应关系的寻找,为算法增加了不必要的难度和复杂度。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种三维表面模型的统计形状模型建立方法、系统、存储介质、终端,通过全自动的配准技术进行高效精准的点的一一对应关系寻找,实现了三维表面模型的统计形状模型的有效建立。
为实现上述目的及其他相关目的,本发明提供一种三维表面模型的统计形状模型建立方法,包括以下步骤:对三维表面模型进行数据预处理;将数据预处理后的三维表面模型配准到同一物理空间,获取统一物理空间后表面模型数据集;将所述统一物理空间后表面模型数据集对齐,建立所述三维表面模型中点的一一对应关系;根据所述点的一一对应关系构建协方差矩阵,并计算所述协方差矩阵的特征值和特征向量;所述对统一物理空间后表面模型数据集求平均值,根据所述平均值、所述特征值和特征向量构建所述三维表面模型的统计形状模型。
于本发明一实施例中,对三维表面模型进行数据预处理时,对于所述三维表面模型中点集的点数大于5000的样本,采用网格平均下采样法将点数下采样到5000个点以下;所述网格平均下采样法根据点集计算包围点集的边界框,将所述边界框划分为均匀的网格;若一个网格中包含多个点,则根据网格中的所有点计算平均距离并合并为一个点。
于本发明一实施例中,将预处理后的三维表面模型数据配准到同一物理空间,获取统一物理空间后表面模型数据集包括以下步骤:
随机选择一例预处理后的三维表面模型数据作为参考表面模型;
对于关注尺度差异特征的物体,将其余预处理后的三维表面模型数据使用刚性条件期望最大化的可形变形状配准方法配准到所述参考表面模型;对于不关注尺度差异特征的物体,将其余预处理后的三维表面模型数据使用仿射条件期望最大化的可形变形状配准方法配准到所述参考表面模型,以获取统一物理空间后表面模型数据集。
于本发明一实施例中,将所述统一物理空间后表面模型数据集对齐,建立表面模型中点的一一对应关系包括以下步骤:
在所述统一物理空间后表面模型数据集中,选取一参考表面模型,将所述其余表面模型使用弹性条件期望最大化的可形变形状配准方法配准到所述参考表面模型,得到弹性配准后表面模型数据集;
对于所述参考表面模型的任意一个点,都从所述弹性配准后表面模型数据集中找到欧氏距离最近的点作为该点的对应点;遍历所述参考表面模型的所有点,获取所述参考表面模型的点与其余表面模型数据的点的一一对应关系。
本发明提供一种三维表面模型的统计形状模型建立系统:包括预处理模块、获取模块、建立模块、计算模块和构建模块;
所述预处理模块用于对三维表面模型进行数据预处理;
所述获取模块用于将数据预处理后的三维表面模型配准到同一物理空间,获取统一物理空间后表面模型数据集;
所述建立模块用于将所述统一物理空间后表面模型数据集对齐,建立所述三维表面模型中点的一一对应关系;
所述计算模块用于根据所述点的一一对应关系构建协方差矩阵,并计算所述协方差矩阵的特征值和特征向量;
所述构建模块用于所述对统一物理空间后表面模型数据集求平均值,根据所述平均值、所述特征值和特征向量构建所述三维表面模型的统计形状模型。
于本发明一实施例中,所述预处理模块对三维表面模型进行数据预处理时,对于所述三维表面模型中点集的点数大于5000的样本,采用网格平均下采样法将点数下采样到5000个点以下;所述网格平均下采样法根据点集计算包围点集的边界框,将所述边界框划分为均匀的网格;若一个网格中包含多个点,则根据网格中的所有点计算平均距离并合并为一个点。
于本发明一实施例中,所述获取模块将预处理后的三维表面模型数据配准到同一物理空间,获取统一物理空间后表面模型数据集包括以下步骤:
随机选择一例预处理后的三维表面模型数据作为参考表面模型;
对于关注尺度差异特征的物体,将其余预处理后的三维表面模型数据使用刚性条件期望最大化的可形变形状配准方法配准到所述参考表面模型;对于不关注尺度差异特征的物体,将其余预处理后的三维表面模型数据使用仿射条件期望最大化的可形变形状配准方法配准到所述参考表面模型,以获取统一物理空间后表面模型数据集。
于本发明一实施例中,所述建立模块将所述统一物理空间后表面模型数据集对齐,建立表面模型中点的一一对应关系包括以下步骤:
在所述统一物理空间后表面模型数据集中,选取一参考表面模型,将所述其余表面模型使用弹性条件期望最大化的可形变形状配准方法配准到所述参考表面模型,得到弹性配准后表面模型数据集;
对于所述参考表面模型的任意一个点,都从所述弹性配准后表面模型数据集中找到欧氏距离最近的点作为该点的对应点;遍历所述参考表面模型的所有点,获取所述参考表面模型的点与其余表面模型数据的点的一一对应关系。
本发明提供一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的三维表面模型的统计形状模型建立方法。
本发明提供一种三维表面模型的统计形状模型建立终端,包括:处理器及存储器;
所述存储器用于存储计算机程序;
所述处理器用于执行所述存储器存储的计算机程序,以使所述三维表面模型的统计形状模型建立终端执行上述的三维表面模型的统计形状模型建立方法。
如上所述,本发明的三维表面模型的统计形状模型建立方法、系统、存储介质、终端,具有以下有益效果:
(1)通过全自动的配准技术进行高效精准的点的一一对应关系寻找,实现了三维表面模型的统计形状模型的有效建立;
(2)能够全自动实现从骨头三维表面模型数据集中构建三维统计形状模型;
(3)通过对实际采集的表面模型数据进行试验验证,结果显示所得统计形状模型的致密性、泛化性和特异性优异。
附图说明
图1显示为本发明的三维表面模型的统计形状模型建立方法于一实施例中的流程图;
图2显示为本发明于一实施例中采用刚性配准将不同股骨表面模型配准后用点云可视化的效果图;
图3显示为本发明于一实施例中采用弹性配准将不同股骨表面模型配准后用点云可视化的效果图;
图4显示为本发明于一实施例中采用股骨表面模型数据集为输入得到统计形状模型第一主成分和第二主成分的变化效果图;
图5显示为本发明的三维表面模型的统计形状模型建立系统于一实施例中的结构示意图;
图6显示为本发明的基于联邦学习的设备异常终端于一实施例中的结构示意图。
元件标号说明
51 预处理模块
52 获取模块
53 建立模块
54 计算模块
55 构建模块
61 处理器
62 存储器
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
本发明的三维表面模型的统计形状模型建立方法、系统、存储介质、终端通过全自动的配准技术能够实现高效精准的点的一一对应关系寻找,从而建立致密性、泛化性和特异性优异的三维表面模型的统计形状模型,实用性强。
为了便于后续说明,定义符号使用规则如下:上标“T”表示“转置”操作;D是点集的维数;N,M是两组点集的点数;
Figure BDA0002958737150000051
是参考点集矩阵,
Figure BDA0002958737150000052
是高斯混合模型型点矩阵,XM×D也用于表示平均模型,具体意义取决于上下文关系;TM×D=Φ(X,θ)是将空间变换Φ作用于X后得到的高斯混合模型的新的型点(即
Figure BDA0002958737150000053
其中θ是空间变换中待求解的参数;||L(Φ)||2是空间变换的正则化项;对于给定的截断整数K,
Figure BDA0002958737150000054
是统计形状模型按照大小降序排序的特征值,而
Figure BDA0002958737150000055
是与特征值对应的单位特征向量,每个特征向量可以表示为
Figure BDA0002958737150000056
K也用于表示样本点集的数量;向量的点乘使用
Figure BDA0002958737150000057
Figure BDA0002958737150000058
表示。I是单位矩阵,
Figure BDA0002958737150000061
是根据向量
Figure BDA0002958737150000062
生成的对角矩阵;trace(W)是矩阵W的迹。
如图1所示,于一实施例中,本发明的三维表面模型的统计形状模型建立方法包括以下步骤:
步骤S1、对三维表面模型进行数据预处理。
具体地,所述三维表面模型指由点集和点连结成的三角面片连接关系定义的表面数据。在实际应用中,由于不关心点连结成的三角面片连接关系,故在数学推导中较多的使用点集表示所述三维表面模型。
于本发明一实施例中,对三维表面模型进行数据预处理时,对于所述三维表面模型中点集的点数大于5000的样本,采用网格平均下采样法将点数下采样到5000个点以下;所述网格平均下采样法根据点集计算包围点集的边界框,将所述边界框划分为均匀的网格;若一个网格中包含多个点,则根据网格中的所有点计算平均距离并合并为一个点。
步骤S2、将数据预处理后的三维表面模型配准到同一物理空间,获取统一物理空间后表面模型数据集。
具体地,采用刚性/仿射条件期望最大化的可形变形状配准方法(ExpectationConditional Maximization-based Deformable Shape Registration,ECM-DSR)将数据预处理后的三维表面模型数据配准到同一物理空间,获取统一物理空间后表面模型数据集。具体包括以下步骤:
21)随机选择一例预处理后的三维表面模型数据作为参考表面模型。
22对于关注长短、大小等明显尺度差异特征的物体,将其余预处理后的三维表面模型数据使用刚性条件期望最大化的可形变形状配准方法配准到所述参考表面模型;对于不关注长短、大小等明显尺度差异特征的物体,将其余预处理后的三维表面模型数据使用仿射条件期望最大化的可形变形状配准方法配准到所述参考表面模型,以获取统一物理空间后表面模型数据集。
具体地,考虑点集X中的点为高斯混合模型的型点,点集Y为由所述高斯混合模型生成的点集,基于ECM的配准问题可以转化为最小化负对数似然函数:
Figure BDA0002958737150000063
其中,{∑m,m=1,2,...,M}是M个协方差矩阵,
Figure BDA0002958737150000064
是以
Figure BDA0002958737150000065
为高斯混合模型为型心时观测样本
Figure BDA0002958737150000066
出现的概率,即以
Figure BDA0002958737150000067
为均值,∑m为方差的高斯分布采样的概率。此处使用异方差来表示每一个高斯混合模型。因此,
Figure BDA0002958737150000068
此时带求解变量可以表示为
Figure BDA0002958737150000069
则期望求解可以转化为计算高斯混合模型各个分量的后验概率:
Figure BDA0002958737150000071
其中常数c代表离群点。此时未知参数Ψ求解通过最小化目标方程:
Figure BDA0002958737150000072
其中ρ是正则化按参数,此时问题可以通过以下两步条件最小化求解:
A)估计正则化参数,通过最小化:
Figure BDA0002958737150000073
B)对于所有m=1,2,...,M,近似估计协方差:
Figure BDA0002958737150000074
记虚拟观测为
Figure BDA0002958737150000075
其权重λm
Figure BDA0002958737150000076
定义为
Figure BDA0002958737150000077
Figure BDA0002958737150000078
根据λm
Figure BDA0002958737150000079
的定义,式(4)可以改写为:
Figure BDA00029587371500000710
显然式(4)和式(6)同解。将(4)式第一项展开并忽略常数项1/2可得:
Figure BDA00029587371500000711
由于式(7)中第一项与配准参数θ无关,将其改写为
Figure BDA00029587371500000712
并不影响式(4)的优化问题的解。式(7)的第二项是
Figure BDA00029587371500000713
第三项是
Figure BDA00029587371500000714
三项结合,重写为
Figure BDA00029587371500000715
重写后可以证明式(4)和式(6)同解。
当待求解空间变换为仿射变换时,此时正则化项为0,即||L(Φ)||2=0,待求解变化为:
Figure BDA00029587371500000716
其中R是D×D维旋转矩阵,
Figure BDA00029587371500000717
是D×1维平移向量,s是缩放参数。显然,当s=1时,上述空间变换退化为刚性变换。经刚性配准或仿射配准之后得到统一物理空间后表面模型数据集。
步骤S3、将所述统一物理空间后表面模型数据集对齐,建立所述三维表面模型中点的一一对应关系。
具体地,将所述统一物理空间后表面模型数据集对齐,建立表面模型中点的一一对应关系包括以下步骤:
31)在所述统一物理空间后表面模型数据集中,选取一参考表面模型,将所述其余表面模型使用弹性条件期望最大化的可形变形状配准方法配准到所述参考表面模型,得到弹性配准后表面模型数据集。
32)对于所述参考表面模型的任意一个点,都从所述弹性配准后表面模型数据集中找到欧氏距离最近的点作为该点的对应点;遍历所述参考表面模型的所有点,获取所述参考表面模型的点与其余表面模型数据的点的一一对应关系。
具体地,该步骤中求解空间变换为弹性变换,则||L(Φ)||2=trace(WTGW),待求解变换为:
Φ(X,θ)=X+GW (9)
其中,W是M×D维的弹性变换系数矩阵,G是M×M维对称核矩阵,其系数为
Figure BDA0002958737150000081
将虚拟观测项表示为
Figure BDA0002958737150000082
并求式(6)对W的偏导数,可得近似解:
Figure BDA0002958737150000083
其中
Figure BDA0002958737150000084
是虚拟观测矩阵。得到弹性配准的点集后,对于参考点集YM×D中的每个点yi,寻找弹性配准后的
Figure BDA0002958737150000085
中的最近点xi,j
Figure BDA0002958737150000086
遍历参考点集YM×D中的所有点,即可得参考点集与其他点集的一一对应关系,记为Ω。
步骤S4、根据所述点的一一对应关系构建协方差矩阵,并计算所述协方差矩阵的特征值和特征向量。
具体地,根据统一物理空间后表面模型数据集Mrig和点的一一对应关系Ω,可以构建协方差矩阵。其中,对于每个三维表面模型点集,可以重新写成点集向量
Figure BDA0002958737150000087
由于已知对应关系Ω,因此所有点集都可以写成M个点的点集向量。根据式(12),计算所述三维表面模型的平均形状模型
Figure BDA0002958737150000088
Figure BDA0002958737150000091
根据式(13)计算去心形状模型:
Figure BDA0002958737150000092
根据式(14)计算协方差矩阵C:
Figure BDA0002958737150000093
根据主成分分析,可以解得协方差矩阵的前K个非零特征值δi和特征向量
Figure BDA0002958737150000094
步骤S5、所述对统一物理空间后表面模型数据集求平均值,根据所述平均值、所述特征值和特征向量构建所述三维表面模型的统计形状模型。
具体地,根据主成分分析,可以解得协方差矩阵的前K个非零特征值δi和特征向量
Figure BDA0002958737150000095
则统计形状模型可以写成:
Figure BDA0002958737150000096
其中bi的取值范围并不严格限制于
Figure BDA0002958737150000097
但是超出这个范围所得统计形状模型可能会产生超出现实意义的模型。
下面通过具体实施例来进一步阐述本发明的三维表面模型的统计形状模型建立方法。
该实施例应用于股骨三维统计形状模型建模,点集的维数D=3;样本点集数量K=20。
(1)对三维表面模型进行数据预处理。
具体地,使用点集表示三维表面模型。对于所述三维表面模型中点集的点数大于5000的样本,采用网格平均下采样法将点数下采样到5000个点以下。网格平均下采样法即首先根据点集计算包围点集的边界框,接着将边界框划分为均匀的网格,每个网格中如果包含多个点,则依据网格中的所有点计算平均距离并合并为一个点。
(2)将数据预处理后的三维表面模型配准到同一物理空间,获取统一物理空间后表面模型数据集。
如图2左侧图片所示,初始股骨三维表面模型在空间上相隔较远,此时需要将所有表面模型统一在同一物理空间下。图2右侧图片采用本实施例所述刚性配准算法,将待配准点集配准到参考点集的效果图。
(3)将所述统一物理空间后表面模型数据集对齐,建立所述三维表面模型中点的一一对应关系。
图3显示即为采用本实施例所述弹性配准算法,将待配准点集配准到参考点集的效果图。
(4)根据所述点的一一对应关系构建协方差矩阵,并计算所述协方差矩阵的特征值和特征向量。
(5)所述对统一物理空间后表面模型数据集求平均值,根据所述平均值、所述特征值和特征向量构建所述三维表面模型的统计形状模型。
图4所示即为采用本实施例20个股骨三维表面模型为输入,最终建立统计形状模型的第一主成分以及第二主成分变化的效果图。
如图5所示,于一实施例中,本发明的三维表面模型的统计形状模型建立系统包括预处理模块51、获取模块52、建立模块53、计算模块54和构建模块55。
所述预处理模块51用于对三维表面模型进行数据预处理。
所述获取模块52与所述预处理模块51相连,用于将数据预处理后的三维表面模型配准到同一物理空间,获取统一物理空间后表面模型数据集。
所述建立模块53与所述获取模块52相连,用于将所述统一物理空间后表面模型数据集对齐,建立所述三维表面模型中点的一一对应关系。
所述计算模块54与所述建立模块53相连,用于根据所述点的一一对应关系构建协方差矩阵,并计算所述协方差矩阵的特征值和特征向量。
所述构建模块55与所述计算模块54相连,用于所述对统一物理空间后表面模型数据集求平均值,根据所述平均值、所述特征值和特征向量构建所述三维表面模型的统计形状模型。
其中,预处理模块51、获取模块52、建立模块53、计算模块54和构建模块55的结构和原理与上述三维表面模型的统计形状模型建立方法中的步骤一一对应,故在此不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现,也可以全部以硬件的形式实现,还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如:x模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现。此外,x模块也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上x模块的功能。其它模块的实现与之类似。这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),一个或多个微处理器(Digital Singnal Processor,简称DSP),一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,如中央处理器(CentralProcessing Unit,简称CPU)或其它可以调用程序代码的处理器。这些模块可以集成在一起,以片上系统(System-on-a-chip,简称SOC)的形式实现。
本发明的存储介质上存储有计算机程序,该程序被处理器执行时实现上述的三维表面模型的统计形状模型建立方法。优选地,所述存储介质包括:ROM、RAM、磁碟、U盘、存储卡或者光盘等各种可以存储程序代码的介质。
如图6所示,于一实施例中,本发明的三维表面模型的统计形状模型建立终端包括:处理器61和存储器62。
所述存储器62用于存储计算机程序。
所述存储器62包括:ROM、RAM、磁碟、U盘、存储卡或者光盘等各种可以存储程序代码的介质。
所述处理器61与所述存储器62相连,用于执行所述存储器62存储的计算机程序,以使所述三维表面模型的统计形状模型建立终端执行上述的三维表面模型的统计形状模型建立方法。
优选地,所述处理器61可以是通用处理器,包括中央处理器(Central ProcessingUnit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application SpecificIntegrated Circuit,简称ASIC)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
综上所述,本发明的三维表面模型的统计形状模型建立方法、系统、存储介质、终端通过全自动的配准技术进行高效精准的点的一一对应关系寻找,实现了三维表面模型的统计形状模型的有效建立;能够全自动实现从骨头三维表面模型数据集中构建三维统计形状模型;通过对实际采集的表面模型数据进行试验验证,结果显示所得统计形状模型的致密性、泛化性和特异性优异。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种三维表面模型的统计形状模型建立方法,其特征在于:包括以下步骤:
对三维表面模型进行数据预处理;
将数据预处理后的三维表面模型配准到同一物理空间,获取统一物理空间后表面模型数据集;
将所述统一物理空间后表面模型数据集对齐,建立所述三维表面模型中点的一一对应关系;
根据所述点的一一对应关系构建协方差矩阵,并计算所述协方差矩阵的特征值和特征向量;
所述对统一物理空间后表面模型数据集求平均值,根据所述平均值、所述特征值和特征向量构建所述三维表面模型的统计形状模型。
2.根据权利要求1所述的三维表面模型的统计形状模型建立方法,其特征在于:对三维表面模型进行数据预处理时,对于所述三维表面模型中点集的点数大于5000的样本,采用网格平均下采样法将点数下采样到5000个点以下;所述网格平均下采样法根据点集计算包围点集的边界框,将所述边界框划分为均匀的网格;若一个网格中包含多个点,则根据网格中的所有点计算平均距离并合并为一个点。
3.根据权利要求1所述的三维表面模型的统计形状模型建立方法,其特征在于:将预处理后的三维表面模型数据配准到同一物理空间,获取统一物理空间后表面模型数据集包括以下步骤:
随机选择一例预处理后的三维表面模型数据作为参考表面模型;
对于关注尺度差异特征的物体,将其余预处理后的三维表面模型数据使用刚性条件期望最大化的可形变形状配准方法配准到所述参考表面模型;对于不关注尺度差异特征的物体,将其余预处理后的三维表面模型数据使用仿射条件期望最大化的可形变形状配准方法配准到所述参考表面模型,以获取统一物理空间后表面模型数据集。
4.根据权利要求1所述的三维表面模型的统计形状模型建立方法,其特征在于:将所述统一物理空间后表面模型数据集对齐,建立表面模型中点的一一对应关系包括以下步骤:
在所述统一物理空间后表面模型数据集中,选取一参考表面模型,将所述其余表面模型使用弹性条件期望最大化的可形变形状配准方法配准到所述参考表面模型,得到弹性配准后表面模型数据集;
对于所述参考表面模型的任意一个点,都从所述弹性配准后表面模型数据集中找到欧氏距离最近的点作为该点的对应点;遍历所述参考表面模型的所有点,获取所述参考表面模型的点与其余表面模型数据的点的一一对应关系。
5.一种三维表面模型的统计形状模型建立系统,其特征在于:包括预处理模块、获取模块、建立模块、计算模块和构建模块;
所述预处理模块用于对三维表面模型进行数据预处理;
所述获取模块用于将数据预处理后的三维表面模型配准到同一物理空间,获取统一物理空间后表面模型数据集;
所述建立模块用于将所述统一物理空间后表面模型数据集对齐,建立所述三维表面模型中点的一一对应关系;
所述计算模块用于根据所述点的一一对应关系构建协方差矩阵,并计算所述协方差矩阵的特征值和特征向量;
所述构建模块用于所述对统一物理空间后表面模型数据集求平均值,根据所述平均值、所述特征值和特征向量构建所述三维表面模型的统计形状模型。
6.根据权利要求5所述的三维表面模型的统计形状模型建立系统,其特征在于:所述预处理模块对三维表面模型进行数据预处理时,对于所述三维表面模型中点集的点数大于5000的样本,采用网格平均下采样法将点数下采样到5000个点以下;所述网格平均下采样法根据点集计算包围点集的边界框,将所述边界框划分为均匀的网格;若一个网格中包含多个点,则根据网格中的所有点计算平均距离并合并为一个点。
7.根据权利要求5所述的三维表面模型的统计形状模型建立系统,其特征在于:所述获取模块将预处理后的三维表面模型数据配准到同一物理空间,获取统一物理空间后表面模型数据集包括以下步骤:
随机选择一例预处理后的三维表面模型数据作为参考表面模型;
对于关注尺度差异特征的物体,将其余预处理后的三维表面模型数据使用刚性条件期望最大化的可形变形状配准方法配准到所述参考表面模型;对于不关注尺度差异特征的物体,将其余预处理后的三维表面模型数据使用仿射条件期望最大化的可形变形状配准方法配准到所述参考表面模型,以获取统一物理空间后表面模型数据集。
8.根据权利要求5所述的三维表面模型的统计形状模型建立系统,其特征在于:所述建立模块将所述统一物理空间后表面模型数据集对齐,建立表面模型中点的一一对应关系包括以下步骤:
在所述统一物理空间后表面模型数据集中,选取一参考表面模型,将所述其余表面模型使用弹性条件期望最大化的可形变形状配准方法配准到所述参考表面模型,得到弹性配准后表面模型数据集;
对于所述参考表面模型的任意一个点,都从所述弹性配准后表面模型数据集中找到欧氏距离最近的点作为该点的对应点;遍历所述参考表面模型的所有点,获取所述参考表面模型的点与其余表面模型数据的点的一一对应关系。
9.一种存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至4中任一项所述的三维表面模型的统计形状模型建立方法。
10.一种三维表面模型的统计形状模型建立终端,其特征在于,包括:处理器及存储器;
所述存储器用于存储计算机程序;
所述处理器用于执行所述存储器存储的计算机程序,以使所述三维表面模型的统计形状模型建立终端执行权利要求1至4中任一项所述的三维表面模型的统计形状模型建立方法。
CN202110231851.7A 2021-03-02 2021-03-02 三维表面模型的统计形状模型建立方法、系统、存储介质、终端 Pending CN113284243A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110231851.7A CN113284243A (zh) 2021-03-02 2021-03-02 三维表面模型的统计形状模型建立方法、系统、存储介质、终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110231851.7A CN113284243A (zh) 2021-03-02 2021-03-02 三维表面模型的统计形状模型建立方法、系统、存储介质、终端

Publications (1)

Publication Number Publication Date
CN113284243A true CN113284243A (zh) 2021-08-20

Family

ID=77276084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110231851.7A Pending CN113284243A (zh) 2021-03-02 2021-03-02 三维表面模型的统计形状模型建立方法、系统、存储介质、终端

Country Status (1)

Country Link
CN (1) CN113284243A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623864A (en) * 2022-10-25 2024-05-01 Univ Jilin Method for bionic design of interbody fusion cage based on lumbar statistical shape model

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103489220A (zh) * 2013-09-27 2014-01-01 中国科学院深圳先进技术研究院 对三维目标建立统计形状模型的方法
CN103903255A (zh) * 2012-12-31 2014-07-02 中国科学院深圳先进技术研究院 一种超声图像分割方法和系统
CN106485695A (zh) * 2016-09-21 2017-03-08 西北大学 基于统计形状模型的医学图像Graph Cut分割方法
CN107204009A (zh) * 2017-05-23 2017-09-26 哈尔滨工业大学 基于仿射变换模型cpd算法的三维点云配准方法
CN107680110A (zh) * 2017-08-29 2018-02-09 中国科学院苏州生物医学工程技术研究所 基于统计形状模型的内耳三维水平集分割方法
CN109844818A (zh) * 2016-05-27 2019-06-04 米米听力科技有限公司 用于建立元素的可变形3d模型的方法和相关联系统
CN109934926A (zh) * 2019-02-26 2019-06-25 深圳市云之梦科技有限公司 模型数据处理方法、装置、可读存储介质和设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903255A (zh) * 2012-12-31 2014-07-02 中国科学院深圳先进技术研究院 一种超声图像分割方法和系统
CN103489220A (zh) * 2013-09-27 2014-01-01 中国科学院深圳先进技术研究院 对三维目标建立统计形状模型的方法
CN109844818A (zh) * 2016-05-27 2019-06-04 米米听力科技有限公司 用于建立元素的可变形3d模型的方法和相关联系统
CN106485695A (zh) * 2016-09-21 2017-03-08 西北大学 基于统计形状模型的医学图像Graph Cut分割方法
CN107204009A (zh) * 2017-05-23 2017-09-26 哈尔滨工业大学 基于仿射变换模型cpd算法的三维点云配准方法
CN107680110A (zh) * 2017-08-29 2018-02-09 中国科学院苏州生物医学工程技术研究所 基于统计形状模型的内耳三维水平集分割方法
CN109934926A (zh) * 2019-02-26 2019-06-25 深圳市云之梦科技有限公司 模型数据处理方法、装置、可读存储介质和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUOYAN ZHENG: "Expectation Conditional Maximization-Based Deformable Shape Registration", 《CAIP 2013》, 31 December 2013 (2013-12-31), pages 548 *
章新友: "《全国中医药行业高等教育’十三五’规划教材 医学图形图像处理 新世纪第3版》", 中国中医药出版社, pages: 186 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623864A (en) * 2022-10-25 2024-05-01 Univ Jilin Method for bionic design of interbody fusion cage based on lumbar statistical shape model

Similar Documents

Publication Publication Date Title
Han et al. A review of algorithms for filtering the 3D point cloud
Sahillioğlu et al. Minimum-distortion isometric shape correspondence using EM algorithm
Hinkle et al. Intrinsic polynomials for regression on Riemannian manifolds
Corman et al. Supervised descriptor learning for non-rigid shape matching
US8411081B2 (en) Systems and methods for enhancing symmetry in 2D and 3D objects
Kenobi et al. Shape curves and geodesic modelling
CN110070096B (zh) 针对非刚性形状匹配的局部频域描述子生成方法及装置
Du et al. New iterative closest point algorithm for isotropic scaling registration of point sets with noise
CN109685841B (zh) 三维模型与点云的配准方法及系统
CN111612731B (zh) 基于双目显微视觉的测量方法、装置、系统及介质
CN112634149A (zh) 一种基于图卷积网络的点云去噪方法
Lombaert et al. Spectral demons–image registration via global spectral correspondence
CN113177592A (zh) 一种图像分割方法、装置、计算机设备及存储介质
CN113284243A (zh) 三维表面模型的统计形状模型建立方法、系统、存储介质、终端
Gasparetto et al. Spatial maps: From low rank spectral to sparse spatial functional representations
CN112435211B (zh) 一种内窥镜图像序列中轮廓稠密特征点描述和匹配的方法
Dinesh et al. Sampling of 3D point cloud via Gershgorin disc alignment
Zhong et al. Triple screening point cloud registration method based on image and geometric features
CN112184869A (zh) 基于绝对高斯曲率估计的保持几何特征的点云简化方法
Dan et al. Multifeature energy optimization framework and parameter adjustment-based nonrigid point set registration
Cai et al. Detection of repetitive patterns in near regular texture images
Wang et al. Image segmentation with eigenfunctions of an anisotropic diffusion operator
CN107730512B (zh) 一种并发结构纹理图像处理方法
Lachaud et al. An optimized framework for plane-probing algorithms
Benninghoff et al. Segmentation of three-dimensional images with parametric active surfaces and topology changes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination