CN113241794B - 一种基于多智能体的孤岛微电网自适应控制方法 - Google Patents

一种基于多智能体的孤岛微电网自适应控制方法 Download PDF

Info

Publication number
CN113241794B
CN113241794B CN202110598237.4A CN202110598237A CN113241794B CN 113241794 B CN113241794 B CN 113241794B CN 202110598237 A CN202110598237 A CN 202110598237A CN 113241794 B CN113241794 B CN 113241794B
Authority
CN
China
Prior art keywords
microgrid
adaptive
control
voltage
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110598237.4A
Other languages
English (en)
Other versions
CN113241794A (zh
Inventor
何怡刚
贾慧莉
曹志煌
谢辉
鲁力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
State Grid Anhui Electric Power Co Ltd
Original Assignee
Hefei University of Technology
State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology, State Grid Anhui Electric Power Co Ltd filed Critical Hefei University of Technology
Priority to CN202110598237.4A priority Critical patent/CN113241794B/zh
Publication of CN113241794A publication Critical patent/CN113241794A/zh
Application granted granted Critical
Publication of CN113241794B publication Critical patent/CN113241794B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls

Abstract

一种基于多智能体的孤岛微电网自适应控制方法,属于智能微电网控制领域。在分布式微电网中,首先将部分节点受外部入侵的微电网建模为受击多智能体系统,将微电网通信拓扑建模为连通图;然后,采用有限时间一致性理论和自适应神经网络方法构建分布式自适应控制器,将单个逆变器的有功与无功功率分别作为控制量输入,从而实现有限时间稳定的孤岛微电网自适应控制。

Description

一种基于多智能体的孤岛微电网自适应控制方法
技术领域
本发明涉及智能微电网控制领域,提出了一种基于多智能体的孤岛微电网自适应控制方法。
背景技术
随着分布式新能源渗透率的提升,新一代电力系统提出了向智能化发展的要求。微网能有效地整合分布式电源与本地负荷,提高系统稳定性与经济性,作为大电网的受控单元,从而有效弱化了新能源并网造成的不利影响。微网在并网时,其动态特性主要由主网决定。孤岛时由于缺乏主网支撑,各DG(distributed generations)运行环境较复杂,且新能源出力与负荷需求均有波动性,使孤岛微电网控制策略的研究成为难点。
为了消除或减小常规下垂控制所造成的电压、频率等偏差,保证微电网的安全稳定运行,需要对其进行二次调节控制。传统解决方式主要采用集中式控制结构,利用中央控制器可以有效地实现对微网二次控制,但辐射式的结构也导致了它只能准确调节单一母线电压,无法实现全局状态一致。由于多智能体技术与分布式控制方式之间的契合度较高,近年来引起了较多学者的关注。目前已证明,多智能体系统一致性算法具有更好的可拓展性,对系统的电压和频率进行优化时可以取得更好的可靠性。
对于多智能体一致性算法,目前,绝大多数围绕多智能系统展开的控制算法研究集中在传统非网络环境下进行,即只引入一般的外部干扰。事实上在网络环境中,一些攻击方式会对微电网系统本身产生影响,导致微电网输出受到外界干扰甚至恶意控制,导致难以预料的后果。
发明内容
本发明所要解决的技术问题是,克服现有技术的不足,提供一种能实现微网分布式发电中电压和频率有限时间稳定自适应控制的基于多智能体的孤岛微电网自适应控制方法。
本发明解决其技术问题采用的技术方案是,一种基于多智能体的孤岛微电网自适应控制方法,该方法包括以下内容:(1)基于图论的受击微电网系统的通信机制与拓扑关系建模,适用的微电网具有以下结构:(a)物理网络:微电网由分布式电源、分布式逆变器和分布式控制器构成,每一套电源、逆变器和控制器组合为微电网的一个基本工作单位;(b)信息网络:微电网不同模块通过网络实现互联,各模块之间均存在直接或间接的通信关系,且任意两个存在直接通信关系的模块之间的通信是双向的;(2)基于多智能体系统有限时间一致性理论和自适应神经网络方法的分布式自适应控制;
控制框架的具体控制算法包含如下两部分设计:
(1)有限时间一致性控制器
Figure GDA0003748410370000021
上式中,gi(·)为齐次性方法构建的有限时间一致性控制器,k1>0,k2>0,0<α1<1,α2=2α1/(1+α1),sig(·)为定义的新型符号函数,sigα(x)=|x|αsgn(x),其中:α≥0,
Figure GDA0003748410370000022
sgn(·)为标准符号函数;
(2)自适应目标跟踪器
Figure GDA0003748410370000023
上式中,hi(·)为自适应目标跟踪器,
Figure GDA0003748410370000024
为自适应参数,定义为
Figure GDA0003748410370000025
具体的参数设置为:
Figure GDA0003748410370000026
其中:①k>0,0.5<ω=ω12<1,ω1>0,ω2>0均为奇数,
②a>0,
Figure GDA0003748410370000027
进一步,受击微电网通信模型有以下特点:
(1)微电网通信模型按图论建模为无领导者多智能体系统,该系统模型的节点信息可按照n阶加权无向图G={V,E,A}定义,其中V={vi,i=1,…,n}为n个智能体的节点集,表示n个工作单位,
Figure GDA0003748410370000031
为边集,表示单位间的通信关系,
Figure GDA0003748410370000032
为加权邻接矩阵,表示通信权重;
(2)该无向图具有无向连通性,即图中任意两个节点之间都至少存在一条路径,且该路径满足
Figure GDA0003748410370000033
(3)网络中的每一套逆变器的频率与电压、有功与无功功率为微电网模型的全局信息,可以在通信中相互获取;
(4)网络中部分节点可能受到外部入侵,导致微电网部分节点的输出频率和输出电压可能在任意时刻异步发生变化。
进一步,受击微电网控制模型还有以下特点:
(1)微电网的一级控制层采用下垂控制方法,其有功与无功功率由节点输出频率和电压决定,系统动力学模型形式如下
Figure GDA0003748410370000034
其中:fi为下垂控制产生的系统输出频率,Udi为第i台逆变器输出电压在d轴上的分量,q轴参考值为0;f0i、U0i分别为第i台逆变器额定输出频率和电压,由二次控制器给定;mi,ni为下垂系数;Pi,Qi分别为有功和无功功率;
(2)微电网的二级控制层采用分布式自适应控制方法,系统动力学模型为二阶模型,形式如下
Figure GDA0003748410370000035
Figure GDA0003748410370000036
其中:vfi,vui分别为二次频率和电压控制输入;
(3)微电网节点遭受外部入侵时,表现为频率与电压控制输入具有时变子系统,此时系统动力学模型形式如下
Figure GDA0003748410370000041
Figure GDA0003748410370000042
其中:Di,k(fi,xi,wi)为节点受外部入侵时产生的频率切换子系统,Di,k(Udi,xi,wi)为节点受外部入侵时产生的电压切换子系统,wi(t)为切换信号,该信号是一个分段函数,提供了一个时间到子系统空间的映射:[t0,+∞)→Pi,其中t0为初始时刻,Pi为子系统空间,包含
Figure GDA0003748410370000043
子系统,对于每个k∈Pi,fi,k(xi(t),vi(t),wi(t))是未知的非线性连续函数。
进一步,控制框架具有如下形式:
对于微电网频率控制模型,将fi重写为pi,将xi重写为qi;对于微电网电压控制模型,将Udi重写为pi,将yi重写为qi,则所选控制器形式可统一为
Figure GDA0003748410370000044
Figure GDA0003748410370000045
Figure GDA0003748410370000046
其中:ui为控制输入,即二次频率输入vfi或电压控制输入vui
Figure GDA0003748410370000047
为定义的智能体i目标轨迹,gi(·),hi(·)为已设计的非线性函数,
Figure GDA0003748410370000048
为自适应参数。
本发明具有以下积极效果:微电网系统在该控制协议下的二次电压/频率恢复的控制目标是各分布式电源的电压/频率都趋于DG0给出的系统参考值并且其导数最终都等于0。由于本文孤岛微电网系统测试框图的拓扑结构满足强连通的特性,即任意两节点之间均有一条及以上的有向生成路径。所以系统能够在有限时间内趋于一致。
附图说明
图1为本发明实施例中基于图论的通信拓扑图;
图2为本发明实施例中算法测试图;
图3为本发明实施例中单个DG单元的分布式控制结构;
图4为本发明实施例中的攻击导致的切换函数;
图5为本发明实施例中的系统电压/频率。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
参照附图1-5,本实施例为实现微网分布式发电中电压和频率有限时间稳定的自适应控制,提出一种基于多智能体的孤岛微电网自适应控制方法,通过二阶一致性算法对微电网系统进行二次调频调压控制。
主要包括以下内容:基于图论的受击微电网系统的通信机制与拓扑关系建模;基于多智能体系统有限时间一致性理论和自适应神经网络方法的分布式自适应控制。
其中,适用的微电网具有如下结构:
1)物理网络:微电网由分布式电源、分布式逆变器和分布式控制器构成,每一套电源、逆变器和控制器组合为微电网的一个基本工作单位。
2)信息网络:微电网不同模块通过网络实现互联,各模块之间均存在直接或间接的通信关系,且任意两个存在直接通信关系的模块之间的通信是双向的。
受击微电网通信模型有如下特点:
1)微电网通信模型按图论建模为无领导者多智能体系统,该系统模型的节点信息可按照n阶加权无向图G={V,E,A}定义,其中V={vi,i=1,…,n}为n个智能体的节点集,表示n个工作单位,
Figure GDA0003748410370000051
为边集,表示单位间的通信关系,
Figure GDA0003748410370000052
为加权邻接矩阵,表示通信权重。
2)该无向图具有无向连通性,即图中任意两个节点之间都至少存在一条路径,且该路径满足
Figure GDA0003748410370000053
3)网络中的每一套逆变器的频率与电压、有功与无功功率为微电网模型的全局信息,可以在通信中相互获取。
4)网络中部分节点可能受到外部入侵,导致微电网部分节点的输出频率和输出电压可能在任意时刻异步发生变化。
二次控制的实现主要由各跟随者之间进行相互协作来完成。定义DG0为领导者,部分跟随者除了接收相邻跟随者的信息之外,还接收该领导者的信息,通过采用合适的分布式控制算法,DG之间经过不断的信息交换能与领导节点的信息达成一致。所提出的基于多智能体一致性算法的分布式控制策略在下垂控制策略的基础上进行了二次调整。在分布式电源出力及负荷波动的情况下,通过该控制策略各DG均能维持电压、频率同步稳定。
微网的一级控制层采用的是下垂控制,主要为了合理分配各逆变器的输出功率。其有功和无功功率由节点输出频率和电庄决定,如下式所示:
Figure GDA0003748410370000061
其中:fi为下垂控制产生的系统输出频率,Udi为第i台逆变器输出电压在d轴上的分量(q轴参考值为0);
Figure GDA0003748410370000062
分别为第i台逆变器额定输出频率和电压,由二次控制器给定;mi,ni为下垂系数;Pi,Qi分别为有功和无功功率。
微电网的二级控制层采用分布式自适应控制方法,系统动力学模型为二阶模型,结合二阶一致性算法可得到二次控制模型为
Figure GDA0003748410370000063
Figure GDA0003748410370000064
其中:vfi,vui分别为二次频率和电压控制输入。
微电网节点遭受外部入侵时,表现为频率与电压控制输入具有时变子系统,此时系统动力学模型形式如下
Figure GDA0003748410370000065
Figure GDA0003748410370000066
其中:Di,k(fi,xi,wi)为节点受外部入侵时产生的频率切换子系统,Di,k(Udi,xi,wi)为节点受外部入侵时产生的电压切换子系统,wi(t)为切换信号,该信号是一个分段函数,提供了一个时间到子系统空间的映射:[t0,+∞)→Pi,其中t0为初始时刻,Pi为子系统空间,包含Pi={1,2,…,Pi}等子系统。对于每个k∈Pi,fi,k(xi(t),vi(t),wi(t))是未知的非线性连续函数。
对于微电网频率控制模型,将fi重写为pi,将xi重写为qi;对于微电网电压控制模型,将Udi重写为pi,将yi重写为qi,则所选控制器形式可统一为
Figure GDA0003748410370000071
Figure GDA0003748410370000072
Figure GDA0003748410370000073
其中:ui为控制输入,即二次频率输入vfi或电压控制输入vui
Figure GDA0003748410370000074
为定义的智能体i目标轨迹,gi(·),hi(·)为已设计的非线性函数,
Figure GDA0003748410370000075
为自适应参数。
具体控制算法包含如下两部分设计:
1)有限时间一致性控制器
Figure GDA0003748410370000076
上式中,gi(·)为齐次性方法构建的有限时间一致性控制器,k1>0,k2>0,0<α1<1,α2=2α1/(1+α1),sig(·)为定义的新型符号函数,sigα(x)=|x|αsgn(x),其中:α≥0,
Figure GDA0003748410370000077
sgn(·)为标准符号函数。
2)自适应目标跟踪器
Figure GDA0003748410370000078
上式中,hi(·)为自适应目标跟踪器,
Figure GDA0003748410370000079
为自适应参数,定义为
Figure GDA00037484103700000710
具体的参数设置为:
Figure GDA0003748410370000081
其中:①k>0,0.5<ω=ω12<1,ω1>0,ω2>0均为奇数,
②a>0,
Figure GDA0003748410370000082
微电网系统在该控制协议下的二次电压/频率恢复的控制目标是各分布式电源的电压/频率都趋于DG0给出的系统参考值并且其导数最终都等于0。由于本文孤岛微电网系统测试框图的拓扑结构满足强连通的特性,即任意两节点之间均有一条及以上的有向生成路径。所以系统能够在有限时间内趋于一致。
微电网系通信拓扑关系为如附图1所示的无向连通图,该无向连通图代表一类具有4个智能体的无领导者多智能体系统,使用提出的一致性算法,并进行如下参数设置:
k1=3,k2=3,α1=0.8
ω=5/7,k=5,ρ=8,a=0.01.
由上述基本参数,可以依照下式取得其他参数取值
Figure GDA0003748410370000083
其中
Figure GDA0003748410370000084
另外,每个智能体的初始状态为
x1(0)=-20,x2(0)=18,x3(0)=-11,x4(0)=-3,
x1(0)=40,x2(0)=-45,x3(0)=23,x4(0)=0.
此时算法验证仿真结果如附图2所示。
额外的,考虑单个微电网节点(如附图3)受到入侵的情况,假定P1=P2=1,P3=P4=2,即智能体1和2只有一个相同的子系统,智能体3和4分别有两个不同的子系统,对应的子系统函数fi,k分别为
Figure GDA0003748410370000085
f3,2=sinx3,f4,2=v4。考虑如附图4所示的切换函数,用以进行子系统切换。
此时的控制效果如附图5所示,此时各DG状态均能在有限时间内快速达到一致。
本领域的技术人员可以对本发明进行各种修改和变型,倘若这些修改和变型在本发明权利要求及其等同技术的范围之内,则这些修改和变型也仍在本发明专利的保护范围之内。
说明书中未详细描述的内容为本领域技术人员公知的现有技术。

Claims (4)

1.一种基于多智能体的孤岛微电网自适应控制方法,其特征在于,该方法包括以下内容:(1)基于图论的受击微电网系统的通信机制与拓扑关系建模,适用的微电网具有以下结构:(a)物理网络:微电网由分布式电源、分布式逆变器和分布式控制器构成,每一套电源、逆变器和控制器组合为微电网的一个基本工作单位;(b)信息网络:微电网不同模块通过网络实现互联,各模块之间均存在直接或间接的通信关系,且任意两个存在直接通信关系的模块之间的通信是双向的;(2)基于多智能体系统有限时间一致性理论和自适应神经网络方法的分布式自适应控制;
控制框架的具体控制算法包含如下两部分设计:
(1)有限时间一致性控制器
Figure FDA0003748410360000011
上式中,gi(·)为齐次性方法构建的有限时间一致性控制器,k1>0,k2>0,0<α1<1,α2=2α1/(1+α1),sig(·)为定义的新型符号函数,sigα(x)=|x|αsgn(x),其中:α≥0,
Figure FDA0003748410360000012
sgn(·)为标准符号函数;
(2)自适应目标跟踪器
Figure FDA0003748410360000013
上式中,hi(·)为自适应目标跟踪器,
Figure FDA0003748410360000014
为自适应参数,定义为
Figure FDA0003748410360000015
具体的参数设置为:
Figure FDA0003748410360000016
其中:①k>0,0.5<ω=ω12<1,ω1>0,ω2>0均为奇数,②a>0,
Figure FDA0003748410360000021
2.根据权利要求1所述的基于多智能体的孤岛微电网自适应控制方法,其特征在于,受击微电网通信模型有以下特点:
(1)微电网通信模型按图论建模为无领导者多智能体系统,该系统模型的节点信息可按照n阶加权无向图G={V,E,A}定义,其中V={vi,i=1,...,n}为n个智能体的节点集,表示n个工作单位,
Figure FDA0003748410360000022
为边集,表示单位间的通信关系,
Figure FDA0003748410360000023
为加权邻接矩阵,表示通信权重;
(2)该无向图具有无向连通性,即图中任意两个节点之间都至少存在一条路径,且该路径满足
Figure FDA0003748410360000024
(3)网络中的每一套逆变器的频率与电压、有功与无功功率为微电网模型的全局信息,可以在通信中相互获取;
(4)网络中部分节点可能受到外部入侵,导致微电网部分节点的输出频率和输出电压可能在任意时刻异步发生变化。
3.根据权利要求1或2所述的基于多智能体的孤岛微电网自适应控制方法,其特征在于,受击微电网控制模型还有以下特点:
(1)微电网的一级控制层采用下垂控制方法,其有功与无功功率由节点输出频率和电压决定,系统动力学模型形式如下
Figure FDA0003748410360000025
其中:fi为下垂控制产生的系统输出频率,Udi为第i台逆变器输出电压在d轴上的分量,q轴参考值为0;f0i、U0i分别为第i台逆变器额定输出频率和电压,由二次控制器给定;mi,ni为下垂系数;Pi,Qi分别为有功和无功功率;
(2)微电网的二级控制层采用分布式自适应控制方法,系统动力学模型为二阶模型,形式如下
Figure FDA0003748410360000031
Figure FDA0003748410360000032
其中:vfi,vui分别为二次频率和电压控制输入;
(3)微电网节点遭受外部入侵时,表现为频率与电压控制输入具有时变子系统,此时系统动力学模型形式如下
Figure FDA0003748410360000033
Figure FDA0003748410360000034
其中:Di,k(fi,xi,wi)为节点受外部入侵时产生的频率切换子系统,Di,k(Udi,xi,wi)为节点受外部入侵时产生的电压切换子系统,wi(t)为切换信号,该信号是一个分段函数,提供了一个时间到子系统空间的映射:[t0,+∞)→Pi,其中t0为初始时刻,Pi为子系统空间,包含Pi={1,2,...,Pi}子系统,对于每个k∈Pi,fi,k(xi(t),vi(t),wi(t))是未知的非线性连续函数。
4.根据权利要求3所述的基于多智能体的孤岛微电网自适应控制方法,其特征在于,控制框架具有如下形式:
对于微电网频率控制模型,将fi重写为pi,将xi重写为qi;对于微电网电压控制模型,将Udi重写为pi,将yi重写为qi,则所选控制器形式可统一为
Figure FDA0003748410360000035
Figure FDA0003748410360000036
Figure FDA0003748410360000037
其中:ui为控制输入,即二次频率输入vfi或电压控制输入vui
Figure FDA0003748410360000038
为定义的智能体i目标轨迹,gi(·),hi(·)为已设计的非线性函数,
Figure FDA0003748410360000039
为自适应参数。
CN202110598237.4A 2021-05-28 2021-05-28 一种基于多智能体的孤岛微电网自适应控制方法 Active CN113241794B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110598237.4A CN113241794B (zh) 2021-05-28 2021-05-28 一种基于多智能体的孤岛微电网自适应控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110598237.4A CN113241794B (zh) 2021-05-28 2021-05-28 一种基于多智能体的孤岛微电网自适应控制方法

Publications (2)

Publication Number Publication Date
CN113241794A CN113241794A (zh) 2021-08-10
CN113241794B true CN113241794B (zh) 2022-08-26

Family

ID=77135833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110598237.4A Active CN113241794B (zh) 2021-05-28 2021-05-28 一种基于多智能体的孤岛微电网自适应控制方法

Country Status (1)

Country Link
CN (1) CN113241794B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762934A (zh) * 2016-03-30 2016-07-13 南京邮电大学 一种基于能源互联电力系统的分布式协调混杂控制方法
CN106712085A (zh) * 2017-01-13 2017-05-24 东北电力大学 基于多智能体系统的孤岛微网电压/频率分布式二级控制方法
CN107147102A (zh) * 2017-04-12 2017-09-08 南京邮电大学 基于多智能体的直流微电网网络化分布式协调控制方法
CN107579543A (zh) * 2017-10-09 2018-01-12 燕山大学 一种基于分层控制策略的孤岛微电网分布式协调控制方法
CN108828949A (zh) * 2018-07-20 2018-11-16 南京航空航天大学 一种基于自适应动态规划的分布式最优协同容错控制方法
CN109301878A (zh) * 2018-10-19 2019-02-01 三峡大学 一种基于多智能体的分布式电源一致性控制方法及控制系统
CN110474319A (zh) * 2019-07-05 2019-11-19 湖北工业大学 基于多智能体的含可再生能源孤岛微电网协调控制的方法
CN110707743A (zh) * 2019-09-23 2020-01-17 南京理工大学 基于mas的双模式分布式光伏发电微网控制系统及方法
CN110933726A (zh) * 2019-12-12 2020-03-27 华东交通大学 一种切换异构网络下的多智能体系统包含控制的实现方法
CN112305918A (zh) * 2020-11-11 2021-02-02 南京航空航天大学 超螺旋观测器下的多智能体系统滑模容错一致性控制算法
CN112379667A (zh) * 2020-10-10 2021-02-19 内蒙古科技大学 领导跟随二阶多智能体系统有限时间一致性跟踪控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10061283B2 (en) * 2015-12-07 2018-08-28 Opus One Solutions Energy Corp. Systems and methods for integrated microgrid management system in electric power systems

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762934A (zh) * 2016-03-30 2016-07-13 南京邮电大学 一种基于能源互联电力系统的分布式协调混杂控制方法
CN106712085A (zh) * 2017-01-13 2017-05-24 东北电力大学 基于多智能体系统的孤岛微网电压/频率分布式二级控制方法
CN107147102A (zh) * 2017-04-12 2017-09-08 南京邮电大学 基于多智能体的直流微电网网络化分布式协调控制方法
CN107579543A (zh) * 2017-10-09 2018-01-12 燕山大学 一种基于分层控制策略的孤岛微电网分布式协调控制方法
CN108828949A (zh) * 2018-07-20 2018-11-16 南京航空航天大学 一种基于自适应动态规划的分布式最优协同容错控制方法
CN109301878A (zh) * 2018-10-19 2019-02-01 三峡大学 一种基于多智能体的分布式电源一致性控制方法及控制系统
CN110474319A (zh) * 2019-07-05 2019-11-19 湖北工业大学 基于多智能体的含可再生能源孤岛微电网协调控制的方法
CN110707743A (zh) * 2019-09-23 2020-01-17 南京理工大学 基于mas的双模式分布式光伏发电微网控制系统及方法
CN110933726A (zh) * 2019-12-12 2020-03-27 华东交通大学 一种切换异构网络下的多智能体系统包含控制的实现方法
CN112379667A (zh) * 2020-10-10 2021-02-19 内蒙古科技大学 领导跟随二阶多智能体系统有限时间一致性跟踪控制方法
CN112305918A (zh) * 2020-11-11 2021-02-02 南京航空航天大学 超螺旋观测器下的多智能体系统滑模容错一致性控制算法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Distributed Finite-Time Multiagent Control for DC Microgrids With Time Delays;Runfan Zhang 等;《IEEE TRANSACTIONS ON SMART GRID》;20190531;第10卷(第3期);全文 *
Finite-Time Synchronization of a Class of Second-Order Nonlinear Multi-Agent Systems Using Output Feedback Control;Haibo Du 等;《IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS》;20140630;第61卷(第6期);全文 *
基于多智能体一致性算法的微电网分布式分层控制策略;周烨 等;《电力系统自动化》;20170610;第41卷(第11期);全文 *
基于有限时间一致性的微电网分层优化策略;魏文军 等;《电力系统及其自动化学报》;20200630;第32卷(第6期);全文 *

Also Published As

Publication number Publication date
CN113241794A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
Ding et al. Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism
Meng et al. Distributed load sharing of an inverter-based microgrid with reduced communication
Li et al. Multiagent-based distributed state of charge balancing control for distributed energy storage units in AC microgrids
Lou et al. Distributed model predictive secondary voltage control of islanded microgrids with feedback linearization
Wang et al. A fully distributed power dispatch method for fast frequency recovery and minimal generation cost in autonomous microgrids
Liu et al. Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints
Shi et al. Distributed optimal control of energy storages in a DC microgrid with communication delay
Lai et al. Distributed multiagent-oriented average control for voltage restoration and reactive power sharing of autonomous microgrids
Lai et al. Resilient distributed multiagent control for AC microgrid networks subject to disturbances
CN108075487B (zh) 自适应下垂和一致性相结合的孤岛微电网的分层控制方法
CN107465211B (zh) 孤岛微电网的分布式固定时间协调控制方法
Bidram et al. Finite-time frequency synchronization in microgrids
Du et al. Dynamic microgrids in resilient distribution systems with reconfigurable cyber-physical networks
CN104779607A (zh) 直流微网中的一种分布式协调控制方法及系统
CN104769802A (zh) 用于计算机辅助控制电网中的功率的方法
Ma et al. Accurate power sharing and voltage regulation for AC microgrids: An event-triggered coordinated control approach
Zhang et al. A novel event-triggered secondary control strategy for distributed generalized droop control in microgrid considering time delay
US20220342435A1 (en) Distributed collaborative control method for microgrid frequency under attack of false data injection based on cyber-physical fusion
Xia et al. A distributed control in islanded DC microgrid based on multi-agent deep reinforcement learning
Li et al. Event-triggered asynchronous periodic distributed secondary control of microgrids under DoS attacks
Yu et al. Distributed learning-based secondary control for islanded dc microgrids: a high-order fully actuated system approach
CN113241794B (zh) 一种基于多智能体的孤岛微电网自适应控制方法
Xia et al. Optimal secondary control of islanded AC microgrids with communication time-delay based on multi-agent deep reinforcement learning
Elgamal et al. An adaptive multiagent control system for autonomous economic operation and resilience assurance in a hybrid-energy islanded microgrid
Zhang et al. Consensus-based economic hierarchical control strategy for islanded MG considering communication path reconstruction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant