CN113249625A - 一种高比强度镁锂基复合材料及其制备方法 - Google Patents

一种高比强度镁锂基复合材料及其制备方法 Download PDF

Info

Publication number
CN113249625A
CN113249625A CN202110492925.2A CN202110492925A CN113249625A CN 113249625 A CN113249625 A CN 113249625A CN 202110492925 A CN202110492925 A CN 202110492925A CN 113249625 A CN113249625 A CN 113249625A
Authority
CN
China
Prior art keywords
mwcnts
composite material
magnesium
lithium
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110492925.2A
Other languages
English (en)
Other versions
CN113249625B (zh
Inventor
巫瑞智
徐林
王佳豪
张春波
侯乐干
秦丰
郝晓伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202110492925.2A priority Critical patent/CN113249625B/zh
Publication of CN113249625A publication Critical patent/CN113249625A/zh
Application granted granted Critical
Publication of CN113249625B publication Critical patent/CN113249625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1275Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding involving metallurgical change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1054Regulating the dimensions of the laminate, e.g. by adjusting the nip or platen gap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种高比强度镁锂基复合材料及其制备方法,该材料以超轻镁锂合金LA141作为基体,多壁碳纳米管为增强体,由以下方法制备而成:(1)利用电泳沉积技术制备MWCNTs膜层;(2)累积叠轧制备LA141/MWCNTs板材;(3)搅拌摩擦加工制备LA141/MWCNTs复合材料。本发明的镁锂基复合材料及其制备方法,通过采用电泳沉及技术、累积叠轧技术和搅拌摩擦加工相结合,从而实现了镁锂基复合材料的制备。该方法操作简单,成本较低,制备出了具有超细晶、增强体分布均匀和比强度较高的复合材料。

Description

一种高比强度镁锂基复合材料及其制备方法
技术领域
本发明涉及一种镁锂基复合材料及其制备方法,具体涉及一种高比强度镁锂基复合材料及其制备方法。
背景技术
研究发现通过在Mg中添加Li元素,可以使密度降低至1.35-1.65g/cm3,比普通镁合金轻1/4-1/3,由于其低密度的特点,镁锂合金被人们称为超轻合金。此外通过Li元素的添加使Mg的晶格结构从密排六方(hcp)变为体心立方(bcc),由于体心立方结构的滑移系较密排立方结构多,因此提高金属镁的塑性变形能力。由镁理合金的二元相图可知,当Li含量小于5.70%时,合金中仅存α-Mg相;当Li含量为5.70~10.3%时,合金中存在α-Mg相和β-Li相,为双相镁锂合金;当Li元素含量大于10.3%时,合金中仅存β-Li相。镁锂合金除了低密度的特点,同时还具备较好比刚度、比强度以及良好阻尼性能和电磁屏蔽性能,在航天航空、国防军工领域、汽车领域以及3C行业有着广泛的用途。虽然镁锂合金具有低密度等诸多优点,但是相比于其他合金强度较低,限制了其运用的范围,因此急需提高其强度扩大其使用的范围。
碳纳米管具有优异的力学性能以及良好的热学性能和电学性能,对于复合材料而言是一种理想的增强体。碳纳米管增强金属基复合材料具有较高的比强度和比刚度,而且具有潜在的优良导电和导热性能,在航空航天、汽车制造、3C等领域有着广泛的应用前景。由于碳纳米管之间范德华力作用强,导致其在金属基体材料中发生团聚,不能很好地体现出其优异的增强作用,因此在制备碳纳米管增强金属基复合材料时,如何分散碳纳米管成为大家关注的关键技术问题。
搅拌摩擦加工是一种以搅拌摩擦焊为基础发展的一种剧烈塑性变形加工技术,在复合材料制备、材料改性等方面有着广泛的用途。由于该技术具有较大的塑性变形,因此在制备复合材料过程中不仅可以显著细化基体材料的微观组织,与传统的塑性变形加工相比,搅拌摩擦加工技术在过程中使材料发生剧烈塑性变形,在搅拌头的作用下材料发生塑性流动,显微组织发生混合和破碎,使增强体颗粒在基体中的分布更加均匀。搅拌摩擦加工技术是一种高效、绿色的固相加工技术,与其他制备方法相比,具有操作方便、成本低、不良界面反应少等优点。
发明内容
镁锂合金LA141塑性变形能力好,适合累积叠轧和搅拌摩擦加工;高锂含量合金的晶粒粗大,有必要采用剧烈塑性变形进行晶粒细化;MWCNTs表面活性大,容易团聚,搅拌摩擦加工有利于使其均匀分布。本发明的目的在于提供一种高比强度镁锂基复合材料及其制备方法。该方法制备的复合材料不仅增强体(MWCNTs)在基体材料分布均匀,而且使基体材料(LA141)晶粒得到明显的细化,从而使该复合材料具备较高的比强度。
本发明的目的是这样实现的:
本发明将电泳沉积技术、累积叠轧技术和搅拌摩擦加工的优点结合起来,开发出新的工艺流程。首先利用电泳沉积技术在基体板材上制备出宏观均匀分散的碳纳米管膜层,然后利用累积叠轧技术对具有碳纳米管膜层的基体板材(LA141)进行预成型,制备出具体较高体积分数碳纳米管的LA141/MWCNTs预制板材,最后利用搅拌摩擦加工所用搅拌头的旋转和给进所产生剧烈的塑性变形,让基体材料在高速运动的搅拌头作用下发生塑性流动,与增强体材料发生混合,从而使增强体在基体中均匀分布,此外,由于搅拌摩擦的剧烈塑性变形作用,使得基体材料的晶粒发生明显的细化。
本发明通过以下技术方案实现:
一种高比强度镁锂基复合材料,其特征在于:该方法以超轻镁锂合金LA141作为基体,多壁碳纳米管为增强体。一种高比强度镁锂基复合材料的制备方法,其特征在于,以下制备步骤:
(1)利用电泳沉积技术制备MWCNTs膜层;
(2)累积叠轧制备LA141/MWCNTs板材;
(3)搅拌摩擦加工制备LA141/MWCNTs复合材料。
其具体制备步骤如下:
(1)利用电泳沉积技术制备MWCNTs膜层:
将镁锂合金铸锭切成厚度为20mm块状板材,然后在250℃下保温30min进行预轧制,每道次下压量为10%,并且每次间隔保温5min,直至轧制到2mm。然后将轧制得到的板材切成片状板材用于制备膜层;采用1gMWCNTs、0.4gAl(NO3)3、0.1g聚乙烯吡咯烷酮(PVP)溶于400ml体积比1:1的无水乙醇和丙酮的混合液中,然后超声分散8h,获得悬浮性较好的电泳液。然后以LA141镁锂合金作为阴极,相同尺寸的不锈钢片作为阳极,在30V的电压和0.5A的电流下进行电泳沉积5-10min,然后将沉积完成的试样自然干燥1-2h,获得所需MWCNTs膜层。
(2)累积叠轧制备LA141/MWCNTs板材:
将电泳沉积后具有MWCNTs膜层的板材块进行叠层堆垛,在250℃下保温10min,以60%的下压量进行累积叠轧结合,获得由初始厚度14mm下压制成5mm的LA141/MWCNTs板材。
(3)搅拌摩擦加工制备LA141/MWCNTs复合材料:
将LA141/MWCNTs板材进行搅拌摩擦加工,其工艺参数为:搅拌头旋转速度为900~1100r/min、给进速度为30~50mm/min,倾斜角度为2.5°,下压量为0.1mm;在上述工艺参数下制备出LA141/MWCNTs复合材料。
所述碳纳米管为多壁碳纳米管,纯度为>95wt%,内径为3-5nm,外径为8-15nm,长度为3-12μm。
所述LA141合金成分及其百分含量为:Li:13%-14%,Al:0.9%-1%,其余为Mg。
与现有技术相比,本发明的有益效果是:
本发明的镁锂基复合材料及其制备方法,通过采用电泳沉及技术、累积叠轧技术和搅拌摩擦加工相结合,从而实现了镁锂基复合材料的制备。该方法操作简单,成本较低,制备出了具有超细晶、增强体分布均匀和比强度较高的复合材料。
附图说明
图1是碳纳米膜层的SEM图。
图2是搅拌摩擦加工示意图。
图3是该复合材料的TEM图。
图4是基体合金(铸态、轧制态)和该复合材料的应力-应变曲线。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
本发明涉及一种镁锂基复合材料及其制备方法,具体涉及一种高比强度镁锂基复合材料及其制备方法。具体步骤如下:
(1)将基体LA141铸锭在200℃下进行12h的均化处理。
(2)将均化好的基体LA141铸锭切成尺寸为110mm×40mm×20mm块状板材,砂纸打磨至表面光滑,然后在250℃下保温30min进行预轧制,每道次下压量为10%并且每次间隔保温5min,直至轧制到2mm。然后将轧制得到的板材切成尺寸为150mm×130mm×2mm片状板材,利用砂纸打磨除去表面的氧化层利用无水乙醇进行清洗,用于膜层制备备用;采用1gMWCNTs、0.4gAl(NO3)3、0.1g聚乙烯吡咯烷酮(PVP)溶于400ml体积比1:1的无水乙醇和丙酮的混合液中,先用玻璃棒不断搅拌,让碳管溶于混合液体中,然后利用超声分散,共8h,获得悬浮性较好的电泳液。然后以LA141镁锂合金作为阴极,相同尺寸的不锈钢片作为阳极,在30V的电压和0.5A的电流下进行电泳沉积5min,然后将沉积完成的试样自然干燥1h,获得所需MWCNTs膜层。
(3)取7块具有MWCNTs膜层的板材,将没有膜层的一侧进行打磨,使其露新鲜的金属,然后用打磨的一侧与沉积有碳管膜层的一侧进行叠层堆垛,在250℃下保温10min,以轧辊转速为500r/min,以60%的下压量进行轧制结合,获得由初始厚度14mm下压制成5mm的LA141/MWCNTs板材。
将LA141/MWCNTs板材切割成尺寸为150mm×140mm×5mm的板材,利用砂纸打磨除去板材表面的氧化层,然后利用搅拌焊机沿着垂直于轧制方向对板材进行搅拌摩擦加工,其工艺参数为:搅拌头旋转速度为900~1100r/min、给进速度为30~50mm/min,倾斜角度为2.5°,下压量为0.1mm;在上述工艺参数下加工制备出LA141/MWCNTs复合材料。
(4)对制备的镁锂基复合材料力学性能进行检测、分析、表征。
结果表明,经过搅拌摩擦加工后,基体合金LA141晶粒得到明显的细化,由于在制备过程中采用了电泳沉积技术,制备出了均匀的膜层,经过搅拌摩擦加工后使增强体在基体中分布均匀。本发明的镁锂基复合材料最高抗拉强度为260MPa,分别比均火态和轧制态的试样的抗拉强度高出110MPa和100MPa。此外本发明的复合材料其具有较高的比强度为192.59kNm/kg。
本发明以LA141镁锂合金作为基体材料,碳纳米管作为增强,通过采用电泳沉积技术、累积叠轧技术和搅拌摩擦加工相结合,制备了镁锂基复合材料。该方法操作简单,成本较低,制备出了具有超细晶、增强体分布均匀的复合材料,从而大幅度的提高了LA141镁锂合金的比强度。

Claims (10)

1.一种高比强度镁锂基复合材料,其特征在于:该材料以超轻镁锂合金LA141作为基体,多壁碳纳米管为增强体,由以下方法制备而成:
(1)利用电泳沉积技术制备MWCNTs膜层;
(2)累积叠轧制备LA141/MWCNTs板材;
(3)搅拌摩擦加工制备LA141/MWCNTs复合材料。
2.根据权利要求1所述的高比强度镁锂基复合材料,其特征在于:所述步骤(1)具体为:
将镁锂合金铸锭切成厚度为20mm块状板材,然后在250℃下保温30min进行预轧制,每道次下压量为10%,并且每次间隔保温5min,直至轧制到2mm;然后将轧制得到的板材切成片状板材用于制备膜层;采用1gMWCNTs、0.4gAl(NO3)3、0.1g聚乙烯吡咯烷酮(PVP)溶于400ml体积比1:1的无水乙醇和丙酮的混合液中,然后超声分散8h,获得悬浮性较好的电泳液;然后以LA141镁锂合金作为阴极,相同尺寸的不锈钢片作为阳极,在30V的电压和0.5A的电流下进行电泳沉积5-10min,然后将沉积完成的试样自然干燥1-2h,获得所需MWCNTs膜层。
3.根据权利要求1所述的高比强度镁锂基复合材料,其特征在于:所述步骤(2)具体为:
将电泳沉积后具有MWCNTs膜层的板材块进行叠层堆垛,在250℃下保温10min,以60%的下压量进行累积叠轧结合,获得由初始厚度14mm下压制成5mm的LA141/MWCNTs板材。
4.根据权利要求1所述的高比强度镁锂基复合材料,其特征在于:所述步骤(3)具体为:
将LA141/MWCNTs板材进行搅拌摩擦加工,其工艺参数为:搅拌头旋转速度为900~1100r/min、给进速度为30~50mm/min,倾斜角度为2.5°,下压量为0.1mm;在上述工艺参数下制备出LA141/MWCNTs复合材料。
5.根据权利要求1所述的高比强度镁锂基复合材料,其特征在于:所述碳纳米管为多壁碳纳米管,纯度为>95wt%,内径为3-5nm,外径为8-15nm,长度为3-12μm,所述LA141合金成分及其百分含量为:Li:13%-14%,Al:0.9%-1%,其余为Mg。
6.一种高比强度镁锂基复合材料的制备方法,其特征在于,包括以下步骤:
(1)利用电泳沉积技术制备MWCNTs膜层;
(2)累积叠轧制备LA141/MWCNTs板材;
(3)搅拌摩擦加工制备LA141/MWCNTs复合材料。
7.根据权利要求1所述的高比强度镁锂基复合材料的制备方法,其特征在于:所述步骤(1)具体为:将镁锂合金铸锭切成厚度为20mm块状板材,然后在250℃下保温30min进行预轧制,每道次下压量为10%,并且每次间隔保温5min,直至轧制到2mm;然后将轧制得到的板材切成片状板材用于制备膜层;采用1gMWCNTs、0.4gAl(NO3)3、0.1g聚乙烯吡咯烷酮(PVP)溶于400ml体积比1:1的无水乙醇和丙酮的混合液中,然后超声分散8h,获得悬浮性较好的电泳液;然后以LA141镁锂合金作为阴极,相同尺寸的不锈钢片作为阳极,在30V的电压和0.5A的电流下进行电泳沉积5-10min,然后将沉积完成的试样自然干燥1-2h,获得所需MWCNTs膜层。
8.根据权利要求1所述的高比强度镁锂基复合材料的制备方法,其特征在于:所述步骤(2)具体为:将电泳沉积后具有MWCNTs膜层的板材块进行叠层堆垛,在250℃下保温10min,以60%的下压量进行累积叠轧结合,获得由初始厚度14mm下压制成5mm的LA141/MWCNTs板材。
9.根据权利要求1所述的高比强度镁锂基复合材料的制备方法,其特征在于:所述步骤(3)具体为:将LA141/MWCNTs板材进行搅拌摩擦加工,其工艺参数为:搅拌头旋转速度为900~1100r/min、给进速度为30~50mm/min,倾斜角度为2.5°,下压量为0.1mm;在上述工艺参数下制备出LA141/MWCNTs复合材料。
10.根据权利要求1所述的高比强度镁锂基复合材料的制备方法,其特征在于:所述碳纳米管为多壁碳纳米管,纯度为>95wt%,内径为3-5nm,外径为8-15nm,长度为3-12μm,所述LA141合金成分及其百分含量为:Li:13%-14%,Al:0.9%-1%,其余为Mg。
CN202110492925.2A 2021-05-07 2021-05-07 一种高比强度镁锂基复合材料及其制备方法 Active CN113249625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110492925.2A CN113249625B (zh) 2021-05-07 2021-05-07 一种高比强度镁锂基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110492925.2A CN113249625B (zh) 2021-05-07 2021-05-07 一种高比强度镁锂基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113249625A true CN113249625A (zh) 2021-08-13
CN113249625B CN113249625B (zh) 2022-04-05

Family

ID=77223831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110492925.2A Active CN113249625B (zh) 2021-05-07 2021-05-07 一种高比强度镁锂基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113249625B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000182A (zh) * 2021-10-21 2022-02-01 重庆大学 一种金属镁-铜-石墨烯层状复合材料制备方法
CN115401963A (zh) * 2022-08-23 2022-11-29 江苏理工学院 一种非金属量子点增强镁锂合金基复合材料的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270059A1 (en) * 2009-02-16 2012-10-25 Henning Zoz Connection means, a method of manufacturing the same and a material connection
CN103088273A (zh) * 2011-10-31 2013-05-08 中国科学院金属研究所 一种高体积分数的碳纳米管增强金属基复合材料制备方法
CN104498793A (zh) * 2015-01-04 2015-04-08 哈尔滨工程大学 高强韧性镁锂合金及累积叠轧焊工艺制备高强韧性镁锂合金的方法
CN106064504A (zh) * 2016-06-08 2016-11-02 哈尔滨工程大学 一种高强韧性镁锂合金层状复合材料及其制备方法
CN106493170A (zh) * 2016-09-19 2017-03-15 哈尔滨工程大学 通过累积叠轧制造的Mg‑Li/Al材料的方法
CN108504908A (zh) * 2018-04-17 2018-09-07 福州大学 一种碳纳米管增强铝基复合材料的制备方法
CN108531837A (zh) * 2018-05-25 2018-09-14 湖南工学院 一种超细晶az61镁合金块体材料制备方法
CN109837437A (zh) * 2019-02-27 2019-06-04 吉林大学 一种使低含量镁合金具有均匀细晶的变温控轧制备方法
CN110760915A (zh) * 2019-11-19 2020-02-07 陕西科技大学 一种层状碳纳米管增强镁基复合板材及其制备方法
CN111910098A (zh) * 2020-06-30 2020-11-10 上海交通大学 一种石墨烯/碳纳米管增强镁锂基复合材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270059A1 (en) * 2009-02-16 2012-10-25 Henning Zoz Connection means, a method of manufacturing the same and a material connection
CN103088273A (zh) * 2011-10-31 2013-05-08 中国科学院金属研究所 一种高体积分数的碳纳米管增强金属基复合材料制备方法
CN104498793A (zh) * 2015-01-04 2015-04-08 哈尔滨工程大学 高强韧性镁锂合金及累积叠轧焊工艺制备高强韧性镁锂合金的方法
CN106064504A (zh) * 2016-06-08 2016-11-02 哈尔滨工程大学 一种高强韧性镁锂合金层状复合材料及其制备方法
CN106493170A (zh) * 2016-09-19 2017-03-15 哈尔滨工程大学 通过累积叠轧制造的Mg‑Li/Al材料的方法
CN108504908A (zh) * 2018-04-17 2018-09-07 福州大学 一种碳纳米管增强铝基复合材料的制备方法
CN108531837A (zh) * 2018-05-25 2018-09-14 湖南工学院 一种超细晶az61镁合金块体材料制备方法
CN109837437A (zh) * 2019-02-27 2019-06-04 吉林大学 一种使低含量镁合金具有均匀细晶的变温控轧制备方法
CN110760915A (zh) * 2019-11-19 2020-02-07 陕西科技大学 一种层状碳纳米管增强镁基复合板材及其制备方法
CN111910098A (zh) * 2020-06-30 2020-11-10 上海交通大学 一种石墨烯/碳纳米管增强镁锂基复合材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000182A (zh) * 2021-10-21 2022-02-01 重庆大学 一种金属镁-铜-石墨烯层状复合材料制备方法
CN115401963A (zh) * 2022-08-23 2022-11-29 江苏理工学院 一种非金属量子点增强镁锂合金基复合材料的制备方法

Also Published As

Publication number Publication date
CN113249625B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
Fan et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy
Perez et al. Mechanical properties of a Mg–10 (vol.%) Ti composite
CN113249625B (zh) 一种高比强度镁锂基复合材料及其制备方法
Cao et al. Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites
Liu et al. Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing
Shen et al. Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites
Srinivasan et al. A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications
Chen et al. Heat treatment behavior and strengthening mechanisms of CNT/6061Al composites fabricated by flake powder metallurgy
Afifeh et al. Nanostructured copper matrix composite with extraordinary strength and high electrical conductivity produced by asymmetric cryorolling
Chen et al. Effect of initial Ti powders size on the microstructures and mechanical properties of Al3Ti/2024 Al composites prepared by ultrasonic assisted in-situ casting
Dong et al. Plasma assisted milling treatment for improving mechanical and electrical properties of in-situ grown graphene/copper composites
CN109554565A (zh) 一种碳纳米管增强铝基复合材料的界面优化方法
CN105648249A (zh) 一种碳纳米管增强铝基多层复合材料的制备方法
Wu et al. Work hardening behavior of Ti particle reinforced AZ91 composite prepared by spark plasma sintering
Fujii et al. Fabrication of Fe-based metallic glass particle reinforced Al-based composite materials by friction stir processing
Patel et al. Effect of ultrasonic stirring on changes in microstructure and mechanical properties of cast insitu Al 5083 alloy composites containing 5wt.% and 10wt.% TiC particles
CN109277560A (zh) 一种高强高韧石墨烯/金属复合材料的制备方法
Pillari et al. Carbon nanotube and graphene reinforced magnesium matrix composites: a state-of-the-art review
Wang et al. Simultaneously enhancing strength and toughness of graphene oxide reinforced ZK60 magnesium matrix composites through powder thixoforming
Muxi et al. Research progress on preparation technology of graphene-reinforced aluminum matrix composites
Ge et al. Towards high performance in Ti-based composite through manipulating nickel coatings on graphene reinforcement
Yang et al. Microstructures and mechanical properties of SCF/AZ31B composites fabricated by multi-times hot-extrusion
Bai et al. Good strength-plasticity compatibility of GNP/AZ31 composites fabricated by FSP: microstructural evolution and mechanical properties
Shen et al. Fracture mechanism of nano-and submicron-SiCp/Mg composite during room temperature tensile test: Interaction between double sized particles and dislocations
CN110129596B (zh) 薄带状纳米Al3(Sc,Zr)/Al复合孕育剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant