CN113265380B - Bacterial restriction-modification system and application thereof - Google Patents

Bacterial restriction-modification system and application thereof Download PDF

Info

Publication number
CN113265380B
CN113265380B CN202110579583.8A CN202110579583A CN113265380B CN 113265380 B CN113265380 B CN 113265380B CN 202110579583 A CN202110579583 A CN 202110579583A CN 113265380 B CN113265380 B CN 113265380B
Authority
CN
China
Prior art keywords
leu
fragment
lys
subunit
recombinant plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110579583.8A
Other languages
Chinese (zh)
Other versions
CN113265380A (en
Inventor
蔡文通
李干武
步志高
赵东明
李芳�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Veterinary Research Institute of CAAS
Original Assignee
Harbin Veterinary Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Veterinary Research Institute of CAAS filed Critical Harbin Veterinary Research Institute of CAAS
Priority to CN202110579583.8A priority Critical patent/CN113265380B/en
Publication of CN113265380A publication Critical patent/CN113265380A/en
Application granted granted Critical
Publication of CN113265380B publication Critical patent/CN113265380B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a bacterial restriction-modification system and application thereof. The restriction-modification system comprises a restriction-modification complex enzyme, wherein the restriction-modification complex enzyme consists of an R subunit and an M subunit, the R subunit is encoded by a gene c5372 (res 53), and the amino acid sequence of the R subunit is shown as SEQ ID NO. 3; the M subunit is encoded by a gene c5373 (mod 53), and the amino acid sequence of the M subunit is shown as SEQ ID NO. 4. According to the invention, the recombinant plasmid carrying the bacterial restriction-modification system is constructed and transformed into the common escherichia coli strain MG1655, so that the MG1655 can obviously resist exogenous phage infection, and the restriction-modification system can greatly improve the capability of escherichia coli in resisting phage infection. Therefore, the invention provides a new technical means for constructing engineering bacteria or live carrier vaccine bacteria of anti-phage.

Description

Bacterial restriction-modification system and application thereof
Technical Field
The invention relates to a bacterial restriction-modification system and application thereof. The invention belongs to the field of biotechnology.
Background
In bacteria, restriction-modification (RM) systems are ubiquitous and are often considered to be the most primitive immune system of bacteria for protection against foreign DNA, such as plasmids, phages, etc. Type III RM systems are typically composed of two parts: endonucleases, i.e., R subunits, are responsible for site-specific DNA cleavage; the methyltransferase, the M subunit, can methylate DNA, and its recognition site when modified is generally identical to that of endonuclease cleavage. Specifically, the recognition site of the type III RM system is a 5-6bp non-palindromic sequence, and the cleavage site is 25-27bp downstream of the recognition site. Based on RM-specific DNA recognition and cleavage properties, they are widely used for recombinant cloning, modification, etc. of DNA. For example, the type II RM system NcoI is a commonly used restriction enzyme and is widely used for molecular cloning. Type III RM systems are widely used to combat exogenous DNA transformation, conjugation, and phage infection.
Phage are a general term for viruses that infect microorganisms such as bacteria and fungi, and are widely found in soil, sewage, and air. Phage contamination seriously jeopardizes the fermentation industry of foods and the like, and is a main cause of abnormal fermentation. One of the important methods for phage contamination control is engineering sensitive strains or strain breeding, i.e., by genetic engineering or mutagenesis. For example, the introduction of plasmids carrying the RM system found in nature into lactococcus can increase its resistance to phage infection. The invention identifies a new set of RM systems in E.coli encoded by c5372 and c5373, respectively, designated res53 and mod53, respectively. The methylation site of the M subunit was found to be 5 '-CACACAG-3' by single molecule real-time sequencing analysis. The R subunit is functional and resists transformation of the plasmid into bacteria. The RM system was cloned into a vector and transformed into a common e.coli strain, which was found to be resistant to infection by T4 and λvir phages.
Disclosure of Invention
The invention aims to provide a novel bacterial restriction-modification system and application thereof.
In order to achieve the above purpose, the invention adopts the following technical means:
the invention firstly utilizes bioinformatics means such as gene function prediction, protein domain analysis and the like to preliminarily identify a novel bacterial restriction-modification system which is named as RM53 system and comprises genes c5372 (res 53) and c5373 (mod 53) for respectively encoding R and M subunits. And (3) respectively replacing mod53 and res53 genes by using a lambda Red recombination system and taking chloramphenicol resistance genes as screening markers to construct gene deletion strains CFT073 delta mod53 and CFT073 delta res53. The methylated groups of genomic DNA of wild type CFT073 and CFT073 Δmod53 mutants were analyzed using a single molecule real-time sequencing method, and Mod53 was found to be responsible for methylation of the second a in the 5'-CACAG-3' motif, thus demonstrating the methylation function of Mod53. In addition, comparing plasmid transformation efficiencies of wild-type CFT073 and CFT073 Δres53 mutants found that Res53 was responsible for cleavage of the plasmid and greatly reduced plasmid transformation efficiency, demonstrating the restriction DNA cleavage activity of Res53. A recombinant plasmid carrying an RM53 system is constructed, and the recombinant plasmid is electrically transformed and introduced into MG1655 to construct an MG1655 (+ RM 53) strain, and compared with the MG1655 strain, the RM53 system has the effect of greatly improving the capability of resisting phage infection of escherichia coli.
Thus, on the basis of the above studies, the present invention proposes a bacterial Restriction-modification (RM) system comprising a Restriction-modification complex enzyme, wherein the Restriction-modification complex enzyme consists of an R subunit and an M subunit, the R subunit being encoded by the gene c5372, the amino acid sequence of which is shown in SEQ ID No. 3; the M subunit is encoded by a gene c5373, and the amino acid sequence of the M subunit is shown as SEQ ID NO. 4.
Among them, the nucleotide sequences of the gene c5372 encoding R subunit and the gene c5373 encoding M subunit are preferably shown as SEQ ID NO.1 and SEQ ID NO.2, respectively.
Furthermore, the invention also provides a recombinant plasmid carrying the bacterial restriction-modification system, which comprises a fragment consisting of the gene c5372 encoding the R subunit, the gene c5373 encoding the M subunit and a promoter region common to the genes.
Wherein, preferably, the nucleotide sequence of the fragment consisting of the gene c5372 encoding R subunit, the gene c5373 encoding M subunit and the common promoter region is shown as SEQ ID NO. 5.
Preferably, the recombinant plasmid is constructed by the following steps:
(1) The primer sequences shown below were designed and synthesized:
Ptac-P53-RM53-F:ATGGGGCCCGCGGCCGCGGATCCGAAAGGGGCAAGCTGTAC
Ptac-P53-RM53-R:ACCAACAAGGACCATAGCATATGTACAGCATACACCCCAGC
(2) Obtaining of the insert
Using genome DNA of escherichia coli CFT073 as a template, using the synthesized primer, and carrying out PCR amplification by using Phanta mix of Nuo-wei company to obtain a fragment with homology arms and containing c5372 and c5373 genes and a promoter region common to the genes, wherein the fragment is named RM53 gene fragment, and the obtained sequence is shown as SEQ ID NO. 5;
(3) Construction and linearization of pGEN-Ptac vectors
1) Taking pGEN-mcs as an initial vector, and carrying out double-enzyme tangential linearization by using EcoRI and NdeI;
2) PCR amplification was performed using pMal-c2x as a template, lacIPtac-c2x-F/LacIPtac-c2x-R as a primer, and Phanta mix from Novain to obtain a lacI-Ptac double-element fragment with a homology arm;
LacIPtac-c2x-F:
TCATTTTCTGAAACTCTTCATGCTGGAATTCCCGACACCATCGAATGGT
LacIPtac-c2x-R:
GGCCGCGGATCCCGGTACCAAGCTTCATATGCTATGGTCCTTGTTGGTGAAG
3) Performing electrophoresis observation and rubber cutting recovery purification on the DNA product obtained in the steps 1) and 2) to obtain a standby carrier fragment and a lacI-Ptac double-element fragment with a homology arm;
4) Ligating the vector fragment obtained in step 3) with a lacI-Ptac duplex fragment having a homology arm;
5) Transferring the connection product obtained in the step 4) into DH5 competent cells, coating the transformant mixture on LB solid medium containing ampicillin, and culturing overnight;
selecting a correct recombinant plasmid, naming the recombinant plasmid which is verified to be correct as pGEN-Ptac, and performing linearization by utilizing BamHI and NdeI double-enzyme digestion;
(4) Performing electrophoresis observation and rubber cutting recovery purification on the DNA products obtained in the steps (2) and (3) to obtain a standby pGEN-Ptac vector fragment and an RM53 gene fragment with a homology arm;
(5) Ligating the pGEN-Ptac vector fragment obtained in step (4) with the RM53 gene fragment having a homology arm;
(6) Transforming the ligation product obtained in the step (5) into DH5 competent cells, coating the transformant mixture on LB solid medium containing ampicillin, and culturing overnight;
(7) The recombinant plasmid which is verified to be correct is obtained by PCR amplification to verify the insertion of the fragment, namely, the recombinant plasmid carrying the bacterial restriction-modification system of claim 1 or 2.
Preferably, the conversion in the step (6) is performed by an electric conversion method, and the steps are as follows: one time of electric shock at 2500V, adding 800. Mu.L of LB liquid medium to resuspend and resuscitate at 37 ℃ for 60min, centrifuging at 4000rpm for 3min, resuspending 100. Mu.L of supernatant to precipitate, spreading on LB solid medium with ampicillin concentration of 100. Mu.g/mL, and culturing overnight.
Wherein, preferably, the step (7) is performed by PCR amplification to verify the insertion of the fragment, and the specific steps include:
picking single colony, inoculating to LB liquid medium of ampicillin, shake culturing at 37deg.C for 12 hr, extracting to obtain recombinant plasmid DNA, taking the recombinant plasmid DNA as template, designing the following primers:
pMal-seq-F:TGGAATTGTGAGCGGATAAC
pGEN-seq-R:GTGGTCACGCTTTTCGTTGG
the insertion of the fragment was verified by PCR amplification under the following conditions: pre-denaturing at 95 ℃ for 5min, denaturing at 95 ℃ for 30s, annealing at 55 ℃ for 2min, extending at 72 ℃ for 5min, circularly amplifying for 30 times, and extending at 72 ℃ for 5min.
Preferably, the recombinant plasmid is named pGEN-Ptac-RM, and the nucleotide sequence of the recombinant plasmid is shown as SEQ ID NO. 6.
Furthermore, the invention also provides the application of the bacterial restriction-modification system in resisting phage infection. And
the recombinant plasmid is used for resisting phage infection.
Compared with the prior art, the invention has the beneficial effects that:
the present invention provides a novel bacterial restriction-modification system. The restriction-modification system can greatly improve the capability of the escherichia coli for resisting phage infection, and the invention provides a new technical means for constructing engineering bacteria or live carrier vaccine bacteria for resisting phage.
Drawings
FIG. 1 is a positional and domain display of the RM53 gene;
FIG. 2 shows the results of colony PCR identification of deleted strains;
wherein: cft073 Δmod53; cft073 Δres53;
FIG. 3 is a single molecule real-time sequencing to identify the methylation motif of Mod53;
FIG. 4 shows the results of plasmid transformation efficiency experiments;
FIG. 5 experimental results of RM53 system improving the ability of E.coli to combat phage infection.
Detailed Description
The invention will be further described with reference to specific embodiments, and advantages and features of the invention will become apparent from the description. The embodiments are merely exemplary and do not limit the scope of the invention in any way. It will be understood by those skilled in the art that various changes and substitutions of details and forms of the technical solution of the present invention may be made without departing from the spirit and scope of the present invention, but these changes and substitutions fall within the scope of the present invention.
Example 1 construction of Gene-deleted strains CFT073 Δmod53 and CFT073 Δres53 Using the λRed System
The method comprises the following steps:
(1) Primers were designed and synthesized as shown in Table 1 below, and recombinant fragments Del-Mod53 and Del-res53 were obtained by PCR amplification using the Phanta high-fidelity DNA polymerase using the pKD3 plasmid as a template. The amplification conditions were: pre-denaturing at 95 ℃ for 3min, denaturing at 95 ℃ for 10s, annealing at 55 ℃ for 30s, extending at 72 ℃ for 1min, circularly amplifying for 30 times, and extending at 72 ℃ for 10min.
TABLE 1 primer sequences
(2) About 2. Mu.g of the recombinant fragment Del-Mod53 or Del-res53 was respectively electrotransformed into CFT073 (containing pKD 46) competent cells, shake cultured at 37℃for 1 hour, and the transformant mixture was spread on LB plates containing chloramphenicol uniformly, and cultured overnight at 37 ℃.
(3) Primers were designed and synthesized, as shown in table 2 below, and colony PCR was performed to identify positive clones. The amplification conditions are 94 ℃ for 5min of pre-denaturation, 94 ℃ for 30s of denaturation, 55 ℃ for 30s of annealing, 72 ℃ for 2min of extension, and the cyclic amplification is carried out for 30 times. And then extending at 72 ℃ for 5min.
TABLE 2 primer sequences
Results: the colony PCR identification results are shown in FIG. 2. The results show that the gene deletion strains CFT073 delta mod53 and CFT073 delta res53 are constructed by using chloramphenicol resistance genes as selection markers to replace mod53 and res53 genes respectively.
Example 2 single molecule real time sequencing to identify the methylation motif of Mod53
(1) Culturing CFT073 wild type and CFT073 delta mod53 to logarithmic phase, taking 10mL of culture, centrifuging at 4000g for 10min, and collecting thallus; extracting to obtain high-purity and high-integrity genome DNA by using a TaKaRa MiniBEST Universal Genomic DNAExtraction Kit kit;
(2) Cutting about 10 mug of whole genome DNA, then selecting 10kb double-stranded DNA fragment, and carrying out end repair on the DNA fragment by using a universal hairpin joint; a 10kb sequencing library was created and sequenced on a PacBIO sequence instrument; sequencing data was analyzed using PacBio's SMRT Link software to obtain Interpulse duration (IPD) values for each base, and by comparison, the methylation sets (i.e., all modified bases and related motifs) for CFT073 WT and Δmod53 were obtained. The difference between the two strains is obtained after comparison, so that the methylation type and motif of Mod53 can be basically determined.
Results: the methylated groups of genomic DNA of wild type CFT073 and CFT073 Δmod53 mutants were analyzed using a single molecule real time sequencing method, and Mod53 was found to be responsible for methylation of the second a in the 5'-CACAG-3' motif, thus demonstrating the methylation function of Mod53, and the results are shown in figure 3.
Example 3 validation of endonuclease cleavage of DNA to affect transformation efficiency
(1) Electrotransformation competent cells of wild strain CFT073 and mutant strain CFT073Δres53 were prepared separately, each containing about 5X 10 cells 9 Individual cells.
(2) The pCJ112-pdeH plasmid is used as a target plasmid, 0.3 mug of plasmid is respectively transferred into competent cells of a wild strain CFT073 and a mutant strain CFT073 Deltares 53 by electrotransformation (2.5 kV,2mm electrotransformation cup), the transformed bacterial liquid is equally divided into two parts, the two parts are evenly coated on kanamycin-resistant and non-resistant LB plates, the culture is carried out at 37 ℃, the number of colonies which grow out is counted, and the transformation efficiency = (the number of transformants with kanamycin resistance/the number of CFU without resistance LB) ×100% is calculated.
Results: by comparing plasmid transformation efficiencies of wild-type CFT073 and CFT073 Δres53 mutants, res53 was found to be responsible for plasmid cleavage and thus greatly reduce plasmid transformation efficiency, demonstrating the restriction DNA cleavage activity of Res53, and the results are shown in fig. 4.
Example 4 the RM53 System greatly facilitates the E.coli against phage infection
1. Construction of recombinant plasmid carrying RM53 Gene
(1) The primer sequences shown below were designed and synthesized:
Ptac-P53-RM53-F:ATGGGGCCCGCGGCCGCGGATCCGAAAGGGGCAAGCTGTAC
Ptac-P53-RM53-R:ACCAACAAGGACCATAGCATATGTACAGCATACACCCCAGC
(2) Obtaining of the insert
Using the genomic DNA of e.coli CFT073 as a template, PCR amplification was performed using the primers synthesized above using the Phanta mix from nupran company to obtain RM53 gene fragments (comprising res53 and mod53 genes and their common promoter regions), under the amplification conditions: pre-denaturing at 95 ℃ for 3min, denaturing at 95 ℃ for 10s, annealing at 55 ℃ for 30s, extending at 72 ℃ for 2.5min, circularly amplifying for 30 times, and extending at 72 ℃ for 10min. The obtained sequence is shown as SEQ ID NO. 5;
(3) Construction and linearization of pGEN-Ptac vectors
1) With pGEN-mcs (Addgene: # 44919) was used as a starting vector, and double-enzyme tangential restriction was performed using EcoRI and NdeI.
2) The lacI-Ptac duplex fragment with homology arms was obtained by PCR amplification using pMal-c2x (purchased from NEB company) as a template and using Phantamix from Novain company with the following primers: pre-denaturing at 95 ℃ for 3min, denaturing at 95 ℃ for 10s, annealing at 55 ℃ for 30s, extending at 72 ℃ for 1min, circularly amplifying for 30 times, and extending at 72 ℃ for 10min.
LacIPtac-c2x-F:
TCATTTTCTGAAACTCTTCATGCTGGAATTCCCGACACCATCGAATGGT
LacIPtac-c2x-R:
GGCCGCGGATCCCGGTACCAAGCTTCATATGCTATGGTCCTTGTTGGTGAAG
3) Performing electrophoresis observation and rubber cutting recovery purification on the DNA product obtained in the steps 1) and 2) to obtain a standby carrier fragment and a lacI-Ptac double-element fragment with a homology arm;
4) By Nor-NZan Co LtdMultiS One Step Cloning Kit (C112) connectionThe vector fragment obtained in the step 3) and the lacI-Ptac double-element fragment with a homology arm;
5) Transferring the connection product obtained in the step 4) into DH5 competent cells, coating the transformant mixture on LB solid medium containing ampicillin, and culturing overnight;
6) Single colonies were picked up and inoculated in LB liquid medium of ampicillin, shake-cultured at 37℃for 12 hours, and extracted to obtain recombinant plasmid DNA. The recombinant plasmid DNA is used as a template, and the following primers are designed:
pMal-seq-F:TGGAATTGTGAGCGGATAAC
pGEN-seq-R:GTGGTCACGCTTTTCGTTGG
the insertion of the fragment was verified by PCR amplification under the following conditions: pre-denaturing at 95 ℃ for 5min, denaturing at 95 ℃ for 30s, annealing at 55 ℃ for 30s, and extending at 72 ℃ for 2min, and circularly amplifying for 30 times. And then extending at 72 ℃ for 5min.
The correct recombinant plasmid was picked up, DNA sequencing was performed, sequence fidelity was verified, and the correct recombinant plasmid was named pGEN-Ptac. pGEN-Ptac vector was linearized using BamHI and NdeI double enzyme cuts;
(4) Performing electrophoresis observation and rubber cutting recovery purification on the DNA products obtained in the steps (2) and (3) to obtain a standby pGEN-Ptac vector fragment and an RM53 gene fragment with a homology arm;
(5) By Nor-NZan Co LtdMultiS One Step Cloning Kit (C112) ligating the pGEN-Ptac vector fragment obtained in step (4) with the RM53 gene fragment having a homology arm;
(6) Transforming the ligation product obtained in the step (5) into DH5 competent cells, coating the transformant mixture on LB solid medium containing ampicillin, and culturing overnight;
the conversion method is an electric conversion method, and comprises the following steps: electric shock at 2500V was applied once, resuspended in 800. Mu.LLB liquid medium and thawed at 37℃for 60min, centrifuged at 4000rpm for 3min, 100. Mu.L of supernatant was subjected to resuspension precipitation, spread on LB solid medium with ampicillin concentration of 100. Mu.g/mL, and cultured overnight.
(7) Single colonies were picked up and inoculated in LB liquid medium of ampicillin, shake-cultured at 37℃for 12 hours, and extracted to obtain recombinant plasmid DNA. The recombinant plasmid DNA is used as a template, and the following primers are designed:
pMal-seq-F:TGGAATTGTGAGCGGATAAC
pGEN-seq-R:GTGGTCACGCTTTTCGTTGG
the insertion of the fragment was verified by PCR amplification under the following conditions: pre-denaturing at 95 ℃ for 5min, denaturing at 95 ℃ for 30s, annealing at 55 ℃ for 2min, extending at 72 ℃ for 5min, and circularly amplifying for 30 times. And then extending at 72 ℃ for 5min.
And selecting the correct recombinant plasmid, carrying out DNA sequencing, verifying the sequence fidelity, and naming the correct recombinant plasmid pGEN-Ptac-RM, wherein the nucleotide sequence of the recombinant plasmid pGEN-Ptac-RM is shown as SEQ ID NO. 6.
2. Use of RM53 system for combating phages
(1) pGEN-Ptac and pGEN-Ptac-RM plasmids were introduced into MG1655 by electrotransformation, respectively, to construct MG1655 (v.c.) and MG1655 (+RM 53) strains.
(2) The phage stock solution (T4 and λvir) prepared in advance is diluted to 10-8 in gradient by utilizing LB medium, and can be stored at 4 ℃ for standby.
(3) To form a uniform lawn on the surface of the medium, 200. Mu.L of the logarithmic phase bacterial liquid, MG1655 (v.c.) and MG1655 (+RM 53), were added to 4mL of a 45℃0.3% soft agar solution, gently shaken, spread on LB plates uniformly, and air-dried under the cover.
(4) Sucking 20 mu L of phage dilutions of gradients (10-1 to 10-8) and dripping onto lawn plates at appropriate intervals without interfering with each other; uncapping and airing in a biosafety cabinet.
(5) The cells were incubated overnight at 25℃in an incubator for about 12 to 18 hours, and plaque production was observed.
Results: the results are shown in FIG. 5. From the results of FIG. 5, it can be seen that the RM53 system greatly enhances the ability of E.coli to resist phage infection.
Sequence listing
<110> Harbin veterinary institute of Chinese academy of agricultural sciences (Harbin division center of Chinese animal health and epidemiology center)
<120> a bacterial restriction-modification system and use thereof
<130> KLPI210340
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3072
<212> DNA
<213> Escherichia coli
<400> 1
atgaagctta aattcaaaca tcaaccctat caggctgccg cagtgcaggc ggtcgtcgat 60
atttttcagg ggcagccacc ggcctctgat gcggccatga gctatcgcct tgaccctggt 120
aataccaaaa acggtatggg tgatctgttt gcggtagata ctggttttaa aaatgctgag 180
ctaaccctta gtgaggttgc attgcttgat aacatccagc aggtgcagcg ccagcaaaat 240
ctgccgttgt cggagagctt ggtcaagacc aaggtcgcca agctaaatct tgatatcgag 300
atggaaacgg gtactggcaa gacctattgc tacatcaaga cagtcttcga actgaacaaa 360
cagtacggct ggagcaagtt cgtcatagtg gtgccgagca ttgccatccg cgagggcgta 420
gccaagtcgt tggaaatcac ggccgagcac tttcaggaga cctatcacaa gaaggcacgc 480
ttctttattt acaactctaa gcagctgcac catctggaga gtttctcctc agatgccggt 540
atcaatgtca tggtgatcaa cgtacaagcg tttaacgcca ctggcaaaga taaccgccgt 600
atctatgaag cgctcgatga ttttcagtca cgtcgcccga tcgatgtgat cagcgcaaac 660
cgacccatct tgatcctcga tgagccgcag cggatggagg ggggcaagac cctagattcc 720
ttggctaatt tcaacccgtt gatggtgttg cgctattccg ctacacacaa gaccacacac 780
aacaaaattc accgcctaga tgcgctcgat gcctacaacc agaagctggt gaagaagatt 840
gaggtgcgtg gtatctcggt gaagggactg gcgggaacca atgcctatct ctatttacaa 900
tccatcgaaa tctcaaacaa aaaaccgcca gtagcggttg tagagttcga acagaaactc 960
agcggtggaa acatcaagcg cgtcactcgc aaactgggta agggtgacaa tctgtttgtg 1020
ctatcgaacg agctggatca ataccgcgat gggtttgtgg tatcggacat caatgccaat 1080
acggacacct tgagctttac caatggcgta gaactgacgg tgggtgatgt gattggtgat 1140
atttccgaga tagcgctgcg ccgcattcag atccgtgaga cgatcaaggc gcactttgat 1200
aaggagatgg agctcttcga taaaggggtg aaggttctct cgttgttctt tattgacgaa 1260
gtggccaggt accgggacta ctccgctgtc gatgaaaagg gagagtacgc aaaaatattt 1320
gaagaggagt acgctaagca cattcaagaa gtgtttgata atgggtttat ggagggggat 1380
gccccttatg ctaaatatct acgccgcatt gcggccgata agacgcatag cggctacttt 1440
tccatcgaca agaagagcaa gcgcctcaca gatcccaaag ccgctgcgcg cggtgaaaat 1500
gcgggcttgt cggatgacgt agatgcttat gatctaatcc tcaaagacaa ggaacggtta 1560
ttatcactag ctgagccggt gcgttttatc ttctcacact cggccttacg tgagggctgg 1620
gataacccca acgtgtttgt tatctgcaca ctcaagcata gtgataacac catttcacgc 1680
cgccaagagg tcgggcgcgg cctgcgtttg tccgtcaatc aaaatggtga acgcatggat 1740
cacccatcca ttgttcatga cattaacgta ctgacagttg tggccagcga aagttacaag 1800
gacttcgtga ccgccttgca gaaggacatt agcgactcct tgtctgctcg cccgcgtgtg 1860
gcggacaagg cctacttcac gggcaagatg ctgaacacga aggaaggccc gattacggtc 1920
tcggacgacc aagccacgga catcgagttt tatctgatcc agaatggcta cgtcgataag 1980
aagcgcaata tcacagagaa ataccaccaa gctaagaaag acggcacatt agaggcattg 2040
ccggacgagc tgcagcccta tgcagagcag gtattccagc tgattaacag cgtattcagc 2100
gaaagccagc tcatgcaggt agaagatgga cgcaagccca aaagactgca gaccaacgcc 2160
aactttgaaa agcaggagtt caaagcgctg tgggggcgaa tcaatcgcaa agctacctac 2220
agcgtactgt ttgatgatgt tgagctagtg aacaatgcga tcaaggcgct caatgataag 2280
aatgctgggt tacgagtaac gccgttacaa tacaccattc accgtggcaa gcaggctgat 2340
acggcaactt acgatgacct caaaaagggt atcgccttcg agctgaaagt taccgaaaca 2400
gaatcgcaca ccgcctctat ccactccgct gtgcagtacg acttgattgg taagttatca 2460
gaggggactt tgcttacaag acgaaccatt gccgaaattc taaaaggtct ccatgctgac 2520
gtcttcgcgc aattcaagag caacccggaa agtttcattg ccgaagtcat tcgcttggtc 2580
aacgaacaaa aggccaatgt catcatcgag catctggcct atgacacgct agaagacaag 2640
tttgatttgg acatctttac cacgggtcag agcaaacagg atctcagtaa ggctgggaat 2700
aaattgcaaa atcacatcta tgattacgtg cttaccgact ctgcaattga gcgcaagttc 2760
gtcgaagagt tggataccag caaggatgtg gtggtatatg ccaagttgcc acgtggtttt 2820
ctgatcccaa cccctgtcgg cgattacaac cccgactggg ctatttcctt caaagaaggc 2880
tcggtcaagc atgtgtattt cgttgctgag accaagggct cgatgtcgtc actggattta 2940
cggcctattg aagccaccaa gattaaatgt gcccgtaagt tcttcgatgc ggttaacaag 3000
acgtttgctc cagaaaacgt gaagtatgac gtagtggata gcttcagtaa gctgatggaa 3060
gtggtgaagt aa 3072
<210> 2
<211> 2013
<212> DNA
<213> Escherichia coli
<400> 2
atggaaaagc taaaaatgca ttcacccaat ctcacgcagg acaacatcgc tcgcattcgc 60
gatctgtttc caggctgcgt caccgaagct aagggcgagg atggtagcgt gaagctggca 120
gtggattttg accaattgcg ccaggaactg tctgattcga ttgtagaagg gccgcaggaa 180
cgctaccagc tgaattggcc tggtaagcgc gaggcactgc tcactgcaaa tgcaccgatt 240
gcaaagacgc tccgtccagt acgtacgaca aaaaattcaa aaggcgaaca cattgaagag 300
agcgtcaact tcgacactac caagaatatc tttatcgagg gagataatct cgacgcgctg 360
aagctgcttc aggaaaatta tcttggcaaa atcaagatgg tctatatcga cccgccgtac 420
aacacgggaa acgattttgt ttacgccgac gattttgtag acgaggtctc tgagtttttt 480
cttcgttcaa atcaggtgga tagagaagga aaccgcttaa cagccaaccc cgaaacaagc 540
gggcgctttc actcagactg gctgtccatg atgtattcga gactaaagtt atcgcgcaac 600
ttgctacgag atgatggatt aatcgtaatt catattgatg agaatgaata tcccaacctg 660
gagaagcttc tggcagaaat atatggtgag aagaataatc tcggaactat tgtgtgggat 720
aagagaaatc caaaaggtga tgccacaggt gtcgcgcagc agcatgagct aatttgtatt 780
tactgcaaag atcgagaatt cttcaagaca acctgcgagt tccagcgacc aaaagagaat 840
gcaggaaaaa tgcttgcaaa agccaagcag attcttagca aggagggcgg ggtaactgaa 900
aaagcaagga aagaatacaa agattgggta aaccagcaag atctaactgg gggggaaaag 960
gcatataatc aaatcgatga caatggcgac gtcttccgtc cggtttctat ggcgtggccg 1020
aataagaaaa aagcaccgga agattatttc attccgctaa ttcatcctgt aacagggaag 1080
gagtgccctg ttcctgagcg tgggtggcga aaccctcctg caacaatgca agaactcttg 1140
aagtcagggt tgattatttt cggtccagac gagaagacgc agccaacaag aaaatatcgg 1200
ctgaatgaca atttattcga aaatatccct tctctacttt attacggtgg cagtgacgac 1260
gctttgcttg ctgaccttaa aattcctttt gatacaccga aaccggttca ggtagcaaag 1320
agactaattc aatcaatttg caagaatgac gatatattga tcgacttctt cgctggctcg 1380
tgcacggcgg cgcatgcact tatgcttttg aatgcggaag atggggcaaa tcgtcgattc 1440
ataatggttc aattgcccga ggaatgtgac gagaagtctg aagccaaaaa acttggatac 1500
tcagtagttt cggagattgg aaaaaatcgc attcggagag ctgcaaaaaa aattagagaa 1560
gaattttcag aaatattggc tacaagaaat acggaacttg acttaggatt tcgcctgctt 1620
aaagtcgata catcgaacat ggctgacgtc tactacagcc ccgatgtgct ggaaaaagcc 1680
aatctcgact tgtttgttga caacatcaag cctgatcgca cgcctgagga tctgctgttc 1740
caagtaatgc tggattgggg cgtcgatctg gccctgccta tcgccaagca gtccatccaa 1800
ggtaaagacg tgttctttgt cgatggcaat gtgcttaccg cctgcttcga cgccagtggc 1860
agcattgacg aaaccttcgt gaaggaactg gccaaactgc agccgctgcg cgttgtgttc 1920
cgcgacgcgg gctttaagaa cagtgcggtc aagatcaatg tcgagcagat tttcaagctc 1980
atgtcgcctg tcaccgaagt aaaatgtatc tga 2013
<210> 3
<211> 1023
<212> PRT
<213> Escherichia coli
<400> 3
Met Lys Leu Lys Phe Lys His Gln Pro Tyr Gln Ala Ala Ala Val Gln
1 5 10 15
Ala Val Val Asp Ile Phe Gln Gly Gln Pro Pro Ala Ser Asp Ala Ala
20 25 30
Met Ser Tyr Arg Leu Asp Pro Gly Asn Thr Lys Asn Gly Met Gly Asp
35 40 45
Leu Phe Ala Val Asp Thr Gly Phe Lys Asn Ala Glu Leu Thr Leu Ser
50 55 60
Glu Val Ala Leu Leu Asp Asn Ile Gln Gln Val Gln Arg Gln Gln Asn
65 70 75 80
Leu Pro Leu Ser Glu Ser Leu Val Lys Thr Lys Val Ala Lys Leu Asn
85 90 95
Leu Asp Ile Glu Met Glu Thr Gly Thr Gly Lys Thr Tyr Cys Tyr Ile
100 105 110
Lys Thr Val Phe Glu Leu Asn Lys Gln Tyr Gly Trp Ser Lys Phe Val
115 120 125
Ile Val Val Pro Ser Ile Ala Ile Arg Glu Gly Val Ala Lys Ser Leu
130 135 140
Glu Ile Thr Ala Glu His Phe Gln Glu Thr Tyr His Lys Lys Ala Arg
145 150 155 160
Phe Phe Ile Tyr Asn Ser Lys Gln Leu His His Leu Glu Ser Phe Ser
165 170 175
Ser Asp Ala Gly Ile Asn Val Met Val Ile Asn Val Gln Ala Phe Asn
180 185 190
Ala Thr Gly Lys Asp Asn Arg Arg Ile Tyr Glu Ala Leu Asp Asp Phe
195 200 205
Gln Ser Arg Arg Pro Ile Asp Val Ile Ser Ala Asn Arg Pro Ile Leu
210 215 220
Ile Leu Asp Glu Pro Gln Arg Met Glu Gly Gly Lys Thr Leu Asp Ser
225 230 235 240
Leu Ala Asn Phe Asn Pro Leu Met Val Leu Arg Tyr Ser Ala Thr His
245 250 255
Lys Thr Thr His Asn Lys Ile His Arg Leu Asp Ala Leu Asp Ala Tyr
260 265 270
Asn Gln Lys Leu Val Lys Lys Ile Glu Val Arg Gly Ile Ser Val Lys
275 280 285
Gly Leu Ala Gly Thr Asn Ala Tyr Leu Tyr Leu Gln Ser Ile Glu Ile
290 295 300
Ser Asn Lys Lys Pro Pro Val Ala Val Val Glu Phe Glu Gln Lys Leu
305 310 315 320
Ser Gly Gly Asn Ile Lys Arg Val Thr Arg Lys Leu Gly Lys Gly Asp
325 330 335
Asn Leu Phe Val Leu Ser Asn Glu Leu Asp Gln Tyr Arg Asp Gly Phe
340 345 350
Val Val Ser Asp Ile Asn Ala Asn Thr Asp Thr Leu Ser Phe Thr Asn
355 360 365
Gly Val Glu Leu Thr Val Gly Asp Val Ile Gly Asp Ile Ser Glu Ile
370 375 380
Ala Leu Arg Arg Ile Gln Ile Arg Glu Thr Ile Lys Ala His Phe Asp
385 390 395 400
Lys Glu Met Glu Leu Phe Asp Lys Gly Val Lys Val Leu Ser Leu Phe
405 410 415
Phe Ile Asp Glu Val Ala Arg Tyr Arg Asp Tyr Ser Ala Val Asp Glu
420 425 430
Lys Gly Glu Tyr Ala Lys Ile Phe Glu Glu Glu Tyr Ala Lys His Ile
435 440 445
Gln Glu Val Phe Asp Asn Gly Phe Met Glu Gly Asp Ala Pro Tyr Ala
450 455 460
Lys Tyr Leu Arg Arg Ile Ala Ala Asp Lys Thr His Ser Gly Tyr Phe
465 470 475 480
Ser Ile Asp Lys Lys Ser Lys Arg Leu Thr Asp Pro Lys Ala Ala Ala
485 490 495
Arg Gly Glu Asn Ala Gly Leu Ser Asp Asp Val Asp Ala Tyr Asp Leu
500 505 510
Ile Leu Lys Asp Lys Glu Arg Leu Leu Ser Leu Ala Glu Pro Val Arg
515 520 525
Phe Ile Phe Ser His Ser Ala Leu Arg Glu Gly Trp Asp Asn Pro Asn
530 535 540
Val Phe Val Ile Cys Thr Leu Lys His Ser Asp Asn Thr Ile Ser Arg
545 550 555 560
Arg Gln Glu Val Gly Arg Gly Leu Arg Leu Ser Val Asn Gln Asn Gly
565 570 575
Glu Arg Met Asp His Pro Ser Ile Val His Asp Ile Asn Val Leu Thr
580 585 590
Val Val Ala Ser Glu Ser Tyr Lys Asp Phe Val Thr Ala Leu Gln Lys
595 600 605
Asp Ile Ser Asp Ser Leu Ser Ala Arg Pro Arg Val Ala Asp Lys Ala
610 615 620
Tyr Phe Thr Gly Lys Met Leu Asn Thr Lys Glu Gly Pro Ile Thr Val
625 630 635 640
Ser Asp Asp Gln Ala Thr Asp Ile Glu Phe Tyr Leu Ile Gln Asn Gly
645 650 655
Tyr Val Asp Lys Lys Arg Asn Ile Thr Glu Lys Tyr His Gln Ala Lys
660 665 670
Lys Asp Gly Thr Leu Glu Ala Leu Pro Asp Glu Leu Gln Pro Tyr Ala
675 680 685
Glu Gln Val Phe Gln Leu Ile Asn Ser Val Phe Ser Glu Ser Gln Leu
690 695 700
Met Gln Val Glu Asp Gly Arg Lys Pro Lys Arg Leu Gln Thr Asn Ala
705 710 715 720
Asn Phe Glu Lys Gln Glu Phe Lys Ala Leu Trp Gly Arg Ile Asn Arg
725 730 735
Lys Ala Thr Tyr Ser Val Leu Phe Asp Asp Val Glu Leu Val Asn Asn
740 745 750
Ala Ile Lys Ala Leu Asn Asp Lys Asn Ala Gly Leu Arg Val Thr Pro
755 760 765
Leu Gln Tyr Thr Ile His Arg Gly Lys Gln Ala Asp Thr Ala Thr Tyr
770 775 780
Asp Asp Leu Lys Lys Gly Ile Ala Phe Glu Leu Lys Val Thr Glu Thr
785 790 795 800
Glu Ser His Thr Ala Ser Ile His Ser Ala Val Gln Tyr Asp Leu Ile
805 810 815
Gly Lys Leu Ser Glu Gly Thr Leu Leu Thr Arg Arg Thr Ile Ala Glu
820 825 830
Ile Leu Lys Gly Leu His Ala Asp Val Phe Ala Gln Phe Lys Ser Asn
835 840 845
Pro Glu Ser Phe Ile Ala Glu Val Ile Arg Leu Val Asn Glu Gln Lys
850 855 860
Ala Asn Val Ile Ile Glu His Leu Ala Tyr Asp Thr Leu Glu Asp Lys
865 870 875 880
Phe Asp Leu Asp Ile Phe Thr Thr Gly Gln Ser Lys Gln Asp Leu Ser
885 890 895
Lys Ala Gly Asn Lys Leu Gln Asn His Ile Tyr Asp Tyr Val Leu Thr
900 905 910
Asp Ser Ala Ile Glu Arg Lys Phe Val Glu Glu Leu Asp Thr Ser Lys
915 920 925
Asp Val Val Val Tyr Ala Lys Leu Pro Arg Gly Phe Leu Ile Pro Thr
930 935 940
Pro Val Gly Asp Tyr Asn Pro Asp Trp Ala Ile Ser Phe Lys Glu Gly
945 950 955 960
Ser Val Lys His Val Tyr Phe Val Ala Glu Thr Lys Gly Ser Met Ser
965 970 975
Ser Leu Asp Leu Arg Pro Ile Glu Ala Thr Lys Ile Lys Cys Ala Arg
980 985 990
Lys Phe Phe Asp Ala Val Asn Lys Thr Phe Ala Pro Glu Asn Val Lys
995 1000 1005
Tyr Asp Val Val Asp Ser Phe Ser Lys Leu Met Glu Val Val Lys
1010 1015 1020
<210> 4
<211> 670
<212> PRT
<213> Escherichia coli
<400> 4
Met Glu Lys Leu Lys Met His Ser Pro Asn Leu Thr Gln Asp Asn Ile
1 5 10 15
Ala Arg Ile Arg Asp Leu Phe Pro Gly Cys Val Thr Glu Ala Lys Gly
20 25 30
Glu Asp Gly Ser Val Lys Leu Ala Val Asp Phe Asp Gln Leu Arg Gln
35 40 45
Glu Leu Ser Asp Ser Ile Val Glu Gly Pro Gln Glu Arg Tyr Gln Leu
50 55 60
Asn Trp Pro Gly Lys Arg Glu Ala Leu Leu Thr Ala Asn Ala Pro Ile
65 70 75 80
Ala Lys Thr Leu Arg Pro Val Arg Thr Thr Lys Asn Ser Lys Gly Glu
85 90 95
His Ile Glu Glu Ser Val Asn Phe Asp Thr Thr Lys Asn Ile Phe Ile
100 105 110
Glu Gly Asp Asn Leu Asp Ala Leu Lys Leu Leu Gln Glu Asn Tyr Leu
115 120 125
Gly Lys Ile Lys Met Val Tyr Ile Asp Pro Pro Tyr Asn Thr Gly Asn
130 135 140
Asp Phe Val Tyr Ala Asp Asp Phe Val Asp Glu Val Ser Glu Phe Phe
145 150 155 160
Leu Arg Ser Asn Gln Val Asp Arg Glu Gly Asn Arg Leu Thr Ala Asn
165 170 175
Pro Glu Thr Ser Gly Arg Phe His Ser Asp Trp Leu Ser Met Met Tyr
180 185 190
Ser Arg Leu Lys Leu Ser Arg Asn Leu Leu Arg Asp Asp Gly Leu Ile
195 200 205
Val Ile His Ile Asp Glu Asn Glu Tyr Pro Asn Leu Glu Lys Leu Leu
210 215 220
Ala Glu Ile Tyr Gly Glu Lys Asn Asn Leu Gly Thr Ile Val Trp Asp
225 230 235 240
Lys Arg Asn Pro Lys Gly Asp Ala Thr Gly Val Ala Gln Gln His Glu
245 250 255
Leu Ile Cys Ile Tyr Cys Lys Asp Arg Glu Phe Phe Lys Thr Thr Cys
260 265 270
Glu Phe Gln Arg Pro Lys Glu Asn Ala Gly Lys Met Leu Ala Lys Ala
275 280 285
Lys Gln Ile Leu Ser Lys Glu Gly Gly Val Thr Glu Lys Ala Arg Lys
290 295 300
Glu Tyr Lys Asp Trp Val Asn Gln Gln Asp Leu Thr Gly Gly Glu Lys
305 310 315 320
Ala Tyr Asn Gln Ile Asp Asp Asn Gly Asp Val Phe Arg Pro Val Ser
325 330 335
Met Ala Trp Pro Asn Lys Lys Lys Ala Pro Glu Asp Tyr Phe Ile Pro
340 345 350
Leu Ile His Pro Val Thr Gly Lys Glu Cys Pro Val Pro Glu Arg Gly
355 360 365
Trp Arg Asn Pro Pro Ala Thr Met Gln Glu Leu Leu Lys Ser Gly Leu
370 375 380
Ile Ile Phe Gly Pro Asp Glu Lys Thr Gln Pro Thr Arg Lys Tyr Arg
385 390 395 400
Leu Asn Asp Asn Leu Phe Glu Asn Ile Pro Ser Leu Leu Tyr Tyr Gly
405 410 415
Gly Ser Asp Asp Ala Leu Leu Ala Asp Leu Lys Ile Pro Phe Asp Thr
420 425 430
Pro Lys Pro Val Gln Val Ala Lys Arg Leu Ile Gln Ser Ile Cys Lys
435 440 445
Asn Asp Asp Ile Leu Ile Asp Phe Phe Ala Gly Ser Cys Thr Ala Ala
450 455 460
His Ala Leu Met Leu Leu Asn Ala Glu Asp Gly Ala Asn Arg Arg Phe
465 470 475 480
Ile Met Val Gln Leu Pro Glu Glu Cys Asp Glu Lys Ser Glu Ala Lys
485 490 495
Lys Leu Gly Tyr Ser Val Val Ser Glu Ile Gly Lys Asn Arg Ile Arg
500 505 510
Arg Ala Ala Lys Lys Ile Arg Glu Glu Phe Ser Glu Ile Leu Ala Thr
515 520 525
Arg Asn Thr Glu Leu Asp Leu Gly Phe Arg Leu Leu Lys Val Asp Thr
530 535 540
Ser Asn Met Ala Asp Val Tyr Tyr Ser Pro Asp Val Leu Glu Lys Ala
545 550 555 560
Asn Leu Asp Leu Phe Val Asp Asn Ile Lys Pro Asp Arg Thr Pro Glu
565 570 575
Asp Leu Leu Phe Gln Val Met Leu Asp Trp Gly Val Asp Leu Ala Leu
580 585 590
Pro Ile Ala Lys Gln Ser Ile Gln Gly Lys Asp Val Phe Phe Val Asp
595 600 605
Gly Asn Val Leu Thr Ala Cys Phe Asp Ala Ser Gly Ser Ile Asp Glu
610 615 620
Thr Phe Val Lys Glu Leu Ala Lys Leu Gln Pro Leu Arg Val Val Phe
625 630 635 640
Arg Asp Ala Gly Phe Lys Asn Ser Ala Val Lys Ile Asn Val Glu Gln
645 650 655
Ile Phe Lys Leu Met Ser Pro Val Thr Glu Val Lys Cys Ile
660 665 670
<210> 5
<211> 5645
<212> DNA
<213> Escherichia coli
<400> 5
gaaaggggca agctgtacga tgggcggaca cttggttccg atgcgctggc aagcatcaac 60
gcaatgacgt ccagttcagc catccaaagg ctgggtaaga tcagtcaggc gaaccgcgaa 120
aaccatcagg tactggtggc ggagcctgcc attgctcgtg ttgtggtaga cgatgaagag 180
ggagaagaga aagtaacgtg cgcgtgttcg acatccagca catcaaaggc atggagttcg 240
aggcggtgtt ctttgtcagc attgaccagc tcgccactct gcacccggcg ctgttcgata 300
aatacctgta cgtcggcatc acccgtgcgg caacctacct ggacgtgacc tgctagggca 360
gcttgccatc tgcactcgag agcctgcgcc tgcacttttg ccaggactgg cagcaaggca 420
actaaccata ccaatacgaa cttgaattgt gagccgctat gccttttcaa taagcagcat 480
aacggccaga ggaaaagaat atggaaaagc taaaaatgca ttcacccaat ctcacgcagg 540
acaacatcgc tcgcattcgc gatctgtttc caggctgcgt caccgaagct aagggcgagg 600
atggtagcgt gaagctggca gtggattttg accaattgcg ccaggaactg tctgattcga 660
ttgtagaagg gccgcaggaa cgctaccagc tgaattggcc tggtaagcgc gaggcactgc 720
tcactgcaaa tgcaccgatt gcaaagacgc tccgtccagt acgtacgaca aaaaattcaa 780
aaggcgaaca cattgaagag agcgtcaact tcgacactac caagaatatc tttatcgagg 840
gagataatct cgacgcgctg aagctgcttc aggaaaatta tcttggcaaa atcaagatgg 900
tctatatcga cccgccgtac aacacgggaa acgattttgt ttacgccgac gattttgtag 960
acgaggtctc tgagtttttt cttcgttcaa atcaggtgga tagagaagga aaccgcttaa 1020
cagccaaccc cgaaacaagc gggcgctttc actcagactg gctgtccatg atgtattcga 1080
gactaaagtt atcgcgcaac ttgctacgag atgatggatt aatcgtaatt catattgatg 1140
agaatgaata tcccaacctg gagaagcttc tggcagaaat atatggtgag aagaataatc 1200
tcggaactat tgtgtgggat aagagaaatc caaaaggtga tgccacaggt gtcgcgcagc 1260
agcatgagct aatttgtatt tactgcaaag atcgagaatt cttcaagaca acctgcgagt 1320
tccagcgacc aaaagagaat gcaggaaaaa tgcttgcaaa agccaagcag attcttagca 1380
aggagggcgg ggtaactgaa aaagcaagga aagaatacaa agattgggta aaccagcaag 1440
atctaactgg gggggaaaag gcatataatc aaatcgatga caatggcgac gtcttccgtc 1500
cggtttctat ggcgtggccg aataagaaaa aagcaccgga agattatttc attccgctaa 1560
ttcatcctgt aacagggaag gagtgccctg ttcctgagcg tgggtggcga aaccctcctg 1620
caacaatgca agaactcttg aagtcagggt tgattatttt cggtccagac gagaagacgc 1680
agccaacaag aaaatatcgg ctgaatgaca atttattcga aaatatccct tctctacttt 1740
attacggtgg cagtgacgac gctttgcttg ctgaccttaa aattcctttt gatacaccga 1800
aaccggttca ggtagcaaag agactaattc aatcaatttg caagaatgac gatatattga 1860
tcgacttctt cgctggctcg tgcacggcgg cgcatgcact tatgcttttg aatgcggaag 1920
atggggcaaa tcgtcgattc ataatggttc aattgcccga ggaatgtgac gagaagtctg 1980
aagccaaaaa acttggatac tcagtagttt cggagattgg aaaaaatcgc attcggagag 2040
ctgcaaaaaa aattagagaa gaattttcag aaatattggc tacaagaaat acggaacttg 2100
acttaggatt tcgcctgctt aaagtcgata catcgaacat ggctgacgtc tactacagcc 2160
ccgatgtgct ggaaaaagcc aatctcgact tgtttgttga caacatcaag cctgatcgca 2220
cgcctgagga tctgctgttc caagtaatgc tggattgggg cgtcgatctg gccctgccta 2280
tcgccaagca gtccatccaa ggtaaagacg tgttctttgt cgatggcaat gtgcttaccg 2340
cctgcttcga cgccagtggc agcattgacg aaaccttcgt gaaggaactg gccaaactgc 2400
agccgctgcg cgttgtgttc cgcgacgcgg gctttaagaa cagtgcggtc aagatcaatg 2460
tcgagcagat tttcaagctc atgtcgcctg tcaccgaagt aaaatgtatc tgagggggac 2520
ggtgcaatga agcttaaatt caaacatcaa ccctatcagg ctgccgcagt gcaggcggtc 2580
gtcgatattt ttcaggggca gccaccggcc tctgatgcgg ccatgagcta tcgccttgac 2640
cctggtaata ccaaaaacgg tatgggtgat ctgtttgcgg tagatactgg ttttaaaaat 2700
gctgagctaa cccttagtga ggttgcattg cttgataaca tccagcaggt gcagcgccag 2760
caaaatctgc cgttgtcgga gagcttggtc aagaccaagg tcgccaagct aaatcttgat 2820
atcgagatgg aaacgggtac tggcaagacc tattgctaca tcaagacagt cttcgaactg 2880
aacaaacagt acggctggag caagttcgtc atagtggtgc cgagcattgc catccgcgag 2940
ggcgtagcca agtcgttgga aatcacggcc gagcactttc aggagaccta tcacaagaag 3000
gcacgcttct ttatttacaa ctctaagcag ctgcaccatc tggagagttt ctcctcagat 3060
gccggtatca atgtcatggt gatcaacgta caagcgttta acgccactgg caaagataac 3120
cgccgtatct atgaagcgct cgatgatttt cagtcacgtc gcccgatcga tgtgatcagc 3180
gcaaaccgac ccatcttgat cctcgatgag ccgcagcgga tggagggggg caagacccta 3240
gattccttgg ctaatttcaa cccgttgatg gtgttgcgct attccgctac acacaagacc 3300
acacacaaca aaattcaccg cctagatgcg ctcgatgcct acaaccagaa gctggtgaag 3360
aagattgagg tgcgtggtat ctcggtgaag ggactggcgg gaaccaatgc ctatctctat 3420
ttacaatcca tcgaaatctc aaacaaaaaa ccgccagtag cggttgtaga gttcgaacag 3480
aaactcagcg gtggaaacat caagcgcgtc actcgcaaac tgggtaaggg tgacaatctg 3540
tttgtgctat cgaacgagct ggatcaatac cgcgatgggt ttgtggtatc ggacatcaat 3600
gccaatacgg acaccttgag ctttaccaat ggcgtagaac tgacggtggg tgatgtgatt 3660
ggtgatattt ccgagatagc gctgcgccgc attcagatcc gtgagacgat caaggcgcac 3720
tttgataagg agatggagct cttcgataaa ggggtgaagg ttctctcgtt gttctttatt 3780
gacgaagtgg ccaggtaccg ggactactcc gctgtcgatg aaaagggaga gtacgcaaaa 3840
atatttgaag aggagtacgc taagcacatt caagaagtgt ttgataatgg gtttatggag 3900
ggggatgccc cttatgctaa atatctacgc cgcattgcgg ccgataagac gcatagcggc 3960
tacttttcca tcgacaagaa gagcaagcgc ctcacagatc ccaaagccgc tgcgcgcggt 4020
gaaaatgcgg gcttgtcgga tgacgtagat gcttatgatc taatcctcaa agacaaggaa 4080
cggttattat cactagctga gccggtgcgt tttatcttct cacactcggc cttacgtgag 4140
ggctgggata accccaacgt gtttgttatc tgcacactca agcatagtga taacaccatt 4200
tcacgccgcc aagaggtcgg gcgcggcctg cgtttgtccg tcaatcaaaa tggtgaacgc 4260
atggatcacc catccattgt tcatgacatt aacgtactga cagttgtggc cagcgaaagt 4320
tacaaggact tcgtgaccgc cttgcagaag gacattagcg actccttgtc tgctcgcccg 4380
cgtgtggcgg acaaggccta cttcacgggc aagatgctga acacgaagga aggcccgatt 4440
acggtctcgg acgaccaagc cacggacatc gagttttatc tgatccagaa tggctacgtc 4500
gataagaagc gcaatatcac agagaaatac caccaagcta agaaagacgg cacattagag 4560
gcattgccgg acgagctgca gccctatgca gagcaggtat tccagctgat taacagcgta 4620
ttcagcgaaa gccagctcat gcaggtagaa gatggacgca agcccaaaag actgcagacc 4680
aacgccaact ttgaaaagca ggagttcaaa gcgctgtggg ggcgaatcaa tcgcaaagct 4740
acctacagcg tactgtttga tgatgttgag ctagtgaaca atgcgatcaa ggcgctcaat 4800
gataagaatg ctgggttacg agtaacgccg ttacaataca ccattcaccg tggcaagcag 4860
gctgatacgg caacttacga tgacctcaaa aagggtatcg ccttcgagct gaaagttacc 4920
gaaacagaat cgcacaccgc ctctatccac tccgctgtgc agtacgactt gattggtaag 4980
ttatcagagg ggactttgct tacaagacga accattgccg aaattctaaa aggtctccat 5040
gctgacgtct tcgcgcaatt caagagcaac ccggaaagtt tcattgccga agtcattcgc 5100
ttggtcaacg aacaaaaggc caatgtcatc atcgagcatc tggcctatga cacgctagaa 5160
gacaagtttg atttggacat ctttaccacg ggtcagagca aacaggatct cagtaaggct 5220
gggaataaat tgcaaaatca catctatgat tacgtgctta ccgactctgc aattgagcgc 5280
aagttcgtcg aagagttgga taccagcaag gatgtggtgg tatatgccaa gttgccacgt 5340
ggttttctga tcccaacccc tgtcggcgat tacaaccccg actgggctat ttccttcaaa 5400
gaaggctcgg tcaagcatgt gtatttcgtt gctgagacca agggctcgat gtcgtcactg 5460
gatttacggc ctattgaagc caccaagatt aaatgtgccc gtaagttctt cgatgcggtt 5520
aacaagacgt ttgctccaga aaacgtgaag tatgacgtag tggatagctt cagtaagctg 5580
atggaagtgg tgaagtaaga ttaaacccag cctaccatta taaaggtcgg ctggggtgta 5640
tgctg 5645
<210> 6
<211> 12299
<212> DNA
<213> artificial sequence
<400> 6
cagcatgaag agtttcagaa aatgacagag cgtgagcaag tgcctttatt gaaattgcct 60
gaataacaga gacagtgcaa acgattattt cataataacg attatgtaat gactggtaag 120
aaaataactt gattgagttc cctttatcca gcctgatagt ggataaaggg aactcaataa 180
taattgaatt aatttattag cttcatcgca ttttttttgg tctcttcatc acttttttgc 240
tcttgttgtg aagaggattg agtgactatt gaagaattaa aatcggccat ctcttttgga 300
aatagcgatc tcaatatatt cacgatatct gaaaatgtgg tttctttcgt cagcagctca 360
cataaaagga aaggggtccg gggatcttgt ctgtataagg ccagacctgc cgtcagtgcg 420
gcccggttaa ggcggcttcg ttccccttgc gggatactgt ccagtgtatc acaaacaatt 480
ttatctgttt gatttacatc tggatttagt ttgaaggcaa tggttctgcg cttgtccatc 540
attaattacc tatgagatac ataccgttaa ctaaatcata ttgagagtta ttggttttga 600
aaaaacgttc atcacgaatc tgtgtgtgtt tttttactgc atcgcatatt aattctgcgc 660
caccgcctat aaccataaca tgagtataac cagaaaattc attgagcgta tttaatacac 720
gttgctcaag tttacgaagt gcttcattca ttgcttcggt gactattgat attttgttct 780
catcattaat tcgttgcttc agatagttat tatcttttct gtgaatgatt atatcgtcag 840
caagatagct acttcctttt gttctcgcaa gagaaagggc atcttttact gcagatgtaa 900
ccagagagac accaagagat gagtctccgt atattttact gatccccgat aatttcccca 960
ttacctgaga aatatctaat gtggtgcccc cgagatctat aattaataaa gaatctaact 1020
catccagttc ttgtagaact tcataacctg ccggtataga ttcaggcatg acttttacat 1080
cttttattgt gaatgtatcc ccgccattta atgtaatttt tttccggaag tttgctttct 1140
tacgctcaat attttccgta ttgggttggt tatttctgtc gtaatactct gtcagaggaa 1200
gtgtgcaaac aatatccact tcgcttaccg gcagaccact ggtcagtaag gcgtgatgca 1260
ctgcaacgac attaacgtcg ctgtattgcc atgcgatatt ggttgtgact acagcatccg 1320
ggctgattgg atcaaatgaa tactgttcgc cgttcagtgt gtagttaaag acctttttat 1380
caccaaaaga gactgcccac tcgcgtttga agctgttcgg gctaatgtgc tgtttaattg 1440
ttccgtcgct ttcctgccac tgtagtttga tgtttgttga accgtcatca atgaatacca 1500
acatttataa aactccttat ggtgtttttt tggtgtgtgt ttgggtatgt tttgggtttt 1560
aagtgggttt gtttgtcaag tttaccccat ttcaaccatc aatcaatgat tatttgtctt 1620
gttttggtgt tttattgggt tgggtatggg ttgtttttgg gttttgtttg gcgggtaaca 1680
aaagtgctcg agacaaactc cgggaggcag cgtgatgcgg caacaatcac acggatttcc 1740
cgtgaacggt ctgaatgagc ggattatttt cagggaaagt gagtgtggtc agcgtgcagg 1800
tatatgggct atgatgtgcc cggcgcttga ggctttctgc ctcatgacgt gaaggtggtt 1860
tgttgccgtg ttgtgtggca gaaagaagat agccccgtag taagttaatt ttcattaacc 1920
accacgaggc atccctatgt ctagtccaca tcaggatagc ctcttaccgc gctttgcgca 1980
aggagaagaa ggccatgaaa ctaccacgaa gttcccttgt ctggtgtgtg ttgatcgtgt 2040
gtctcacact gttgatattc acttatctga cacgaaaatc gctgtgcgag attcgttaca 2100
gagacggaca cagggaggtg gcggctttca tggcttacga atccggtaag tagcaacctg 2160
gaggcgggcg caggcccgcc ttttcaggac tgatgctggt ctgactactg aagcgccttt 2220
ataaaggggc tgctggttcg ccggtagccc ctttctcctt gctgatgttg tctagaagac 2280
gaaagggcct cgtgatacgc ctatttttat aggttaatgt catgataata atggtttctt 2340
agacgtcagg tggcactttt cggggaaatg tgcgcggaac ccctatttgt ttatttttct 2400
aaatacattc aaatatgtat ccgctcatga gacaataacc ctgataaatg cttcaataat 2460
attgaaaaag gaagagtatg agtattcaac atttccgtgt cgcccttatt cccttttttg 2520
cggcattttg ccttcctgtt tttgctcacc cagaaacgct ggtgaaagta aaagatgctg 2580
aagatcagtt gggtgcacga gtgggttaca tcgaactgga tctcaacagc ggtaagatcc 2640
ttgagagttt tcgccccgaa gaacgttttc caatgatgag cacttttaaa gttctgctat 2700
gtggcgcggt attatcccgt gttgacgccg ggcaagagca actcggtcgc cgcatacact 2760
attctcagaa tgacttggtt gagtactcac cagtcacaga aaagcatctt acggatggca 2820
tgacagtaag agaattatgc agtgctgcca taaccatgag tgataacact gcggccaact 2880
tacttctgac aacgatcgga ggaccgaagg agctaaccgc ttttttgcac aacatggggg 2940
atcatgtaac tcgccttgat cgttgggaac cggagctgaa tgaagccata ccaaacgacg 3000
agcgtgacac cacgatgcct gtagcaatgg caacaacgtt gcgcaaacta ttaactggcg 3060
aactacttac tctagcttcc cggcaacaat taatagactg gatggaggcg gataaagttg 3120
caggaccact tctgcgctcg gcccttccgg ctggctggtt tattgctgat aaatctggag 3180
ccggtgagcg tgggtctcgc ggtatcattg cagcactggg gccagatggt aagccctccc 3240
gtatcgtagt tatctacacg acggggagtc aggcaactat ggatgaacga aatagacaga 3300
tcgctgagat aggtgcctca ctgattaagc attggtaact gtcagaccaa gtttactcat 3360
atatacttta gattgattta aaacttcatt tttaatttaa aaggatctag gtgaagatcc 3420
tttttgataa tctcatgacc aaaatccctt aactagtgtt ttagatccgg ttgacagtaa 3480
gacgggtaag cctgttgatg ataccgctgc cttactgggt gcattagcca gtctgaatga 3540
cctgtcacgg gataatccga agtggtcaga ctggaaaatc agagggcagg aactgctgaa 3600
cagcaaaaag tcagatagca ccacatagca gacccgccat aaaacgccct gagaagcccg 3660
tgacgggctt ttcttgtatt atgggtagtt tccttgcatg aatccataaa aggcgcctgt 3720
agtgccattt acccccattc actgccagag ccgtgagcgc agcgaactga atgtcacgaa 3780
aaagacagcg actcaggtgc ctgatggtcg gagacaaaag gaatattcag cgatttgcca 3840
gatccagctt ggctgttttg gcggatgaga gaagattttc agcctgatac agattaaatc 3900
agaacgcaga agcggtctga taaaacagaa tttgcctggc ggcagtagcg cggtggtccc 3960
acctgacccc atgccgaact cagaagtgaa acgccgtagc gccgatggta gtgtggggtc 4020
tccccatgcg agagtaggga actgccaggc atcaaataaa acgaaaggct cagtcgaaag 4080
actgggcctt tcgttttatc tgttgtttgt cggtgaacgc tctcctgagt aggacaaatc 4140
cgccgggagc ggatttgaac gttgcgaagc aacggcccgg agggtggcgg gcaggacgcc 4200
cgccataaac tgccaggcat caaattaagc agaaggccat cctgacggat ggcctttttg 4260
cgtttctaca aactcttggg cctagtgttt tagatcctag aaatatttta tctgattaat 4320
aagatgatct tcttgagatc gttttggtct gcgcgtaatc tcttgctctg aaaacgaaaa 4380
aaccgccttg cagggcggtt tttcgaaggt tctctgagct accaactctt tgaaccgagg 4440
taactggctt ggaggagcgc agtcaccaaa acttgtcctt tcagtttagc cttaaccggc 4500
gcatgacttc aagactaact cctctaaatc aattaccagt ggctgctgcc agtggtgctt 4560
ttgcatgtct ttccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg 4620
actgaacggg gggttcgtgc atacagtcca gcttggagcg aactgcctac ccggaactga 4680
gtgtcaggcg tggaatgaga caaacgcggc cataacagcg gaatgacacc ggtaaaccga 4740
aaggcaggaa caggagagcg cacgagggag ccgccagggg gaaacgcctg gtatctttat 4800
agtcctgtcg ggtttcgcca ccactgattt gagcgtcaga tttcgtgatg cttgtcaggg 4860
gggcggagcc tatggaaaaa cggctttgcc gcggccctct cacttccctg ttaagtatct 4920
cctaggccga gaaaaaaaag cccgctcatt aggcgggcta gctcattatt tgtagagctc 4980
atccatgcca tgtgtaatcc cagcagcagt tacaaactca agaaggacca tgtggtcacg 5040
cttttcgttg ggatctttcg aaagggcaga ttgtgtcgac cagctatcga tccatggggc 5100
ccgcggccgc ggatccgaaa ggggcaagct gtacgatggg cggacacttg gttccgatgc 5160
gctggcaagc atcaacgcaa tgacgtccag ttcagccatc caaaggctgg gtaagatcag 5220
tcaggcgaac cgcgaaaacc atcaggtact ggtggcggag cctgccattg ctcgtgttgt 5280
ggtagacgat gaagagggag aagagaaagt aacgtgcgcg tgttcgacat ccagcacatc 5340
aaaggcatgg agttcgaggc ggtgttcttt gtcagcattg accagctcgc cactctgcac 5400
ccggcgctgt tcgataaata cctgtacgtc ggcatcaccc gtgcggcaac ctacctggac 5460
gtgacctgct agggcagctt gccatctgca ctcgagagcc tgcgcctgca cttttgccag 5520
gactggcagc aaggcaacta accataccaa tacgaacttg aattgtgagc cgctatgcct 5580
tttcaataag cagcataacg gccagaggaa aagaatatgg aaaagctaaa aatgcattca 5640
cccaatctca cgcaggacaa catcgctcgc attcgcgatc tgtttccagg ctgcgtcacc 5700
gaagctaagg gcgaggatgg tagcgtgaag ctggcagtgg attttgacca attgcgccag 5760
gaactgtctg attcgattgt agaagggccg caggaacgct accagctgaa ttggcctggt 5820
aagcgcgagg cactgctcac tgcaaatgca ccgattgcaa agacgctccg tccagtacgt 5880
acgacaaaaa attcaaaagg cgaacacatt gaagagagcg tcaacttcga cactaccaag 5940
aatatcttta tcgagggaga taatctcgac gcgctgaagc tgcttcagga aaattatctt 6000
ggcaaaatca agatggtcta tatcgacccg ccgtacaaca cgggaaacga ttttgtttac 6060
gccgacgatt ttgtagacga ggtctctgag ttttttcttc gttcaaatca ggtggataga 6120
gaaggaaacc gcttaacagc caaccccgaa acaagcgggc gctttcactc agactggctg 6180
tccatgatgt attcgagact aaagttatcg cgcaacttgc tacgagatga tggattaatc 6240
gtaattcata ttgatgagaa tgaatatccc aacctggaga agcttctggc agaaatatat 6300
ggtgagaaga ataatctcgg aactattgtg tgggataaga gaaatccaaa aggtgatgcc 6360
acaggtgtcg cgcagcagca tgagctaatt tgtatttact gcaaagatcg agaattcttc 6420
aagacaacct gcgagttcca gcgaccaaaa gagaatgcag gaaaaatgct tgcaaaagcc 6480
aagcagattc ttagcaagga gggcggggta actgaaaaag caaggaaaga atacaaagat 6540
tgggtaaacc agcaagatct aactgggggg gaaaaggcat ataatcaaat cgatgacaat 6600
ggcgacgtct tccgtccggt ttctatggcg tggccgaata agaaaaaagc accggaagat 6660
tatttcattc cgctaattca tcctgtaaca gggaaggagt gccctgttcc tgagcgtggg 6720
tggcgaaacc ctcctgcaac aatgcaagaa ctcttgaagt cagggttgat tattttcggt 6780
ccagacgaga agacgcagcc aacaagaaaa tatcggctga atgacaattt attcgaaaat 6840
atcccttctc tactttatta cggtggcagt gacgacgctt tgcttgctga ccttaaaatt 6900
ccttttgata caccgaaacc ggttcaggta gcaaagagac taattcaatc aatttgcaag 6960
aatgacgata tattgatcga cttcttcgct ggctcgtgca cggcggcgca tgcacttatg 7020
cttttgaatg cggaagatgg ggcaaatcgt cgattcataa tggttcaatt gcccgaggaa 7080
tgtgacgaga agtctgaagc caaaaaactt ggatactcag tagtttcgga gattggaaaa 7140
aatcgcattc ggagagctgc aaaaaaaatt agagaagaat tttcagaaat attggctaca 7200
agaaatacgg aacttgactt aggatttcgc ctgcttaaag tcgatacatc gaacatggct 7260
gacgtctact acagccccga tgtgctggaa aaagccaatc tcgacttgtt tgttgacaac 7320
atcaagcctg atcgcacgcc tgaggatctg ctgttccaag taatgctgga ttggggcgtc 7380
gatctggccc tgcctatcgc caagcagtcc atccaaggta aagacgtgtt ctttgtcgat 7440
ggcaatgtgc ttaccgcctg cttcgacgcc agtggcagca ttgacgaaac cttcgtgaag 7500
gaactggcca aactgcagcc gctgcgcgtt gtgttccgcg acgcgggctt taagaacagt 7560
gcggtcaaga tcaatgtcga gcagattttc aagctcatgt cgcctgtcac cgaagtaaaa 7620
tgtatctgag ggggacggtg caatgaagct taaattcaaa catcaaccct atcaggctgc 7680
cgcagtgcag gcggtcgtcg atatttttca ggggcagcca ccggcctctg atgcggccat 7740
gagctatcgc cttgaccctg gtaataccaa aaacggtatg ggtgatctgt ttgcggtaga 7800
tactggtttt aaaaatgctg agctaaccct tagtgaggtt gcattgcttg ataacatcca 7860
gcaggtgcag cgccagcaaa atctgccgtt gtcggagagc ttggtcaaga ccaaggtcgc 7920
caagctaaat cttgatatcg agatggaaac gggtactggc aagacctatt gctacatcaa 7980
gacagtcttc gaactgaaca aacagtacgg ctggagcaag ttcgtcatag tggtgccgag 8040
cattgccatc cgcgagggcg tagccaagtc gttggaaatc acggccgagc actttcagga 8100
gacctatcac aagaaggcac gcttctttat ttacaactct aagcagctgc accatctgga 8160
gagtttctcc tcagatgccg gtatcaatgt catggtgatc aacgtacaag cgtttaacgc 8220
cactggcaaa gataaccgcc gtatctatga agcgctcgat gattttcagt cacgtcgccc 8280
gatcgatgtg atcagcgcaa accgacccat cttgatcctc gatgagccgc agcggatgga 8340
ggggggcaag accctagatt ccttggctaa tttcaacccg ttgatggtgt tgcgctattc 8400
cgctacacac aagaccacac acaacaaaat tcaccgccta gatgcgctcg atgcctacaa 8460
ccagaagctg gtgaagaaga ttgaggtgcg tggtatctcg gtgaagggac tggcgggaac 8520
caatgcctat ctctatttac aatccatcga aatctcaaac aaaaaaccgc cagtagcggt 8580
tgtagagttc gaacagaaac tcagcggtgg aaacatcaag cgcgtcactc gcaaactggg 8640
taagggtgac aatctgtttg tgctatcgaa cgagctggat caataccgcg atgggtttgt 8700
ggtatcggac atcaatgcca atacggacac cttgagcttt accaatggcg tagaactgac 8760
ggtgggtgat gtgattggtg atatttccga gatagcgctg cgccgcattc agatccgtga 8820
gacgatcaag gcgcactttg ataaggagat ggagctcttc gataaagggg tgaaggttct 8880
ctcgttgttc tttattgacg aagtggccag gtaccgggac tactccgctg tcgatgaaaa 8940
gggagagtac gcaaaaatat ttgaagagga gtacgctaag cacattcaag aagtgtttga 9000
taatgggttt atggaggggg atgcccctta tgctaaatat ctacgccgca ttgcggccga 9060
taagacgcat agcggctact tttccatcga caagaagagc aagcgcctca cagatcccaa 9120
agccgctgcg cgcggtgaaa atgcgggctt gtcggatgac gtagatgctt atgatctaat 9180
cctcaaagac aaggaacggt tattatcact agctgagccg gtgcgtttta tcttctcaca 9240
ctcggcctta cgtgagggct gggataaccc caacgtgttt gttatctgca cactcaagca 9300
tagtgataac accatttcac gccgccaaga ggtcgggcgc ggcctgcgtt tgtccgtcaa 9360
tcaaaatggt gaacgcatgg atcacccatc cattgttcat gacattaacg tactgacagt 9420
tgtggccagc gaaagttaca aggacttcgt gaccgccttg cagaaggaca ttagcgactc 9480
cttgtctgct cgcccgcgtg tggcggacaa ggcctacttc acgggcaaga tgctgaacac 9540
gaaggaaggc ccgattacgg tctcggacga ccaagccacg gacatcgagt tttatctgat 9600
ccagaatggc tacgtcgata agaagcgcaa tatcacagag aaataccacc aagctaagaa 9660
agacggcaca ttagaggcat tgccggacga gctgcagccc tatgcagagc aggtattcca 9720
gctgattaac agcgtattca gcgaaagcca gctcatgcag gtagaagatg gacgcaagcc 9780
caaaagactg cagaccaacg ccaactttga aaagcaggag ttcaaagcgc tgtgggggcg 9840
aatcaatcgc aaagctacct acagcgtact gtttgatgat gttgagctag tgaacaatgc 9900
gatcaaggcg ctcaatgata agaatgctgg gttacgagta acgccgttac aatacaccat 9960
tcaccgtggc aagcaggctg atacggcaac ttacgatgac ctcaaaaagg gtatcgcctt 10020
cgagctgaaa gttaccgaaa cagaatcgca caccgcctct atccactccg ctgtgcagta 10080
cgacttgatt ggtaagttat cagaggggac tttgcttaca agacgaacca ttgccgaaat 10140
tctaaaaggt ctccatgctg acgtcttcgc gcaattcaag agcaacccgg aaagtttcat 10200
tgccgaagtc attcgcttgg tcaacgaaca aaaggccaat gtcatcatcg agcatctggc 10260
ctatgacacg ctagaagaca agtttgattt ggacatcttt accacgggtc agagcaaaca 10320
ggatctcagt aaggctggga ataaattgca aaatcacatc tatgattacg tgcttaccga 10380
ctctgcaatt gagcgcaagt tcgtcgaaga gttggatacc agcaaggatg tggtggtata 10440
tgccaagttg ccacgtggtt ttctgatccc aacccctgtc ggcgattaca accccgactg 10500
ggctatttcc ttcaaagaag gctcggtcaa gcatgtgtat ttcgttgctg agaccaaggg 10560
ctcgatgtcg tcactggatt tacggcctat tgaagccacc aagattaaat gtgcccgtaa 10620
gttcttcgat gcggttaaca agacgtttgc tccagaaaac gtgaagtatg acgtagtgga 10680
tagcttcagt aagctgatgg aagtggtgaa gtaagattaa acccagccta ccattataaa 10740
ggtcggctgg ggtgtatgct gtacatatgc tatggtcctt gttggtgaag tgctcgtgaa 10800
aacacctaaa cggactggct gtttcctgtg tgaaattgtt atccgctcac aattccacac 10860
attatacgag ccgatgatta attgtcaaca gctcatttca gaatatttgc cagaaccgtt 10920
atgatgtcgg cgcaaaaaac attatccaga acgggagtgc gccttgagcg acacgaatta 10980
tgcagtgatt tacgacctgc acagccatac cacagcttcc gatggctgcc tgacgccaga 11040
agcattggtg caccgtgcag tcgatgataa gctgtcaaac atgagaattg tgcctaatga 11100
gtgagctaac tcacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg 11160
tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggg 11220
cgccagggtg gtttttcttt tcaccagtga gacgggcaac agctgattgc ccttcaccgc 11280
ctggccctga gagagttgca gcaagcggtc cacgctggtt tgccccagca ggcgaaaatc 11340
ctgtttgatg gtggttaacg gcgggatata acatgagctg tcttcggtat cgtcgtatcc 11400
cactaccgag atatccgcac caacgcgcag cccggactcg gtaatggcgc gcattgcgcc 11460
cagcgccatc tgatcgttgg caaccagcat cgcagtggga acgatgccct cattcagcat 11520
ttgcatggtt tgttgaaaac cggacatggc actccagtcg ccttcccgtt ccgctatcgg 11580
ctgaatttga ttgcgagtga gatatttatg ccagccagcc agacgcagac gcgccgagac 11640
agaacttaat gggcccgcta acagcgcgat ttgctggtga cccaatgcga ccagatgctc 11700
cacgcccagt cgcgtaccgt cttcatggga gaaaataata ctgttgatgg gtgtctggtc 11760
agagacatca agaaataacg ccggaacatt agtgcaggca gcttccacag caatggcatc 11820
ctggtcatcc agcggatagt taatgatcag cccactgacg cgttgcgcga gaagattgtg 11880
caccgccgct ttacaggctt cgacgccgct tcgttctacc atcgacacca ccacgctggc 11940
acccagttga tcggcgcgag atttaatcgc cgcgacaatt tgcgacggcg cgtgcagggc 12000
cagactggag gtggcaacgc caatcagcaa cgactgtttg cccgccagtt gttgtgccac 12060
gcggttggga atgtaattca gctccgccat cgccgcttcc actttttccc gcgttttcgc 12120
agaaacgtgg ctggcctggt tcaccacgcg ggaaacggtc tgataagaga caccggcata 12180
ctctgcgaca tcgtataacg ttactggttt cacattcacc accctgaatt gactctcttc 12240
cgggcgctat catgccatac cgcgaaaggt tttgcaccat tcgatggtgt cgggaattc 12299

Claims (10)

1. A bacterial Restriction-modification system (RM), said Restriction-modification system comprising a Restriction-modification complex enzyme, wherein said Restriction-modification complex enzyme consists of an R subunit and an M subunit, said R subunit being encoded by gene c5372 and having the amino acid sequence shown in SEQ ID No. 3; the M subunit is encoded by a gene c5373, and the amino acid sequence of the M subunit is shown as SEQ ID NO. 4.
2. The bacterial restriction-modification system according to claim 1, wherein the nucleotide sequences of gene c5372 encoding the R subunit and gene c5373 encoding the M subunit are shown in SEQ ID No.1 and SEQ ID No.2, respectively.
3. A recombinant plasmid carrying the bacterial restriction-modification system according to claim 1 or 2, comprising a fragment consisting of the gene c5372 encoding the R subunit, the gene c5373 encoding the M subunit, and a promoter region common to them.
4. The recombinant plasmid according to claim 3, wherein the fragment consisting of the gene c5372 encoding the R subunit, the gene c5373 encoding the M subunit and the promoter region common to them has the nucleotide sequence shown in SEQ ID NO. 5.
5. The recombinant plasmid according to claim 3 or 4, wherein the recombinant plasmid is constructed by:
(1) The primer sequences shown below were designed and synthesized:
Ptac-P53-RM53-F:ATGGGGCCCGCGGCCGCGGATCCGAAAGGGGCAAGCTGTAC
Ptac-P53-RM53-R:ACCAACAAGGACCATAGCATATGTACAGCATACACCCCAGC
(2) Obtaining of the insert
Using genome DNA of escherichia coli CFT073 as a template, using the synthesized primer, and carrying out PCR amplification by using Phanta mix of Nuo-wei company to obtain a fragment with homology arms and containing c5372 and c5373 genes and a promoter region common to the genes, wherein the fragment is named RM53 gene fragment, and the obtained sequence is shown as SEQ ID NO. 5;
(3) Construction and linearization of pGEN-Ptac vectors
1) Taking pGEN-mcs as an initial vector, and carrying out double-enzyme tangential linearization by using EcoRI and NdeI;
2) PCR amplification was performed using pMal-c2x as a template, lacIPtac-c2x-F/LacIPtac-c2x-R as a primer, and Phanta mix from Novain to obtain a lacI-Ptac double-element fragment with a homology arm;
LacIPtac-c2x-F:TCATTTTCTGAAACTCTTCATGCTGGAATTCCCGACACCATCGAATGGT
LacIPtac-c2x-R:GGCCGCGGATCCCGGTACCAAGCTTCATATGCTATGGTCCTTGTTGGTGAAG
3) Performing electrophoresis observation and rubber cutting recovery purification on the DNA product obtained in the steps 1) and 2) to obtain a standby carrier fragment and a lacI-Ptac double-element fragment with a homology arm;
4) Ligating the vector fragment obtained in step 3) with a lacI-Ptac duplex fragment having a homology arm;
5) Transferring the connection product obtained in the step 4) into DH5 competent cells, coating the transformant mixture on LB solid medium containing ampicillin, and culturing overnight;
selecting a correct recombinant plasmid, naming the recombinant plasmid which is verified to be correct as pGEN-Ptac, and performing linearization by utilizing BamHI and NdeI double-enzyme digestion;
(4) Performing electrophoresis observation and rubber cutting recovery purification on the DNA products obtained in the steps (2) and (3) to obtain a standby pGEN-Ptac vector fragment and an RM53 gene fragment with a homology arm;
(5) Ligating the pGEN-Ptac vector fragment obtained in step (4) with the RM53 gene fragment having a homology arm;
(6) Transforming the ligation product obtained in the step (5) into DH5 competent cells, coating the transformant mixture on LB solid medium containing ampicillin, and culturing overnight;
(7) The recombinant plasmid which is verified to be correct is obtained by PCR amplification to verify the insertion of the fragment, namely, the recombinant plasmid carrying the bacterial restriction-modification system of claim 1 or 2.
6. The recombinant plasmid of claim 5, wherein the transformation in step (6) is performed by an electrotransformation method comprising the steps of: one time of electric shock at 2500V, adding 800. Mu.L of LB liquid medium to resuspend and resuscitate at 37 ℃ for 60min, centrifuging at 4000rpm for 3min, resuspending 100. Mu.L of supernatant to precipitate, spreading on LB solid medium with ampicillin concentration of 100. Mu.g/mL, and culturing overnight.
7. The recombinant plasmid of claim 5 wherein the step (7) is performed by PCR amplification to verify the insertion of the fragment, the steps comprising:
picking single colony, inoculating to LB liquid medium of ampicillin, shake culturing at 37deg.C for 12 hr, extracting to obtain recombinant plasmid DNA, taking the recombinant plasmid DNA as template, designing the following primers:
pMal-seq-F:TGGAATTGTGAGCGGATAAC
pGEN-seq-R:GTGGTCACGCTTTTCGTTGG
the insertion of the fragment was verified by PCR amplification under the following conditions: pre-denaturing at 95 ℃ for 5min, denaturing at 95 ℃ for 30s, annealing at 55 ℃ for 2min, extending at 72 ℃ for 5min, circularly amplifying for 30 times, and extending at 72 ℃ for 5min.
8. The recombinant plasmid of claim 5, wherein the recombinant plasmid is named pGEN-Ptac-RM and has the nucleotide sequence shown in SEQ ID NO. 6.
9. Use of the bacterial restriction-modification system of claim 1 or 2 for the preparation of a medicament against phage infection.
10. Use of the recombinant plasmid according to any one of claims 3-8 for the preparation of a medicament against phage infection.
CN202110579583.8A 2021-05-26 2021-05-26 Bacterial restriction-modification system and application thereof Active CN113265380B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110579583.8A CN113265380B (en) 2021-05-26 2021-05-26 Bacterial restriction-modification system and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110579583.8A CN113265380B (en) 2021-05-26 2021-05-26 Bacterial restriction-modification system and application thereof

Publications (2)

Publication Number Publication Date
CN113265380A CN113265380A (en) 2021-08-17
CN113265380B true CN113265380B (en) 2023-09-19

Family

ID=77232990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110579583.8A Active CN113265380B (en) 2021-05-26 2021-05-26 Bacterial restriction-modification system and application thereof

Country Status (1)

Country Link
CN (1) CN113265380B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946839A (en) * 2004-03-24 2007-04-11 新英格兰生物实验室公司 A novel modular type II restriction endonuclease, CspCI, and the use of modular endonucleases for generating endonucleases with new specificities

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TNSN05136A1 (en) * 2005-05-10 2007-05-14 Faculte Des Sciences De Tunis ISOLATION AND BIOCHEMICAL AND GENETIC CHARACTERIZATION OF A PLASMID NAMED pHLT5 FROM ESCHERICHIA COLI 1524 TO WHICH CODE FOR A TYPE II RESTRICTION AND MODIFICATION SYSTEM.
GB201003036D0 (en) * 2010-02-23 2010-04-07 Fermentas Uab Restriction endonucleases and their applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946839A (en) * 2004-03-24 2007-04-11 新英格兰生物实验室公司 A novel modular type II restriction endonuclease, CspCI, and the use of modular endonucleases for generating endonucleases with new specificities

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
刘金毅,孟雁,赵晓娟,沈洁,薛越强,史顺娣,蔡有余.EcoRⅡ限制性内切酶和甲基化酶基因克隆、表达和缺失突变分析.中国医学科学院学报.2000,(02), *
刘金毅,赵晓娟.限制和修饰系统的克隆及同源性研究.国外医学.分子生物学分册.1997,(04),全文. *
无.DEAD/DEAH box helicase family protein [Escherichia coli].《NCBI》.2020,参见标题以及ORIGIN. *
无.site-specific DNA-methyltransferase [Escherichia coli].《NCBI》.2018,参见标题以及ORIGIN. *
李火明等.尿路致病性大肠杆菌中I 型限制-修饰系统C5423-5425 的鉴定.《微生物学报》.2021,参见摘要、第2页最后一段、第13页第1段、第1.3-1.6节. *

Also Published As

Publication number Publication date
CN113265380A (en) 2021-08-17

Similar Documents

Publication Publication Date Title
Rose The nucleotide sequence of pACYC177.
JP7217250B2 (en) Novel isopropylmalate synthase mutant and method for producing L-leucine using the same
CN108728470B (en) Recombinant bacterium for producing beta-alanine and construction method and application thereof
AU2011273176B2 (en) Self-deleting plasmid
KR20210144816A (en) Methods for Construction of Chimeric Plasmid Libraries
US20210239681A1 (en) Compositions and methods for evaluating potency of listeria-based immunotherapeutics
Sitaraman et al. The hsd loci of Mycoplasma pulmonis: organization, rearrangements and expression of genes
CN112840028B (en) Nucleic acid molecules comprising variant RpoC coding sequences
CN113265380B (en) Bacterial restriction-modification system and application thereof
CN110819592A (en) Universal donor stem cell and preparation method thereof
CN112094792A (en) Brucella Rev.1 eryA gene deletion strain, and construction method and application thereof
CN110591993A (en) Vibrio harveyi homologous recombination gene knockout method based on hydrochloric acid stimulation
CN111100831B (en) Recombinant bacterium for producing L-carnitine and construction method and application thereof
JP5930289B2 (en) Novel microorganism and method for degrading polychlorinated biphenyl using the same
JP4676789B2 (en) Genes related to acid resistance of lactic acid bacteria
JP2015518719A (en) Method for producing tuberculosis vaccine by attenuating tuberculosis bacteria
CN108795832B (en) Host bacterium with endogenous L-asparaginase II gene knocked out, preparation method and application thereof
Theeragool et al. Disruption of the groEL gene revealed a physiological role for chaperonin in the thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108
JP2007228934A (en) Method for transforming bacterium belonging to genus rhodococcus
CN108070602B (en) Molecular modification method for reducing and delaying sporulation of bacillus
CN108728469A (en) The structure of recombination bacillus coli engineering bacteria and its application in producing Beta-alanine
JP4942030B2 (en) Genes, proteins, and recombinant vectors that increase gonococcal conidia formation
Han et al. Harnessing the endogenous Type IC CRISPR-Cas system for genome editing in Bifidobacterium breve
WO2023012193A1 (en) Method for targeted sequencing
RU2792116C2 (en) Method for production of l-lysin by modifying aconitase gene and/or its regulative elements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant