CN113234424B - 一种适用于中高温地层的低密度固井水泥浆体系及其制备方法 - Google Patents

一种适用于中高温地层的低密度固井水泥浆体系及其制备方法 Download PDF

Info

Publication number
CN113234424B
CN113234424B CN202110550154.8A CN202110550154A CN113234424B CN 113234424 B CN113234424 B CN 113234424B CN 202110550154 A CN202110550154 A CN 202110550154A CN 113234424 B CN113234424 B CN 113234424B
Authority
CN
China
Prior art keywords
low
cement
slurry
medium
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110550154.8A
Other languages
English (en)
Other versions
CN113234424A (zh
Inventor
杜静
张洋勇
古安林
曾雪玲
薛元陶
刘欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiahua Special Cement Co ltd
Original Assignee
Jiahua Special Cement Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiahua Special Cement Co ltd filed Critical Jiahua Special Cement Co ltd
Priority to CN202110550154.8A priority Critical patent/CN113234424B/zh
Publication of CN113234424A publication Critical patent/CN113234424A/zh
Application granted granted Critical
Publication of CN113234424B publication Critical patent/CN113234424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种适用于中高温地层的低密度固井水泥浆体系,涉及水泥浆体系技术领域。本发明包括油井水泥50%~55%,粉煤灰30%~35%,微硅粉7%~15%,浆体稳定剂0.5%~2%,纳米液硅乳液0.1~2%,早强剂0.2%~1%,降失水剂0.5%~2.5%,减阻剂0.2%~0.8%,缓凝剂0.1~2%;所述浆体稳定剂的成分为单宁酸钠、木质素磺酸钠和改性膨润土粉,复合比例为2~10:3~10:80~95。本发明中的低密度固井水泥浆体系主要材料来源广泛、价格较低,其水泥浆体系可适用于中高温的低压地层,因此具有较好的应用前景。

Description

一种适用于中高温地层的低密度固井水泥浆体系及其制备 方法
技术领域
本发明涉及水泥浆体系技术领域,尤其涉及一种低密度固井水泥浆体系,更具体地说涉及一种适用于中高温地层的低密度固井水泥浆体系及其制备方法。
背景技术
近年来,随着油气勘探力度的加大及钻探技术的提高,低压易漏地层中深井和超深井的数量也越来越多;由于井底温度较高,且地层压力系数较低,因此这些井在固井时,不仅需要考虑固井水泥浆的密度适应性,而且更重要的是考虑固井水泥浆的温度适应性。目前低密度水泥浆主要采用加入减轻剂和增大固液比两种方式降低其密度,其中减轻剂主要包括漂珠、粉煤灰、矿渣、微硅、微珠等。虽现有的低密度水泥浆技术已经较为成熟,且低密度水泥浆体系较多,但绝大部分只适用于低中温浅中段井深地层,而应用于中高温井段的低密度水泥浆体系却较少;为此,开发出一种适用于中高温地层且成本较低和综合性能较好的低密度水泥浆体系则显得较为急迫。
现有技术中的低密度水泥浆,如公开号为CN109437710A,名称为“一种高水灰比低成本低密度固井水泥浆及其制备方法”的发明专利,该专利中的水泥浆体系虽然具有较好的稳定性,但其适用温度主要为低中温浅层井段,对于中高温低压地层井段则不能满足。
又如公开号为CN110590251A,名称为“一种低密度高强度水泥浆”的发明专利,该专利中的水泥浆体系在较大水灰比条件下,具有较高的强度和较好的稳定性,但其适用温度仍然处于中低温条件下,无法应用于中高温深井井段条件下。
发明内容
为了克服上述现有技术中存在的缺陷和不足,本发明提供了一种适用于中高温地层的低密度固井水泥浆体系,本发明的发明目的在于解决现有低密度固井水泥浆不适用于中高温地层的问题,本发明成本较低、综合性能较好、可适用于中高温低压地层的中深部井段。
为了解决上述现有技术中存在的问题,本发明是通过下述技术方案实现的:
一种适用于中高温地层的低密度固井水泥浆体系,包括以下按体系内掺重量比的各组分:
油井水泥50%~55%,粉煤灰30%~35%,微硅粉7%~15%,浆体稳定剂0.5%~2%,纳米液硅乳液0.1~2%,早强剂0.2%~1%,降失水剂0.5%~2.5%,减阻剂0.2%~0.8%,缓凝剂0.1~2%;
其中,所述浆体稳定剂的成分为单宁酸钠、木质素磺酸钠和改性膨润土粉,复合比例为2~10:3~10:80~95;其中所述改性膨润土粉为天然钠基或钙基膨润土在分散液中分散后,在水浴温度为60℃~80℃下匀速搅拌1.5h~3.5h,再将其移至常温下静置8h后,离心分离后用去离子水对其冲洗后再烘干,最后研磨至200目以上而得;
所述分散液为掺量为0.5%~1.5%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1,且采用NaOH将其pH调至11的水溶液。
所述低密度固井水泥浆的密度为1.50g/cm3~1.60g/cm3
所述油井水泥主要为G级油井水泥,A级油井水泥或D级油井水泥中的一种。
所述粉煤灰的粒径范围为1μm ~300μm。
所述微硅粉的平均粒径为0.1μm ~0.3μm。
所述早强剂为无机盐类早强剂。
所述降失水剂为AMPS聚合物类降失水剂。
所述减阻剂为醛酮缩聚物类减阻剂。
所述缓凝剂为葡萄糖酸钠、硼酸、柠檬酸或AMPS聚合物类缓凝剂中的任意一种。
所述低密度固井水泥浆的固液比为0.8~0.9。
本发明以颗粒级配理论和紧密堆积理论为基础,通过对油井水泥、粉煤灰、微硅粉三种配浆主材料优选,确保制备的水泥浆体系中能最大化实现空隙充填,从而提高单位水泥浆体系中的固相含量,进一步提高水泥浆的整体性能,其次加入纳米液硅乳液能将水泥浆体系中的主要材料有机结合在一起,并进一步增强体系的稳定性和抗压强度。
其中,中高温浆体稳定剂的作用机理如下:膨润土粉分散于聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝的碱性水溶液后,被其中聚丙烯酰胺和聚丙烯酰胺部分水解产物、乙烯酯-顺丁烯二酸酐共聚物和其部分水解产物、聚合氯化铝和其部分水解产物进行插层改性,使得改性后的膨润土物化性能得到较大范围提升,提高了其稳定性、抗温性和分散性;同时为避免加入水泥浆后对浆体的流动性能造成额外影响,因此与单宁酸钠和木质素磺酸钠进行复合配比,使其在对水泥浆浆体的稳定性提高的同时,又使得浆体具有较好的流变性能。
本发明还提供了一种适用于中高温地层的低密度固井水泥浆体系的制备方法,具体如下:
将称好的油井水泥、粉煤灰、微硅粉、浆体稳定剂、早强剂、降失水剂、减阻剂均匀混合后,得到固体粉末混合物;
将自来水、纳米液硅乳液、缓凝剂均匀混合后,得到液体混合物;
按照GB/T19139-2012《油井水泥试验方法》中水泥浆的制备方法,制备出所述低密度固井水泥浆。
当所选用的外加剂不同时,其实验步骤或许会发生些许改变,主要体现在外加剂是否为液体溶液还是固体粉末,若为固体粉末时,则需进行固体混合,否则进行液体混合;无论以哪种方式进行混合,本发明中低密度水泥浆体系保持固液比始终在0.8~0.9即可。
与现有技术相比,本发明所带来的有益的技术效果表现在:
1、本发明的水泥浆体系适用的中高温温度区间为80℃~150℃,该水泥浆体系加入中高温浆体稳定剂后,在中高温条件下各性能表现较为优异,浆体稳定性较好,抗压强度较高;在80℃养护条件下,其抗压强度2d≥13MPa;100℃养护条件下,其抗压强度2d≥14MPa;120℃养护条件下,其抗压强度2d≥15MPa;150℃养护条件下,其抗压强度2d≥15MPa;该水泥浆体系的API滤失量≤50ml,其稠化时间在200~400min范围内可调。
2、本发明中的低密度固井水泥浆体系主要材料来源广泛、价格较低,其水泥浆体系可适用于中高温的低压地层,因此具有较好的应用前景。
附图说明
图1为本发明实施例1制备的低密度固井水泥浆的稠化曲线;
图2为本发明实施例2制备的低密度固井水泥浆的稠化曲线;
图3为本发明实施例3制备的低密度固井水泥浆的稠化曲线;
图4为本发明实施例4制备的低密度固井水泥浆的稠化曲线;
图5为本发明对比实施例5制备的低密度固井水泥浆的稠化曲线;
图6为本发明对比实施例6制备的低密度固井水泥浆的稠化曲线;
图7为本发明对比实施例7制备的低密度固井水泥浆的稠化曲线;
图8为本发明对比实施例8制备的低密度固井水泥浆的稠化曲线。
具体实施方式
下面结合实施例,对本发明的技术方案作出进一步详细地阐述。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但不构成对本发明的限定。
实施例1
作为本发明一较佳实施例,参照说明书附图1,本实施例公开了一种适用于中高温地层的低密度固井水泥浆体系,包括如下按体系内掺重量比的各组分:
油井水泥53.3%,粉煤灰33%,微硅粉9.5%,浆体稳定剂0.8%,纳米液硅乳液0.4%,早强剂0.8%,降失水剂1.6%,减阻剂0.3%,缓凝剂0.3%;
其中,浆体稳定剂为单宁酸钠、木质素磺酸钠和改性膨润土粉复合比例为2:3:95,其中改性膨润土为天然纳基膨润土在掺量为1%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1且采用NaOH将其pH调至11的水溶液分散后,在水浴温度为60℃下匀速搅拌1.5h,再将其移至常温下静止8h后,离心分离后用去离子水将其冲洗2遍后,再烘干,最后将其研磨至200目以上而得。
其中,水泥浆体系的固液比为0.9,水泥浆的密度为1.50g/cm3;其中,油井水泥为A级油井水泥;早强剂为无水Na2SO4;降失水剂为G33S;减阻剂为QS-12S;缓凝剂为SD-21。
实施例2
作为本发明一较佳实施例,参照说明书附图2,本实施例公开了一种适用于中高温地层的低密度固井水泥浆体系,包括如下按体系内掺重量比的各组分:
油井水泥53.5%,粉煤灰32.5%,微硅粉10%,浆体稳定剂1%,纳米液硅乳液0.3%,早强剂0.5%,降失水剂1.2%,减阻剂0.4%,缓凝剂0.6%;
其中,浆体稳定剂为单宁酸钠、木质素磺酸钠和改性膨润土粉复合比例为3:4:93,其中改性膨润土为天然纳基膨润土在掺量为0.8%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1且采用NaOH将其pH调至11的水溶液分散后,在水浴温度为70℃下匀速搅拌2h后,再将其移至常温下静止8h后,离心分离后用去离子水将其冲洗2遍,再烘干,最后将其研磨至200目以上而得。
其中,该水泥浆体系的固液比为0.85,水泥浆的密度为1.55g/cm3;油井水泥为D级油井水泥;早强剂为无水Na2SO4;降失水剂为HX;减阻剂为QS-12S;缓凝剂为T-611L。
实施例3
作为本发明一较佳实施例,参照说明书附图3,本实施例公开了一种适用于中高温地层的低密度固井水泥浆体系,包括如下按体系内掺重量比的各组分:
油井水泥53.6%,粉煤灰32%,微硅粉9.6%,中高温浆体稳定剂1.2%,纳米液硅乳液0.4%,早强剂0.4%,降失水剂1.5%,减阻剂0.5%,缓凝剂0.8%;
其中,中高温浆体稳定剂为单宁酸钠、木质素磺酸钠和改性膨润土粉复合比例为4:5:91,其中改性膨润土为天然纳基膨润土在掺量为0.8%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1且采用NaOH将其pH调至11的水溶液分散后,在水浴温度为80℃下匀速搅拌2.5h后,再将其移至常温下静止8h后,离心分离后用去离子水将其冲洗2遍,再烘干,最后将其研磨至200目以上而得。
其中,该水泥浆体系的固液比为0.80,水泥浆的密度为1.60g/cm3;油井水泥为G级油井水泥;早强剂为无水Na2SO4;降失水剂为G33S;减阻剂为QS-12S;缓凝剂为T-611L。
实施例4
作为本发明一较佳实施例,参照说明书附图4,本实施例公开了一种适用于中高温地层的低密度固井水泥浆体系,包括如下按体系内掺重量比的各组分:
油井水泥54%,粉煤灰31.5%,微硅粉9.5%,中高温浆体稳定剂1.4%,纳米液硅乳液0.5%,早强剂0.4%,降失水剂1.1%,减阻剂0.5%,缓凝剂1.1%;
其中,中高温浆体稳定剂为单宁酸钠、木质素磺酸钠和改性膨润土粉复合比例为5:6:89,其中改性膨润土为天然纳基膨润土在掺量为1%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1且采用NaOH将其pH调至11的水溶液分散后,在水浴温度为80℃下匀速搅拌3h后,再将其移至常温下静止8h后,离心分离后用去离子水将其冲洗2遍,烘干后,最后将其研磨至200目以上而得。
其中,该水泥浆体系的固液比为0.80,水泥浆的密度为1.60g/cm3;油井水泥为G级油井水泥;早强剂为无水Na2SO4;降失水剂为HX;减阻剂为QS-12S;缓凝剂为SD-210。
实施例5
本实施例为实施例1的对比实施例,本实施例中的固井水泥将配方与实施例1中的相同,本实施例中的配比中取消了本申请的浆体稳定剂。本实施例得到的低密度固井水泥浆的稠化曲线如图5所示。
实施例6
本实施例为实施例2的对比实施例,本实施例中的固井水泥将配方与实施例2中的相同,本实施例中的配比中取消了本申请的浆体稳定剂。本实施例得到的低密度固井水泥浆的稠化曲线如图6所示。
实施例7
本实施例为实施例3的对比实施例,本实施例中的固井水泥将配方与实施例3中的相同,本实施例中的配比中取消了本申请的浆体稳定剂。本实施例得到的低密度固井水泥浆的稠化曲线如图7所示。
实施例8
本实施例为实施例4的对比实施例,本实施例中的固井水泥将配方与实施例4中的相同,本实施例中的配比中取消了本申请的浆体稳定剂。本实施例得到的低密度固井水泥浆的稠化曲线如图8所示。
实施例9
作为本发明一较佳实施例,本实施例公开了一种适用于中高温地层的低密度固井水泥浆体系,包括如下按体系内掺重量比的各组分:
油井水泥55%,粉煤灰30%,微硅粉12%,浆体稳定剂0.5%,纳米液硅乳液0.1%,早强剂0.2%,降失水剂0.5%,减阻剂0.2%,缓凝剂1.5%;
其中,中高温浆体稳定剂为单宁酸钠、木质素磺酸钠和改性膨润土粉复合比例为6:7:87,其中改性膨润土为天然纳基膨润土在掺量为0.6%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1且采用NaOH将其pH调至11的水溶液分散后,在水浴温度为60℃下匀速搅拌3.5h后,再将其移至常温下静止8h后,离心分离后用去离子水将其冲洗2遍,烘干后,最后将其研磨至200目以上而得。该水泥浆体系的固液比为0.80,水泥浆的密度为1.60g/cm3;油井水泥为G级油井水泥;早强剂为无水Na2SO4;降失水剂为HX;减阻剂为QS-12S;缓凝剂为T-611L。
实施例10
作为本发明一较佳实施例,本实施例公开了一种适用于中高温地层的低密度固井水泥浆体系,包括如下按体系内掺重量比的各组分:
油井水泥53.7%,粉煤灰30%,微硅粉7%,浆体稳定剂2%,纳米液硅乳液1%,早强剂1%,降失水剂2.5%,减阻剂0.8%,缓凝剂2%;
其中,中高温浆体稳定剂为单宁酸钠、木质素磺酸钠和改性膨润土粉复合比例为7:8:85,其中改性膨润土为天然纳基膨润土在掺量为1.5%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1且采用NaOH将其pH调至11的水溶液分散后,在水浴温度为70℃下匀速搅拌3h后,再将其移至常温下静止8h后,离心分离后用去离子水将其冲洗2遍,烘干后,最后将其研磨至200目以上而得。该水泥浆体系的固液比为0.80,水泥浆的密度为1.60g/cm3;油井水泥为G级油井水泥;早强剂为无水Na2SO4;降失水剂为HX;减阻剂为QS-12S;缓凝剂为SD-210。
实施例11
作为本发明一较佳实施例,本实施例公开了一种适用于中高温地层的低密度固井水泥浆体系,包括如下按体系内掺重量比的各组分:
油井水泥50%,粉煤灰35%,微硅粉8%,浆体稳定剂1%,纳米液硅乳液2%,早强剂0.7%,降失水剂2%,减阻剂0.8%,缓凝剂0.5%;
其中,中高温浆体稳定剂为单宁酸钠、木质素磺酸钠和改性膨润土粉复合比例为8:8:84,其中改性膨润土为天然纳基膨润土在掺量为0.6%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1且采用NaOH将其pH调至11的水溶液分散后,在水浴温度为65℃下匀速搅拌2.1h后,再将其移至常温下静止8h后,离心分离后用去离子水将其冲洗2遍,烘干后,最后将其研磨至200目以上而得。该水泥浆体系的固液比为0.80,水泥浆的密度为1.60g/cm3;油井水泥为G级油井水泥;早强剂为无水Na2SO4;降失水剂为HX;减阻剂为QS-12S;缓凝剂为SD-210。
实施例12
作为本发明一较佳实施例,本实施例公开了一种适用于中高温地层的低密度固井水泥浆体系,包括如下按体系内掺重量比的各组分:
油井水泥50%,粉煤灰30%,微硅粉15%,浆体稳定剂0.5%,纳米液硅乳液0.5%,早强剂0.5%,降失水剂1.9%,减阻剂0.6%,缓凝剂1%;
其中,中高温浆体稳定剂为单宁酸钠、木质素磺酸钠和改性膨润土粉复合比例为8:9:83,其中改性膨润土为天然纳基膨润土在掺量为1.4%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1且采用NaOH将其pH调至11的水溶液分散后,在水浴温度为75℃下匀速搅拌1.5h后,再将其移至常温下静止8h后,离心分离后用去离子水将其冲洗2遍,烘干后,最后将其研磨至200目以上而得。该水泥浆体系的固液比为0.80,水泥浆的密度为1.60g/cm3;油井水泥为G级油井水泥;早强剂为无水Na2SO4;降失水剂为HX;减阻剂为QS-12S;缓凝剂为T-611L。
实施例13
作为本发明一较佳实施例,本实施例公开了一种适用于中高温地层的低密度固井水泥浆体系,包括如下按体系内掺重量比的各组分:
油井水泥55%,粉煤灰35%,微硅粉7%,浆体稳定剂0.9%,纳米液硅乳液0.1%,早强剂0.9%,降失水剂0.8%,减阻剂0.2%,缓凝剂0.1%;
其中,中高温浆体稳定剂为单宁酸钠、木质素磺酸钠和改性膨润土粉复合比例为10:10:80,其中改性膨润土为天然纳基膨润土在掺量为1.5%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1且采用NaOH将其pH调至11的水溶液分散后,在水浴温度为80℃下匀速搅拌2h后,再将其移至常温下静止8h后,离心分离后用去离子水将其冲洗2遍,烘干后,最后将其研磨至200目以上而得。该水泥浆体系的固液比为0.80,水泥浆的密度为1.60g/cm3;油井水泥为G级油井水泥;早强剂为无水Na2SO4;降失水剂为HX;减阻剂为QS-12S;缓凝剂为SD-210。
下面对本发明中实施例1-4和对比实施例5-8中制备的低密度固井水泥浆进行性能检测分析,所用测定方法及测试装置均按照GB/T19139-2012《油井水泥试验方法》严格执行,下表1为检测结果。
Figure DEST_PATH_IMAGE002
备注:其中实施例1和实施例5的失水条件为80℃*6.9MPa*30min,稠化实验条件为80℃*40MPa,养护条件为80℃*20.7MPa;实施例2和实施例6的失水条件为100℃*6.9MPa*30min,稠化实验条件为100℃*55Mpa,养护条件为100℃*20.7MPa;实施例3和实施例7的失水条件为120℃*6.9MPa*30min,稠化实验条件为120℃*65MPa,养护条件为120℃*20.7MPa;实施例4和实施例8的失水条件为150℃*6.9MPa*30min,稠化实验条件为150℃*75MPa,养护条件为150℃*20.7MPa。
由上述检测结果及说明书附图1-8可知,未添加浆体稳定剂的实施例5~8,其浆体在稠化过程中出现浆体失稳、稠化曲线波动大、抗压强度偏低等问题,而本发明的低密度固井水泥浆体系的综合性能较好,能较好满足相关性能参数要求。本发明的水泥浆体系适用的中高温温度区间为80℃~150℃,该水泥浆体系加入中高温浆体稳定剂后,在中高温条件下各性能表现较为优异,浆体稳定性较好,抗压强度较高;在80℃养护条件下,其抗压强度2d≥13MPa;100℃养护条件下,其抗压强度2d≥14MPa;120℃养护条件下,其抗压强度2d≥15MPa;150℃养护条件下,其抗压强度2d≥15MPa;该水泥浆体系的API滤失量≤50ml,其稠化时间在200~400min范围内可调。
以上所述,仅是本发明的较佳实施例而已,并非对本发明任何形式上的限定,任何熟悉本领域的技术人员,在不脱离本发明技术方案的构思和原则下,所作的任何简单修改,均属于本发明保护的范围。

Claims (6)

1.一种适用于中高温地层的低密度固井水泥浆体系,其特征在于,包括以下按体系内掺重量比的各组分:
油井水泥50%~55%,粉煤灰30%~35%,微硅粉7%~15%,浆体稳定剂0.5%~2%,纳米液硅乳液0.1~2%,早强剂0.2%~1%,降失水剂0.5%~2.5%,减阻剂0.2%~0.8%,缓凝剂0.1~2%;
其中,所述浆体稳定剂的成分为单宁酸钠、木质素磺酸钠和改性膨润土粉,复合比例为2~10:3~10:80~95;其中所述改性膨润土粉为天然钠基或钙基膨润土在分散液中分散后,在水浴温度为60℃~80℃下匀速搅拌1.5h~3.5h,再将其移至常温下静置8h后,离心分离后用去离子水对其冲洗后再烘干,最后研磨至200目以上而得;
所述分散液为掺量为0.5%~1.5%的聚丙烯酰胺、乙酸乙烯酯-顺丁烯二酸酐共聚物和聚合氯化铝复合比例为3:1:1,且采用NaOH将其pH调至11的水溶液;
所述早强剂为无机盐类早强剂;所述降失水剂为G33S;所述减阻剂为QS-12S;所述缓凝剂为SD-210或T-611L。
2.如权利要求1所述一种适用于中高温地层的低密度固井水泥浆体系,其特征在于:所述低密度固井水泥浆的密度为1.50g/cm3~1.60g/cm3
3.如权利要求1所述一种适用于中高温地层的低密度固井水泥浆体系,其特征在于:所述油井水泥为G级油井水泥,A级油井水泥或D级油井水泥中的一种。
4.如权利要求1所述一种适用于中高温地层的低密度固井水泥浆体系,其特征在于:所述粉煤灰的粒径范围为1μm ~300μm。
5.如权利要求1所述一种适用于中高温地层的低密度固井水泥浆体系,其特征在于:所述微硅粉的平均粒径为0.1μm ~0.3μm。
6.如权利要求1所述的一种适用于中高温地层的低密度固井水泥浆体系的制备方法,其特征在于,包括以下步骤:
按上述内掺重量比将称好的油井水泥、粉煤灰、微硅粉、浆体稳定剂、早强剂、降失水剂、减阻剂均匀混合后,得到固体粉末混合物;
将自来水、纳米液硅乳液、缓凝剂均匀混合后,得到液体混合物;
按照GB/T19139-2012《油井水泥试验方法》中水泥浆的制备方法,制备出所述低密度固井水泥浆,固液比0.8~0.9。
CN202110550154.8A 2021-05-20 2021-05-20 一种适用于中高温地层的低密度固井水泥浆体系及其制备方法 Active CN113234424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110550154.8A CN113234424B (zh) 2021-05-20 2021-05-20 一种适用于中高温地层的低密度固井水泥浆体系及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110550154.8A CN113234424B (zh) 2021-05-20 2021-05-20 一种适用于中高温地层的低密度固井水泥浆体系及其制备方法

Publications (2)

Publication Number Publication Date
CN113234424A CN113234424A (zh) 2021-08-10
CN113234424B true CN113234424B (zh) 2022-08-19

Family

ID=77137955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110550154.8A Active CN113234424B (zh) 2021-05-20 2021-05-20 一种适用于中高温地层的低密度固井水泥浆体系及其制备方法

Country Status (1)

Country Link
CN (1) CN113234424B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810915A (zh) * 2006-02-24 2006-08-02 西南石油学院 一种固井水泥浆综合性能调节剂及制备方法
CN101747009A (zh) * 2009-12-04 2010-06-23 四川嘉华企业(集团)股份有限公司 高温低密度水泥及其应用
CN101906291A (zh) * 2010-07-21 2010-12-08 中国建筑材料科学研究总院 一种高温特种油井水泥材料及其制备方法
CN103224772A (zh) * 2013-04-08 2013-07-31 中国石油天然气股份有限公司 一种固井水泥浆、其制备方法及用途
CN104263331A (zh) * 2014-09-24 2015-01-07 中国石油大学(华东) 一种新型高温低密度水泥浆体系
CN105271962A (zh) * 2015-09-24 2016-01-27 安东石油技术(集团)有限公司 长封固段大温差盐膏层固井用的水泥浆及其制备方法
CN106007545A (zh) * 2016-06-06 2016-10-12 中国石油集团长城钻探工程有限公司固井公司 长期水泥环完整型稠油热采井固井水泥浆及其制备方法
CN108841366A (zh) * 2018-06-13 2018-11-20 中国石油天然气股份有限公司 一种高温防漏失封堵剂及其制备方法和应用
CN109265093A (zh) * 2018-11-27 2019-01-25 中国石油集团渤海钻探工程有限公司 固井用超低密度水泥浆体系
CN109437710A (zh) * 2019-01-08 2019-03-08 陕西延长石油(集团)有限责任公司研究院 一种高水灰比低成本低密度固井水泥浆及其制备方法
CN109652037A (zh) * 2019-01-15 2019-04-19 中国海洋石油集团有限公司 一种高温稳定水泥浆及其制备方法
CN109824302A (zh) * 2017-11-23 2019-05-31 中国石油化工股份有限公司 一种堵水组合物、堵水剂及其制备方法
CN111233363A (zh) * 2020-02-25 2020-06-05 卫辉市化工有限公司 一种油井水泥用低密度增强剂及其制备方法
CN111646737A (zh) * 2020-06-15 2020-09-11 西南石油大学 一种低密度水泥浆体系
WO2020217966A1 (ja) * 2019-04-24 2020-10-29 日産化学株式会社 坑井用セメントスラリー用添加剤とその製造方法、坑井用セメントスラリー、及び坑井用セメンチング工法
CN112094091A (zh) * 2020-10-30 2020-12-18 成都欧美克石油科技股份有限公司 一种适用于长封固段固井用的大温差低导热水泥浆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339903A (en) * 1993-11-12 1994-08-23 Halliburton Company Method for control of gas migration in well cementing
WO2015035346A1 (en) * 2013-09-09 2015-03-12 Saudi Arabian Oil Company High density formulation to prevent gas migration problems
US9650296B2 (en) * 2014-12-17 2017-05-16 King Fahd University Of Petroleum And Minerals Nanoclay as an additive for high pressure and high temperature well cementing

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810915A (zh) * 2006-02-24 2006-08-02 西南石油学院 一种固井水泥浆综合性能调节剂及制备方法
CN101747009A (zh) * 2009-12-04 2010-06-23 四川嘉华企业(集团)股份有限公司 高温低密度水泥及其应用
CN101906291A (zh) * 2010-07-21 2010-12-08 中国建筑材料科学研究总院 一种高温特种油井水泥材料及其制备方法
CN103224772A (zh) * 2013-04-08 2013-07-31 中国石油天然气股份有限公司 一种固井水泥浆、其制备方法及用途
CN104263331A (zh) * 2014-09-24 2015-01-07 中国石油大学(华东) 一种新型高温低密度水泥浆体系
CN105271962A (zh) * 2015-09-24 2016-01-27 安东石油技术(集团)有限公司 长封固段大温差盐膏层固井用的水泥浆及其制备方法
CN106007545A (zh) * 2016-06-06 2016-10-12 中国石油集团长城钻探工程有限公司固井公司 长期水泥环完整型稠油热采井固井水泥浆及其制备方法
CN109824302A (zh) * 2017-11-23 2019-05-31 中国石油化工股份有限公司 一种堵水组合物、堵水剂及其制备方法
CN108841366A (zh) * 2018-06-13 2018-11-20 中国石油天然气股份有限公司 一种高温防漏失封堵剂及其制备方法和应用
CN109265093A (zh) * 2018-11-27 2019-01-25 中国石油集团渤海钻探工程有限公司 固井用超低密度水泥浆体系
CN109437710A (zh) * 2019-01-08 2019-03-08 陕西延长石油(集团)有限责任公司研究院 一种高水灰比低成本低密度固井水泥浆及其制备方法
CN109652037A (zh) * 2019-01-15 2019-04-19 中国海洋石油集团有限公司 一种高温稳定水泥浆及其制备方法
WO2020217966A1 (ja) * 2019-04-24 2020-10-29 日産化学株式会社 坑井用セメントスラリー用添加剤とその製造方法、坑井用セメントスラリー、及び坑井用セメンチング工法
CN111233363A (zh) * 2020-02-25 2020-06-05 卫辉市化工有限公司 一种油井水泥用低密度增强剂及其制备方法
CN111646737A (zh) * 2020-06-15 2020-09-11 西南石油大学 一种低密度水泥浆体系
CN112094091A (zh) * 2020-10-30 2020-12-18 成都欧美克石油科技股份有限公司 一种适用于长封固段固井用的大温差低导热水泥浆

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
experimental analysis of Mucuna solannieas cement extender addictive for oil and gas well cementing;lgwilo KC;《Journal of petroleum exploration and production technology》;20201221;第10卷(第8期);第3437-3448页 *
高温水泥浆体系研究与应用;温雪丽;《钻井液与完井液》;20110531;第28卷(第5期);第50-53页 *

Also Published As

Publication number Publication date
CN113234424A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
US10533122B1 (en) Strong plugging drilling fluid composition and preparation method thereof, and use thereof
CN109679600B (zh) 纳米材料混合改性超高温高性能固井水泥浆体系及其制备方法
EP0119745B1 (en) High density fluid for use in wells
CN105347716B (zh) 一种分散型无氯油井水泥低温早强剂及包含它的水泥浆
CN106966648B (zh) 一种防co2、h2s腐蚀固井水泥浆
CN105038745A (zh) 一种新型固井用液硅防窜水泥浆
EP2435528A1 (en) Cement compositions comprising latex and a nano-particle and associated methods
EP2158288A1 (en) Well treatment compositions and methods utilizing nano-particles
CN110734752B (zh) 一种堵漏剂及其制备方法
CN104559976A (zh) 水基钻井液及其制备方法
CN104178096A (zh) 一种低密度水泥浆体系
CN115043621A (zh) 一种耐高温抗二氧化碳腐蚀高密度水泥浆及其制备方法和应用
CN113930222B (zh) 一种抗高温高密度聚磺水基钻井液及其制备方法
CN111056784B (zh) 一种用于水合物固井的水泥浆及其制备方法
CN115029112A (zh) 一种复合基钻井液及其制备方法和应用
CN104419391B (zh) 固井用复合减轻材料及制备方法和深井复合水泥浆及应用
CN113234424B (zh) 一种适用于中高温地层的低密度固井水泥浆体系及其制备方法
CN113637464B (zh) 一种防塌钻井液及其制备方法和应用
CN104419389B (zh) 一种用于稳定泥页岩地层的微纳米钻井液及其应用
WO2007116196A1 (en) Settable drilling fluids comprising cement kiln dust and methods of using them
CN108947313A (zh) 一种混凝土抗分散剂
AU2015261738A1 (en) Well treatment compositions and methods utilizing nano-particles
CN113060993B (zh) 一种精细控压固井用减阻材料及减阻水泥浆
CN114198052A (zh) 一种提高海洋天然气水合物地层固井二界面胶结强度的方法
US4089376A (en) Cementing against evaporites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant