CN113241794A - 一种基于多智能体的孤岛微电网自适应控制方法 - Google Patents

一种基于多智能体的孤岛微电网自适应控制方法 Download PDF

Info

Publication number
CN113241794A
CN113241794A CN202110598237.4A CN202110598237A CN113241794A CN 113241794 A CN113241794 A CN 113241794A CN 202110598237 A CN202110598237 A CN 202110598237A CN 113241794 A CN113241794 A CN 113241794A
Authority
CN
China
Prior art keywords
microgrid
adaptive
control
grid
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110598237.4A
Other languages
English (en)
Other versions
CN113241794B (zh
Inventor
何怡刚
贾慧莉
曹志煌
谢辉
鲁力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
State Grid Anhui Electric Power Co Ltd
Original Assignee
Hefei University of Technology
State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology, State Grid Anhui Electric Power Co Ltd filed Critical Hefei University of Technology
Priority to CN202110598237.4A priority Critical patent/CN113241794B/zh
Publication of CN113241794A publication Critical patent/CN113241794A/zh
Application granted granted Critical
Publication of CN113241794B publication Critical patent/CN113241794B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)

Abstract

一种基于多智能体的孤岛微电网自适应控制方法,属于智能微电网控制领域。在分布式微电网中,首先将部分节点受外部入侵的微电网建模为受击多智能体系统,将微电网通信拓扑建模为连通图;然后,采用有限时间一致性理论和自适应神经网络方法构建分布式自适应控制器,将单个逆变器的有功与无功功率分别作为控制量输入,从而实现有限时间稳定的孤岛微电网自适应控制。

Description

一种基于多智能体的孤岛微电网自适应控制方法
技术领域
本发明涉及智能微电网控制方法,尤其是涉及一种基于多智能体的孤岛微电网自适应控制方法。
背景技术
随着分布式新能源渗透率的提升,新一代电力系统提出了向更高智能化发展的要求。微网能有效地整合分布式电源与本地负荷,提高系统稳定性与经济性,作为大电网的受控单元,从而有效弱化了新能源并网造成的不利影响。微网在并网时,其动态特性主要由主网决定。孤岛时由于缺乏主网支撑,各DG(distributed generations)运行环境较复杂,且新能源出力与负荷需求均有波动性,使孤岛微电网的可靠智能控制策略成为技术难题。
为了消除或减小常规下垂控制所造成的电压、频率等偏差,保证微电网的安全稳定运行,需要对其进行二次调节控制。传统解决方式主要采用集中式控制结构,利用中央控制器辐射式的结构实现对微网二次控制,但辐射式的结构也导致了它只能准确调节单一母线电压,无法实现全局状态一致。
由于多智能体技术与分布式控制方式之间的契合度较高,近年来引起了较多研究者者的关注。目前已证明,多智能体系统一致性算法具有更好的可拓展性,对系统的电压和频率进行优化时,具有更好的可靠性。
对于多智能体一致性算法,目前,绝大多数围绕多智能系统展开的控制算法研究集中在传统非网络环境下进行,即只引入一般的外部干扰。但实际上,在网络环境中,一些攻击方式会对微电网系统本身产生影响,导致微电网输出受到外界干扰甚至恶意控制,导致难以预料的后果,影响电网的正常运行。
发明内容
本发明所要解决的技术问题是,克服现有技术的不足,提供一种能实现微网分布式发电中电压和频率有限时间稳定自适应控制的基于多智能体的孤岛微电网自适应控制方法。
本发明解决其技术问题采用的技术方案是,一种基于多智能体的孤岛微电网自适应控制方法,该方法包括以下措施:(1)基于图论的受击微电网系统的通信机制与拓扑关系建模,适用的微电网具有如下结构:(a)物理网络:微电网由分布式电源、分布式逆变器和分布式控制器构成,每一套电源、逆变器和控制器组合为微电网的一个基本工作单位;(b)信息网络:微电网不同模块通过网络实现互联,各模块之间均存在直接或间接的通信关系,且任意两个存在直接通信关系的模块之间的通信是双向的;(2)基于多智能体系统有限时间一致性理论和自适应神经网络方法,进行分布式自适应控制。
进一步,受击微电网通信模型有以下结构:
(1)微电网通信模型按图论建模为无领导者多智能体系统,该系统模型的节点信息可按照n阶加权无向图G={V,E,A}定义,其中V={vi,i=1,...,n}为n个智能体的节点集,表示n个工作单位,
Figure BDA0003090465380000021
为边集,表示单位间的通信关系,
Figure BDA0003090465380000022
为加权邻接矩阵,表示通信权重;
(2)该无向图具有无向连通性,即图中任意两个节点之间都至少存在一条路径,且该路径满足
Figure BDA0003090465380000023
(3)网络中的每一套逆变器的频率与电压、有功与无功功率为微电网模型的全局信息,可以在通信中相互获取;
(4)网络中部分节点可能受到外部入侵,导致微电网部分节点的输出频率和输出电压可能在任意时刻异步发生变化。
进一步,受击微电网控制模型还具有以下结构:
(1)微电网的一级控制层采用下垂控制方法,其有功与无功功率由节点输出频率和电压决定,系统动力学模型形式如下
Figure BDA0003090465380000024
其中:fi为下垂控制产生的系统输出频率,Udi为第i台逆变器输出电压在d轴上的分量(q轴参考值为0);
Figure BDA0003090465380000025
分别为第i台逆变器额定输出频率和电压,由二次控制器给定;mi,ni为下垂系数;Pi,Qi分别为有功和无功功率;
(2)微电网的二级控制层采用分布式自适应控制方法,系统动力学模型为二阶模型,形式如下:
Figure BDA0003090465380000031
Figure BDA0003090465380000032
其中:vfi,vui分别为二次频率和电压控制输入;
(3)微电网节点遭受外部入侵时,表现为频率与电压控制输入具有时变子系统,此时系统动力学模型形式如下:
Figure BDA0003090465380000033
Figure BDA0003090465380000034
其中:Di,k(fi,xi,wi)为节点受外部入侵时产生的频率切换子系统,Di,k(Udi,xi,wi)为节点受外部入侵时产生的频率切换子系统,,wi(t)为切换信号,该信号是一个分段函数,提供了一个时间到子系统空间的映射:[t0,+∞)→Pi,其中t0为初始时刻,Pi为子系统空间,包含Pi={1,2,...,Pi}等子系统。对于每个k∈Pi,fi,k(xi(t),vi(t),wi(t))是未知的非线性连续函数。
进一步,控制框架具有如下形式:
对于微电网频率控制模型,将fi重写为pi,将xi重写为qi;对于微电网电压控制模型,将Udi重写为pi,将yi重写为qi,则所选控制器形式可统一为
Figure BDA0003090465380000035
Figure BDA0003090465380000036
Figure BDA0003090465380000037
其中:ui为控制输入,即二次频率输入vfi或电压控制输入vui
Figure BDA0003090465380000038
为定义的智能体i目标轨迹,gi(·),hi(·)为已设计的非线性函数,
Figure BDA0003090465380000039
为自适应参数。
进一步,控制框架的具体控制算法由如下两部分构成:
(1)有限时间一致性控制器
Figure BDA0003090465380000041
上式中,gi(·)为齐次性方法构建的有限时间一致性控制器,k1>0,k2>0,0<α1<1,α2=2α1/(1+α1),sig(·)为定义的新型符号函数,sigα(x)=|x|αsgn(x),其中:α≥0,
Figure BDA0003090465380000042
sgn(·)为标准符号函数;
(2)自适应目标跟踪器
Figure BDA0003090465380000043
上式中,hi(·)为自适应目标跟踪器,
Figure BDA0003090465380000044
为自适应参数,定义为
Figure BDA0003090465380000045
具体的参数设置为:
Figure BDA0003090465380000046
其中:①k>0,0.5<ω=ω12<1,ω1>0,ω2>0均为奇数,
②a>0,
Figure BDA0003090465380000047
本发明在孤岛分布式微电网中,首先将部分节点受外部入侵的微电网建模为受击多智能体系统,将微电网通信拓扑建模为连通图;然后,采用有限时间一致性理论和自适应神经网络方法构建分布式自适应控制器,将单个逆变器的有功与无功功率分别作为控制量输入,从而实现有限时间稳定的孤岛微电网自适应控制。
本发明具有以下积极效果:微电网系统在该控制协议下的二次电压/频率恢复的控制目标是各分布式电源的电压/频率都趋于DG0给出的系统参考值并且其导数最终都等于0。由于本发明孤岛微电网系统测试框图的拓扑结构满足强连通的特性,即任意两节点之间均有一条及以上的有向生成路径,所以系统能够在有限时间内趋于一致,工作可靠性高。
附图说明
图1为本发明实施例中基于图论的通信拓扑图;
图2为本发明实施例中算法测试图;
图3为本发明实施例中单个DG单元的分布式控制结构;
图4为本发明实施例中的攻击导致的切换函数;
图5为本发明实施例中的系统电压/频率。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
参照图1-5,本实施例为实现微网分布式发电中电压和频率有限时间稳定的自适应控制,提出一种基于多智能体的孤岛微电网自适应控制方法,通过二阶一致性算法对微电网系统进行二次调频调压控制。
主要包括以下技术措施:基于图论的受击微电网系统的通信机制与拓扑关系建模;基于多智能体系统有限时间一致性理论和自适应神经网络方法,进行分布式自适应控制。
其中,适用的微电网具有如下结构:
1)物理网络:微电网由分布式电源、分布式逆变器和分布式控制器构成,每一套电源、逆变器和控制器组合为微电网的一个基本工作单位。
2)信息网络:微电网不同模块通过网络实现互联,各模块之间均存在直接或间接的通信关系,且任意两个存在直接通信关系的模块之间的通信是双向的。
受击微电网通信模型具有如下结构:
1)微电网通信模型按图论建模为无领导者多智能体系统,该系统模型的节点信息可按照n阶加权无向图G={V,E,A}定义,其中V={vi,i=1,...,n}为n个智能体的节点集,表示n个工作单位,
Figure BDA0003090465380000051
为边集,表示单位间的通信关系,
Figure BDA0003090465380000052
为加权邻接矩阵,表示通信权重;
2)该无向图具有无向连通性,即图中任意两个节点之间都至少存在一条路径,且该路径满足
Figure BDA0003090465380000053
3)网络中的每一套逆变器的频率与电压、有功与无功功率为微电网模型的全局信息,可以在通信中相互获取;
4)网络中部分节点可能受到外部入侵,导致微电网部分节点的输出频率和输出电压可能在任意时刻异步发生变化。
二次控制的实现主要由各跟随者之间进行相互协作来完成。定义DG0为领导者,部分跟随者除了接收相邻跟随者的信息之外,还接收该领导者的信息,通过采用合适的分布式控制算法,DG之间经过不断的信息交换能与领导节点的信息达成一致。基于多智能体一致性算法的分布式控制策略在下垂控制策略的基础上进行二次调整;在分布式电源出力及负荷波动的情况下,通过该控制策略各DG均能维持电压、频率同步稳定。
微网的一级控制层采用的是下垂控制,主要为了合理分配各逆变器的输出功率。其有功和无功功率由节点输出频率和电庄决定,如下式所示:
Figure BDA0003090465380000061
其中:fi为下垂控制产生的系统输出频率,Udi为第i台逆变器输出电压在d轴上的分量(q轴参考值为0);
Figure BDA0003090465380000066
分别为第i台逆变器额定输出频率和电压,由二次控制器给定;mi,ni为下垂系数;Pi,Qi分别为有功和无功功率。
微电网的二级控制层采用分布式自适应控制方法,系统动力学模型为二阶模型,结合二阶一致性算法可得到二次控制模型为
Figure BDA0003090465380000062
Figure BDA0003090465380000063
其中:vfi,vui分别为二次频率和电压控制输入。
微电网节点遭受外部入侵时,表现为频率与电压控制输入具有时变子系统,此时系统动力学模型形式如下
Figure BDA0003090465380000064
Figure BDA0003090465380000065
其中:Di,k(fi,xi,wi)为节点受外部入侵时产生的频率切换子系统,Di,k(Udi,xi,wi)为节点受外部入侵时产生的频率切换子系统,wi(t)为切换信号,该信号是一个分段函数,提供了一个时间到子系统空间的映射:[t0,+∞)→Pi,其中t0为初始时刻,Pi为子系统空间,包含Pi={1,2,...,Pi}等子系统;对于每个k∈Pi,fi,k(xi(t),vi(t),wi(t))是未知的非线性连续函数。
对于微电网频率控制模型,将fi重写为pi,将xi重写为qi;对于微电网电压控制模型,将Udi重写为pi,将yi重写为qi,则所选控制器形式可统一为
Figure BDA0003090465380000071
Figure BDA0003090465380000072
Figure BDA0003090465380000073
其中:ui为控制输入,即二次频率输入vfi或电压控制输入vui
Figure BDA0003090465380000074
为定义的智能体i目标轨迹,gi(·),hi(·)为已设计的非线性函数,
Figure BDA0003090465380000075
为自适应参数。
具体控制算法由如下两部分构成:
1)有限时间一致性控制器
Figure BDA0003090465380000076
上式中,gi(·)为齐次性方法构建的有限时间一致性控制器,k1>0,k2>0,0<α1<1,α2=2α1/(1+α1),sig(·)为定义的新型符号函数,sigα(x)=|x|αsgn(x),其中:α≥0,
Figure BDA0003090465380000077
sgn(·)为标准符号函数。
2)自适应目标跟踪器
Figure BDA0003090465380000078
上式中,hi(·)为自适应目标跟踪器,
Figure BDA0003090465380000079
为自适应参数,定义为
Figure BDA00030904653800000710
具体的参数设置为:
Figure BDA0003090465380000081
其中:①k>0,0.5<ω=ω12<1,ω1>0,ω2>0均为奇数,②a>0,
Figure BDA0003090465380000082
微电网系统在该控制协议下的二次电压/频率恢复的控制目标是各分布式电源的电压/频率都趋于DG0给出的系统参考值并且其导数最终都等于0。由于本文孤岛微电网系统测试框图的拓扑结构满足强连通的特性,即任意两节点之间均有一条及以上的有向生成路径,所以系统能够在有限时间内趋于一致。
微电网系通信拓扑关系为如图1所示的无向连通图,该无向连通图代表一类具有4个智能体的无领导者多智能体系统,使用提出的一致性算法,并进行如下参数设置:
k1=3,k2=3,α1=0.8
ω=5/7,k=5,ρ=8,a=0.01.
由上述基本参数,可以依照下式取得其他参数取值
Figure BDA0003090465380000083
其中
Figure BDA0003090465380000084
另外,每个智能体的初始状态为
x1(0)=-20,x2(0)=18,x3(0)=-11,x4(0)=-3,
x1(0)=40,x2(0)=-45,x3(0)=23,x4(0)=0.
此时算法验证仿真结果如附图2所示;
额外的,考虑单个微电网节点(如图3)受到入侵的情况,假定P1=P2=1,P3=P4=2,即智能体1和2只有一个相同的子系统,智能体3和4分别有两个不同的子系统,对应的子系统函数fi,k分别为
Figure BDA0003090465380000091
f3,2=sinx3,f4,2=v4;考虑如图4所示的切换函数,用以进行子系统切换。
此时的控制效果如附图5所示,此时各DG状态均能在有限时间内快速达到一致。
本领域的技术人员可以对本发明进行各种修改和变型,倘若这些修改和变型在本发明权利要求及其等同技术的范围之内,则这些修改和变型也仍在本发明专利的保护范围之内。
说明书中未详细描述的内容为本领域技术人员公知的现有技术。

Claims (5)

1.一种基于多智能体的孤岛微电网自适应控制方法,其特征在于,包括以下措施:(1)基于图论的受击微电网系统的通信机制与拓扑关系建模,适用的微电网具有以下结构:(a)物理网络:微电网由分布式电源、分布式逆变器和分布式控制器构成,每一套电源、逆变器和控制器组合为微电网的一个基本工作单位;(b)信息网络:微电网不同模块通过网络实现互联,各模块之间均存在直接或间接的通信关系,且任意两个存在直接通信关系的模块之间的通信是双向的;(2)基于多智能体系统有限时间一致性理论和自适应神经网络方法,进行分布式自适应控制。
2.根据权利要求1所述的基于多智能体的孤岛微电网自适应控制方法,其特征在于,受击微电网通信模型具有以下结构:
(1)微电网通信模型按图论建模为无领导者多智能体系统,该系统模型的节点信息按照n阶加权无向图G={V,E,A}定义,其中V={vi,i=1,...,n}为n个智能体的节点集,表示n个工作单位,
Figure FDA0003090465370000011
为边集,表示单位间的通信关系,
Figure FDA0003090465370000012
为加权邻接矩阵,表示通信权重;
(2)该无向图具有无向连通性,即图中任意两个节点之间都至少存在一条路径,且该路径满足
Figure FDA0003090465370000013
(3)网络中的每一套逆变器的频率与电压、有功与无功功率为微电网模型的全局信息,可以在通信中相互获取;
(4)网络中部分节点可能受到外部入侵,导致微电网部分节点的输出频率和输出电压可能在任意时刻异步发生变化。
3.根据权利要求1或2所述的基于多智能体的孤岛微电网自适应控制方法,其特征在于,受击微电网控制模型还具有有以下结构:
(1)微电网的一级控制层采用下垂控制方法,其有功与无功功率由节点输出频率和电压决定,系统动力学模型形式如下
Figure FDA0003090465370000014
其中:fi为下垂控制产生的系统输出频率,Udi为第i台逆变器输出电压在d轴上的分量(q轴参考值为0);fioi,oU分别为第i台逆变器额定输出频率和电压,由二次控制器给定;mi,ni为下垂系数;Pi,Qi分别为有功和无功功率;
(2)微电网的二级控制层采用分布式自适应控制方法,系统动力学模型为二阶模型,形式如下
Figure FDA0003090465370000021
Figure FDA0003090465370000022
其中:vfi,vui分别为二次频率和电压控制输入;
(3)微电网节点遭受外部入侵时,表现为频率与电压控制输入具有时变子系统,此时系统动力学模型形式如下
Figure FDA0003090465370000023
Figure FDA0003090465370000024
其中:Di,k(fi,xi,wi)为节点受外部入侵时产生的频率切换子系统,Di,k(Udi,xi,wi)为节点受外部入侵时产生的频率切换子系统,,wi(t)为切换信号,该信号是一个分段函数,提供了一个时间到子系统空间的映射:[t0,+∞)→Pi,其中t0为初始时刻,Pi为子系统空间,包含Pi={1,2,...,Pi等子系统。对于每个k∈Pi,fi,k(xi(t),vi(t),wi(t))是未知的非线性连续函数。
4.根据权利要求3所述的基于多智能体的孤岛微电网自适应控制方法,其特征在于,控制框架具有如下形式:
对于微电网频率控制模型,将fi重写为pi,将xi重写为qi;对于微电网电压控制模型,将Udi重写为pi,将yi重写为qi,则所选控制器形式可统一为
Figure FDA0003090465370000025
Figure FDA0003090465370000026
Figure FDA0003090465370000027
其中:ui为控制输入,即二次频率输入vfi或电压控制输入vui
Figure FDA0003090465370000031
为定义的智能体i目标轨迹,gi(·),hi(·)为已设计的非线性函数,
Figure FDA0003090465370000032
为自适应参数。
5.根据权利要求4所述的基于多智能体的孤岛微电网自适应控制方法,其特征在于,控制框架的具体控制算法由如下两部分构成:
(1)有限时间一致性控制器
Figure FDA0003090465370000033
上式中,gi(·)为齐次性方法构建的有限时间一致性控制器,k1>0,k2>0,0<α1<1,α2=2α1/(1+α1),sig(·)为定义的新型符号函数,sigα(x)=|x|αsgn(x),其中:α≥0,
Figure FDA0003090465370000034
sgn(·)为标准符号函数;
(2)自适应目标跟踪器
Figure FDA0003090465370000035
上式中,hi(·)为自适应目标跟踪器,
Figure FDA0003090465370000036
为自适应参数,定义为
Figure FDA0003090465370000037
具体的参数设置为:
Figure FDA0003090465370000038
其中:①k>0,0.5<ω=ω12<1,ω1>0,ω2>0均为奇数,
②a>0,
Figure FDA0003090465370000039
CN202110598237.4A 2021-05-28 2021-05-28 一种基于多智能体的孤岛微电网自适应控制方法 Active CN113241794B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110598237.4A CN113241794B (zh) 2021-05-28 2021-05-28 一种基于多智能体的孤岛微电网自适应控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110598237.4A CN113241794B (zh) 2021-05-28 2021-05-28 一种基于多智能体的孤岛微电网自适应控制方法

Publications (2)

Publication Number Publication Date
CN113241794A true CN113241794A (zh) 2021-08-10
CN113241794B CN113241794B (zh) 2022-08-26

Family

ID=77135833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110598237.4A Active CN113241794B (zh) 2021-05-28 2021-05-28 一种基于多智能体的孤岛微电网自适应控制方法

Country Status (1)

Country Link
CN (1) CN113241794B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762934A (zh) * 2016-03-30 2016-07-13 南京邮电大学 一种基于能源互联电力系统的分布式协调混杂控制方法
CN106712085A (zh) * 2017-01-13 2017-05-24 东北电力大学 基于多智能体系统的孤岛微网电压/频率分布式二级控制方法
US20170160711A1 (en) * 2015-12-07 2017-06-08 Opus One Solutions Energy Corp. Systems and methods for integrated microgrid management system in electric power systems
CN107147102A (zh) * 2017-04-12 2017-09-08 南京邮电大学 基于多智能体的直流微电网网络化分布式协调控制方法
CN107579543A (zh) * 2017-10-09 2018-01-12 燕山大学 一种基于分层控制策略的孤岛微电网分布式协调控制方法
CN108828949A (zh) * 2018-07-20 2018-11-16 南京航空航天大学 一种基于自适应动态规划的分布式最优协同容错控制方法
CN109301878A (zh) * 2018-10-19 2019-02-01 三峡大学 一种基于多智能体的分布式电源一致性控制方法及控制系统
CN110474319A (zh) * 2019-07-05 2019-11-19 湖北工业大学 基于多智能体的含可再生能源孤岛微电网协调控制的方法
CN110707743A (zh) * 2019-09-23 2020-01-17 南京理工大学 基于mas的双模式分布式光伏发电微网控制系统及方法
CN110933726A (zh) * 2019-12-12 2020-03-27 华东交通大学 一种切换异构网络下的多智能体系统包含控制的实现方法
CN112305918A (zh) * 2020-11-11 2021-02-02 南京航空航天大学 超螺旋观测器下的多智能体系统滑模容错一致性控制算法
CN112379667A (zh) * 2020-10-10 2021-02-19 内蒙古科技大学 领导跟随二阶多智能体系统有限时间一致性跟踪控制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170160711A1 (en) * 2015-12-07 2017-06-08 Opus One Solutions Energy Corp. Systems and methods for integrated microgrid management system in electric power systems
CN105762934A (zh) * 2016-03-30 2016-07-13 南京邮电大学 一种基于能源互联电力系统的分布式协调混杂控制方法
CN106712085A (zh) * 2017-01-13 2017-05-24 东北电力大学 基于多智能体系统的孤岛微网电压/频率分布式二级控制方法
CN107147102A (zh) * 2017-04-12 2017-09-08 南京邮电大学 基于多智能体的直流微电网网络化分布式协调控制方法
CN107579543A (zh) * 2017-10-09 2018-01-12 燕山大学 一种基于分层控制策略的孤岛微电网分布式协调控制方法
CN108828949A (zh) * 2018-07-20 2018-11-16 南京航空航天大学 一种基于自适应动态规划的分布式最优协同容错控制方法
CN109301878A (zh) * 2018-10-19 2019-02-01 三峡大学 一种基于多智能体的分布式电源一致性控制方法及控制系统
CN110474319A (zh) * 2019-07-05 2019-11-19 湖北工业大学 基于多智能体的含可再生能源孤岛微电网协调控制的方法
CN110707743A (zh) * 2019-09-23 2020-01-17 南京理工大学 基于mas的双模式分布式光伏发电微网控制系统及方法
CN110933726A (zh) * 2019-12-12 2020-03-27 华东交通大学 一种切换异构网络下的多智能体系统包含控制的实现方法
CN112379667A (zh) * 2020-10-10 2021-02-19 内蒙古科技大学 领导跟随二阶多智能体系统有限时间一致性跟踪控制方法
CN112305918A (zh) * 2020-11-11 2021-02-02 南京航空航天大学 超螺旋观测器下的多智能体系统滑模容错一致性控制算法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAIBO DU 等: "Finite-Time Synchronization of a Class of Second-Order Nonlinear Multi-Agent Systems Using Output Feedback Control", 《IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS》 *
RUNFAN ZHANG 等: "Distributed Finite-Time Multiagent Control for DC Microgrids With Time Delays", 《IEEE TRANSACTIONS ON SMART GRID》 *
周烨 等: "基于多智能体一致性算法的微电网分布式分层控制策略", 《电力系统自动化》 *
魏文军 等: "基于有限时间一致性的微电网分层优化策略", 《电力系统及其自动化学报》 *

Also Published As

Publication number Publication date
CN113241794B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
Ding et al. Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism
Meng et al. Distributed load sharing of an inverter-based microgrid with reduced communication
Shi et al. Distributed optimal control of energy storages in a DC microgrid with communication delay
Lai et al. Resilient distributed multiagent control for AC microgrid networks subject to disturbances
CN106410808B (zh) 包含恒功率和下垂控制的通用型微电网群分布式控制方法
Adnan et al. Load flow balancing and transient stability analysis in renewable integrated power grids
Chen et al. Distributed resilient control against denial of service attacks in DC microgrids with constant power load
CN107465211B (zh) 孤岛微电网的分布式固定时间协调控制方法
CN104779607A (zh) 直流微网中的一种分布式协调控制方法及系统
Han et al. Dynamic event-triggered protocol-based distributed secondary control for islanded microgrids
US20220342435A1 (en) Distributed collaborative control method for microgrid frequency under attack of false data injection based on cyber-physical fusion
Zhang et al. Distributed secondary control for island microgrids with expected dynamic performance under communication delays
Xia et al. A distributed control in islanded DC microgrid based on multi-agent deep reinforcement learning
Yu et al. Distributed learning-based secondary control for islanded dc microgrids: a high-order fully actuated system approach
Cao et al. H∞ robustness for distributed control in autonomous microgrids considering cyber disturbances
CN113241794B (zh) 一种基于多智能体的孤岛微电网自适应控制方法
Xia et al. Optimal secondary control of islanded AC microgrids with communication time-delay based on multi-agent deep reinforcement learning
Elgamal et al. An adaptive multiagent control system for autonomous economic operation and resilience assurance in a hybrid-energy islanded microgrid
Yang et al. A distributed dynamic inertia-droop control strategy based on multi-agent deep reinforcement learning for multiple paralleled VSGs
CN108494017A (zh) 一种基于逆变器的自治型微电网系统分布式协调控制方法
CN113890057A (zh) 一种基于多微电网协同优化的控制方法及装置、储存介质
Sengupta et al. Delay dependent wide area damping controller using deep learning technique
Ahmadi et al. A fuzzy inference model for distributed secondary control of islanded microgrids
Lai et al. Noise-resilient distributed frequency control for droop-controlled renewable microgrids
Liu et al. Research on distributed energy storage pinning coordinated control method of microgrid clusters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant