CN113235327A - 一种快速降解的石墨烯复合防水纸及其制备方法 - Google Patents

一种快速降解的石墨烯复合防水纸及其制备方法 Download PDF

Info

Publication number
CN113235327A
CN113235327A CN202110440854.1A CN202110440854A CN113235327A CN 113235327 A CN113235327 A CN 113235327A CN 202110440854 A CN202110440854 A CN 202110440854A CN 113235327 A CN113235327 A CN 113235327A
Authority
CN
China
Prior art keywords
paper
composite waterproof
graphene oxide
reduction
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110440854.1A
Other languages
English (en)
Other versions
CN113235327B (zh
Inventor
王宏志
郭洋
宋岑
侯成义
李耀刚
张青红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Nishang Intelligent Technology Co ltd
Donghua University
Original Assignee
Shanghai Nishang Intelligent Technology Co ltd
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Nishang Intelligent Technology Co ltd, Donghua University filed Critical Shanghai Nishang Intelligent Technology Co ltd
Priority to CN202110440854.1A priority Critical patent/CN113235327B/zh
Publication of CN113235327A publication Critical patent/CN113235327A/zh
Application granted granted Critical
Publication of CN113235327B publication Critical patent/CN113235327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/12Coatings without pigments applied as a solution using water as the only solvent, e.g. in the presence of acid or alkaline compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/30Pretreatment of the paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/32Addition to the formed paper by contacting paper with an excess of material, e.g. from a reservoir or in a manner necessitating removal of applied excess material from the paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • D21H25/06Physical treatment, e.g. heating, irradiating of impregnated or coated paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Paper (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种快速降解的石墨烯复合防水纸及其制备方法。该复合防水纸为纸张与还原氧化石墨烯的复合结构。该方法为:采用电场极化让纸张表面带正电荷,然后平铺于氧化石墨烯分散液表面,使得纸张一面完全浸渍,干燥,热处理。该复合防水纸具有优异的防水性和耐久性。该方法简单快速,工艺过程环保无污染。

Description

一种快速降解的石墨烯复合防水纸及其制备方法
技术领域
本发明属于环保功能材料及其制备领域,特别涉及一种快速降解的石墨烯复合防水纸及其制备方法。
背景技术
传统的防水包装材料均为难降解的高分子材料,虽然具有优异的力学性能和防水性能,给生活来来了便利,但由于其难降解、回收成本高等问题,给我们的生活环境造成了严重的负担。纸基包装材料虽然易降解、也具有较好的力学性能,但往往无法用于富水物品的包装。尤其是近年来全国推行干湿垃圾分类后,人们需要将餐厨、果皮等垃圾分类倾倒,而承装这类湿垃圾的塑料垃圾袋由于难降解而属于干垃圾类。因而,为改善和提高生活的便利性,开发环保的、快速易降解的防水材料十分迫切。
石墨烯作为一种单层碳原子sp2杂化形成六边形蜂窝点阵结构的二维材料,具有超高的载流子迁移率(200000cm2V-1s-1)和载流子浓度(2×1011cm-1)。而且单层厚度约为0.34nm,具有高透明度、高导热率和疏水等特性。石墨烯纳米片可以通过自组装等技术形成石墨烯纤维、气凝胶等宏观的三维材料;可通过石墨烯片层堆垛形成石墨烯薄膜以及复合材料等。宏观的石墨烯基材料在环保、储能、可穿戴、晶体管、传感等领域得到了广泛的应用。
氧化石墨烯是化学法制备石墨烯的前驱体,它由于表面含氧官能团的存在,在众多溶剂中具有优异的分散性以及易组装性。而氧化石墨烯经还原后可得到RGO,具有优异的疏水性。因此通过将石墨烯与纸基包装材料复合,为开发新型的具有快速降解特性的防水包装材料提供了技术方案。而且,能够解决现有纸塑复合防水纸中塑料层难降解、易对环境造成污染的问题(ZL201510290148.8)。不仅如此,即便是已报道的具有生物可降解性的复合防水纸,其工艺中仍然会用到大量的醇、酮、醚、酯类(ZL200810005824.2),环氧大豆油、丙三醇等有机物(ZL201810036172.2),其生产工艺对环境造成了很大程度的污染。
发明内容
本发明所要解决的技术问题是提供一种快速降解的石墨烯复合防水纸及其制备方法,以克服现有技术中传统包装材料难降解、易造成环境污染、不防水等缺陷。
本发明提供一种快速降解的石墨烯复合防水纸,所述复合防水纸为纸张与还原氧化石墨烯的复合结构,其中还原氧化石墨烯外表层为还原氧化石墨烯层,还原氧化石墨烯与纸张接触的一侧为氧化石墨烯层,还原氧化石墨烯从与纸张接触的一侧到外表层呈现还原程度递增的梯度还原特征。
优选的,上述复合防水纸中,所述纸张为植物纤维素基传统包装用纸,更优选的,所述纸张为牛皮纸。
本发明提供一种快速降解的石墨烯复合防水纸的制备方法,包括:
(1)将氧化石墨烯分散于溶剂中,超声、细胞粉碎,得到氧化石墨烯分散液;
(2)采用电场极化让纸张表面带正电荷,然后将带正电荷的纸张平铺于步骤(1)中氧化石墨烯分散液表面,使得纸张一面完全浸渍;
(3)将步骤(2)中浸渍后的纸张干燥,进行热处理,得到石墨烯复合防水纸。
优选的,上述方法中,所述步骤(1)中溶剂为去离子水。
优选的,上述方法中,所述步骤(1)中氧化石墨烯分散液浓度为0.5~15mg/mL。
优选的,上述方法中,所述步骤(1)中超声时间为1~5h。
优选的,上述方法中,所述步骤(1)中细胞粉碎时间为1~2h。
优选的,上述方法中,所述步骤(2)中电场极化电压为直流5~30kV。
优选的,上述方法中,所述步骤(2)中纸张浸渍时间为1~30min。
优选的,上述方法中,所述步骤(3)中热处理温度为80~300℃,热处理时间为1~30min。
本发明还提供一种石墨烯复合防水纸在防水包装材料中的应用。
本发明中还原氧化石墨烯从与纸张接触的一侧到外表层呈现还原程度递增的梯度还原特征为:外表层为还原氧化石墨烯,属于高还原度的石墨烯,接触纸基一侧为氧化石墨烯层,从接触纸基的一侧到外表层氧化石墨烯的还原程度逐渐增加。
本发明中热处理过程使得暴露在外侧的氧化石墨烯更容易被还原,而接触纸基一侧受热量传输影响较难还原。由于热量从外侧向接触纸基一侧传递呈现递减趋势,因而,受温度差异影响,其还原程度也呈现梯度特征。
本发明中由于起力学承载作用的纸基层为植物纤维,易于降解;起防水作用的还原氧化石墨烯层为微组装的石墨烯片层,也及其易于降解,并且不会产生任何有机物。
本发明以传统的包装用纸为基底,以氧化石墨烯溶液为功能性涂料,使用静电微组装工艺在纸基上形成氧化石墨烯涂层,并通过热处理,使得表层氧化石墨烯转变为了疏水的石墨烯层。其中,纸基表面的功能层还原程度呈现梯度分布,外表面疏水的石墨烯层起到了防水的效果,而与纸基结合的低还原度氧化石墨烯层由于其优异的界面结合力,起到了力学增强的作用。
本发明通过改变纸基材料种类,以及氧化石墨烯分散液浓度、热处理温度、时间等参数,能够获得具有不同力学性能、不同防水级别的快速降解防水纸,可满足工业以及生活垃圾盛装等多种应用领域的使用要求。
有益效果
(1)本发明操作简单,制备过程方便快速,工艺过程环保无污染;
(2)本发明所制备的石墨烯复合防水纸具有优异的防水性能,并且由于接触纸基一侧为氧化石墨烯层,与纸基具有很好的结合力,具有很好的耐久性;
(3)本发明所制备的石墨烯复合防水纸具有厚度和防水性能可调变性,可作为环保包装材料,在富水物品包装、餐厨垃圾盛装等方面具有广阔的应用前景。
附图说明
图1为本发明实施例1中石墨烯复合防水纸热处理前的亲水性图;
图2为本发明实施例1中石墨烯复合防水纸的二维拉曼图(左)及其对应光学照片(右);
图3为本发明实施例1中石墨烯复合防水纸的疏水性图;
图4为本发明实施例2中石墨烯复合防水纸的疏水性图;
图5为本发明实施例3中石墨烯复合防水纸的疏水性图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
其中,实施例所用氧化石墨购自常州第六元素;接触角、耐久性、和力学性能均在25度,65%湿度环境下测试。接触角以水作为测试溶剂,采用德国DataPhysics OCA40Micro测试;耐久性采用水分测试仪测试,力学性能采用Instron 5969测试(样品长度为1cm)。
实施例1
(1)在室温下,称取500mg改性Hummers法制备的氧化石墨,置于500mL的烧杯中,然后加入去离子水200mL,配成2.5mg/mL的分散液。然后将烧杯放入水浴超声池中处理2h,再转移至细胞粉碎机中处理1h,得到均匀分散的氧化石墨烯分散液200mL,将其转移至溶液盘中待用;
(2)将待用的纤维纸(伽立包装牛皮纸,断裂强度185.0MPa,耐久性26.3min(以底部含水率5%为失效点))采用20kV电场极化处理,使得纸张表面带正电荷,然后将其平铺于步骤(1)中分散液表面10min,使得纸基一面完全浸渍,并干燥处理。
(3)将步骤(2)中所得纸张在200℃下热处理20min,即得到快速降解的石墨烯复合防水纸,其断裂强度213.2MPa,耐久性为72.4h(以底部含水率5%为失效点)。
图1表明:石墨烯复合防水纸热处理前的接触角为26.4°。
图2为处理后的二维拉曼光谱图,可看到,热处理后出现了石墨烯的特征指纹。
图3对比图1可看到热处理后石墨烯复合防水纸的疏水性显著提高,其接触角达到了92.9°。
实施例2
根据实施例1,将热处理温度改为300℃,热处理时间改为10min,其余均与实施例1相同,得到快速降解的石墨烯复合防水纸,其断裂强度197.5MPa,耐久性为118.6h(以底部含水率5%为失效点)。
图4对比图1可看到热处理后石墨烯复合防水纸的疏水性显著提高,其接触角达到了103.9°。
实施例3
根据实施例1,热处理温度为300℃,热处理时间为20min,其余均与实施例1相同,得到快速降解的石墨烯复合防水纸,其断裂强度189.7MPa,耐久性为138.7h(以底部含水率5%为失效点)。
图5对比图1可看到热处理后石墨烯复合防水纸的疏水性显著提高,其接触角达到了142.7°。
实施例4
(1)在室温下,称取1000mg改性Hummers法制备的氧化石墨,置于500mL的烧杯中,然后加入去离子水200mL,配成5.0mg/mL的分散液。然后将烧杯放入水浴超声池中处理2h,再转移至细胞粉碎机中处理1h,得到均匀分散的氧化石墨烯分散液200mL,将其转移至溶液盘中待用;
(2)将待用的纤维纸(伽立包装牛皮纸,断裂强度185.0MPa,耐久性26.3min(以底部含水率5%为失效点)),采用20kV电场极化处理,使得纸张表面带正电荷,然后将其平铺于步骤(1)中分散液表面10min,使得纸基一面完全浸渍,并干燥处理。
(3)将步骤(2)中所得纸张在200℃下热处理20min,即得到快速降解的石墨烯复合防水纸,其断裂强度249.6MPa,耐久性为68.2h(以底部含水率5%为失效点)。
实施例5
(1)在室温下,称取500mg改性Hummers法制备的氧化石墨,置于500mL的烧杯中,然后加入去离子水200mL,配成2.5mg/mL的分散液。然后将烧杯放入水浴超声池中处理2h,再转移至细胞粉碎机中处理1h,得到均匀分散的氧化石墨烯分散液200mL,将其转移至溶液盘中待用;
(2)将待用的纤维纸(伽立包装白牛皮纸,断裂强度150.0MPa,耐久性14.5min(以底部含水率5%为失效点)),采用20kV电场极化处理,使得纸张表面带正电荷,然后将其平铺于步骤(1)中分散液表面10min,使得纸基一面完全浸渍,并干燥处理。
(3)将步骤(2)中所得纸张在200℃下热处理20min,即得到快速降解的石墨烯复合防水纸,其断裂强度189.3MPa,耐久性为71.5h(以底部含水率5%为失效点)。

Claims (10)

1.一种石墨烯复合防水纸,其特征在于,所述复合防水纸为纸张与还原氧化石墨烯的复合结构,其中还原氧化石墨烯外表层为还原氧化石墨烯层,还原氧化石墨烯与纸张接触的一侧为氧化石墨烯层,还原氧化石墨烯从与纸张接触的一侧到外表层呈现还原程度递增的梯度还原特征。
2.根据权利要求1所述复合防水纸,其特征在于,所述纸张为传统包装用纸。
3.一种石墨烯复合防水纸的制备方法,包括:
(1)将氧化石墨烯分散于溶剂中,超声、细胞粉碎,得到氧化石墨烯分散液;
(2)采用电场极化让纸张表面带正电荷,然后将带正电荷的纸张平铺于步骤(1)中氧化石墨烯分散液表面,使得纸张一面完全浸渍;
(3)将步骤(2)中浸渍后的纸张干燥,进行热处理,得到石墨烯复合防水纸。
4.根据权利要求3所述方法,其特征在于,所述步骤(1)中溶剂为去离子水;氧化石墨烯分散液浓度为0.5~15mg/mL。
5.根据权利要求3所述方法,其特征在于,所述步骤(1)中超声时间为1~5h。
6.根据权利要求3所述方法,其特征在于,所述步骤(1)中细胞粉碎时间为1~2h。
7.根据权利要求3所述方法,其特征在于,所述步骤(2)中电场极化电压为直流5~30kV。
8.根据权利要求3所述方法,其特征在于,所述步骤(2)中纸张浸渍时间为1~30min。
9.根据权利要求3所述方法,其特征在于,所述步骤(3)中热处理温度为80~300℃,热处理时间为1~30min。
10.一种如权利要求1所述复合防水纸在防水包装材料中的应用。
CN202110440854.1A 2021-04-23 2021-04-23 一种快速降解的石墨烯复合防水纸及其制备方法 Active CN113235327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110440854.1A CN113235327B (zh) 2021-04-23 2021-04-23 一种快速降解的石墨烯复合防水纸及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110440854.1A CN113235327B (zh) 2021-04-23 2021-04-23 一种快速降解的石墨烯复合防水纸及其制备方法

Publications (2)

Publication Number Publication Date
CN113235327A true CN113235327A (zh) 2021-08-10
CN113235327B CN113235327B (zh) 2022-05-17

Family

ID=77129034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110440854.1A Active CN113235327B (zh) 2021-04-23 2021-04-23 一种快速降解的石墨烯复合防水纸及其制备方法

Country Status (1)

Country Link
CN (1) CN113235327B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145097A (zh) * 2016-06-13 2016-11-23 南京工业大学 一种亲疏水性可控的还原氧化石墨烯的制备方法
CN107059472A (zh) * 2017-02-14 2017-08-18 高域(北京)智能科技研究院有限公司 防水纸及其制造方法
CN108440018A (zh) * 2018-05-31 2018-08-24 济南大学 混凝土表面防护的方法及所得表面防护型混凝土
CN110184859A (zh) * 2019-05-16 2019-08-30 西安石油大学 一种多层石墨烯纤维纸及其制备方法
US20210024378A1 (en) * 2019-07-24 2021-01-28 King Fahd University Of Petroleum And Minerals Graphene reinforced polystyrene composite for separation of nonpolar compounds from water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145097A (zh) * 2016-06-13 2016-11-23 南京工业大学 一种亲疏水性可控的还原氧化石墨烯的制备方法
CN107059472A (zh) * 2017-02-14 2017-08-18 高域(北京)智能科技研究院有限公司 防水纸及其制造方法
CN108440018A (zh) * 2018-05-31 2018-08-24 济南大学 混凝土表面防护的方法及所得表面防护型混凝土
CN110184859A (zh) * 2019-05-16 2019-08-30 西安石油大学 一种多层石墨烯纤维纸及其制备方法
US20210024378A1 (en) * 2019-07-24 2021-01-28 King Fahd University Of Petroleum And Minerals Graphene reinforced polystyrene composite for separation of nonpolar compounds from water

Also Published As

Publication number Publication date
CN113235327B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Nie et al. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity
Agate et al. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites–A review
Sabo et al. Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: A review
Guan et al. Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications
Ge et al. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films
Zhang et al. Emerging MXene/cellulose composites: Design strategies and diverse applications
Wu et al. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors
WO2016008290A1 (zh) 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
CN102906165B (zh) 产生导电聚合物和纤维素纳米复合物的方法
Zhang et al. Gas‐sensitive cellulosic triboelectric materials for self‐powered ammonia sensing
CN107556510B (zh) 一种柔性传感器电极的制备方法
CN102789842B (zh) 一种导电聚合物/石墨烯复合纳米材料的制备方法
Zhao et al. Boosting the durability of triboelectric nanogenerators: a critical review and prospect
Nizam et al. Nanocellulose-based composites: fundamentals and applications in electronics
Bozó et al. Bioplastics and carbon-based sustainable materials, components, and devices: toward green electronics
Lv et al. A new method to prepare no-binder, integral electrodes-separator, asymmetric all-solid-state flexible supercapacitor derived from bacterial cellulose
CN107393721A (zh) 一种二硫化钼量子点修饰的石墨烯‑氧化锌纳米管阵列传感材料的制备方法
Yang et al. Nanocellulose-graphene composites: Preparation and applications in flexible electronics
Chen et al. Biodegradable blends of graphene quantum dots and thermoplastic starch with solid-state photoluminescent and conductive properties
CN103214041A (zh) 一种硫化钴的制备方法
Huang et al. A facile synthesis of reduced graphene oxide-wrapped WO3 nanowire composite and its enhanced electrochemical catalysis properties
Jeong et al. Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes
Li et al. Mussel-inspired polydopamine-enhanced polyimide for ultrahigh toughness and ultraviolet shielding applications
Shen et al. Nanopaper electronics
Jeong Electrochemical performances of semi-transparent and stretchable supercapacitor composed of nanocarbon materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant