CN113210023A - 一种生物炭基阴离子交换剂及其制备方法与应用 - Google Patents

一种生物炭基阴离子交换剂及其制备方法与应用 Download PDF

Info

Publication number
CN113210023A
CN113210023A CN202110476766.7A CN202110476766A CN113210023A CN 113210023 A CN113210023 A CN 113210023A CN 202110476766 A CN202110476766 A CN 202110476766A CN 113210023 A CN113210023 A CN 113210023A
Authority
CN
China
Prior art keywords
biochar
anion exchanger
based anion
reaction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110476766.7A
Other languages
English (en)
Inventor
万顺利
李燕
董丽丽
罗毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huangshan University
Original Assignee
Huangshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huangshan University filed Critical Huangshan University
Priority to CN202110476766.7A priority Critical patent/CN113210023A/zh
Publication of CN113210023A publication Critical patent/CN113210023A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/09Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/18Carbon, coal or tar
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

本发明公开了一种生物炭基阴离子交换剂及其制备方法与应用,包括S1:将农业废弃物在限氧或绝氧环境下进行热解反应获得生物炭,然后进行氧化处理,得到羟基化生物炭;S2:将羟基化生物炭置入N‑N二甲基甲酰胺溶液内溶胀,然后缓慢加入环氧氯丙烷溶液进行醚化反应;S3:在S2步骤进行醚化反应后的反应液中滴入乙二胺溶液,随后逐滴滴入胺基化试剂进行胺化反应,胺化反应后滤出固体物质后进行清洗、烘干,得到季铵化生物炭。本发明制备方法通过氧化反应、醚化反应、季铵化反应,制备生物炭基阴离子交换剂,解决了高温热解的生物炭表面季铵基团难以嫁接的问题,实现了高密度季铵基团的接枝,可高效去除水中阴离子型污染物。

Description

一种生物炭基阴离子交换剂及其制备方法与应用
技术领域
本发明涉及环境功能材料领域,具体是一种生物炭基阴离子交换剂及其制备方法与应用。
背景技术
当前水体污染已成为全球突出的环保难题,水中广泛存在的磷酸根、砷酸根、锑酸根、氟等阴离子污染物严重影响着生态环境和经济发展。水中此类污染物的经济高效治理已逐渐成为环保领域的重点和难点。目前常用的治理技术主要有化学沉淀法、化学混凝法、膜分离法、吸附法以及离子交换法等,其中离子交换法具有操作便易、过程清洁、效果好以及可再生等特点,在各类污/废水中磷、氟、砷等阴离子型污染物的去除方面展现出广阔应用前景,而离子交换法的关键在于高性能离子交换剂的选择和开发。人工合成的聚苯乙烯基/聚丙烯酸基离子交换树脂等高分子聚合物具有水力特性好、交换容量高以及结构稳定等优点,非常适合于各类污/废水中磷、氟、砷等阴离子型污染物的去除。但受制备工艺、材料成本以及应用条件等诸多因素限制,人工合成的高分子型阴离子交换剂在实际污/废水处理应用中仍存在一定的局限性。
近年来,以农业废弃物为原料,在低温限氧条件下制备的生物炭已逐渐成为储能、催化以及水处理等领域的热点材料。生物炭具有碳骨架稳定、水力特性好、粒径可调控、来源广泛、价格低廉以及碳汇等特点,加之表面含有一定量的羧基等负电基团,已成为水处理领域备受青睐的阳离子交换剂,广泛用于各类污/废水中Pb、Cd、Cu、Ni等高毒重金属的净化。然而,由于生物炭表面缺乏正电基团,不适合于各类污/废水中磷、氟等阴离子污染物的净化。经检索,生物炭直接用于水中磷、氟、砷等阴离子型污染物的相关报道十分有限,仅有的文献也表明生物炭对磷、砷等污染物的交换去除效果非常差,例如,花生壳基生物炭对磷酸根交换容量仅为0.23mg/g(Int.J.Environ.Sci.Technol.,2015c,12,3363-3372);玉米秸秆基生物炭对五价砷的交换容量仅为0.017mg/g(Sci.Total Environ.,2018,612,1177-1186),而且申请人的前期预实验也证实花生壳基和玉米秸秆基生物炭(400℃热解获得)对磷、氟、砷等污染物无任何去除效果(见图3)。
引入强电离正电基团是提升材料阴离子交换能力的重要举措。季铵基团具有超强电离能力,且电离特性基本不受水中常见有机化合物(配体)和溶液pH的影响,可在各种复杂水环境中与阴离子污染物发生离子交换反应,是最常用的阴离子交换基团。经过检索,生物炭接枝季铵基团的相关报道非常少,对比文件1(CN 110124638 A,季铵基团接枝的壳聚糖和生物炭复合材料及其制法和应用)公开报道了一种基于自由基链式反应的季铵基团嫁接方法,具体为先采用过硫酸盐在惰性环境下处理壳聚糖和生物炭的混合物激发产生自由基,然后加入烯丙基三甲基氯化铵或者二甲基二烯丙基氯化铵实现季铵基团的表面接枝。通过该法,得到了是一种表面接枝季铵基团的壳聚糖和生物炭的混合材料,而非单纯接枝季铵基团的生物炭,该法与本发明的制备方法原理完全不相同,不具有启示性。对比文件2(一种短链季胺氮改性介孔生物炭及其制备方法和应用,CN 112473621 A)公开报道了一种采用甜菜碱在生物炭表面嫁接季胺氮的方法,该法的化学原理在于通过甜菜碱分子在生物炭表面的吸附,实现了生物炭表面嫁接季胺氮。在实际应用时,这种紧靠吸附作用嫁接的季胺氮非常容易解吸,从而严重影响应用效果。
发明内容
本发明的目的在于提供一种生物炭基阴离子交换剂及其制备方法与应用,其基于“酸化+醚化+胺化”组合工序嫁接季铵基团,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种生物炭基阴离子交换剂的制备方法,包括如下步骤:
S1:将农业废弃物在限氧或绝氧环境下进行热解反应获得生物炭,然后进行氧化处理,得到羟基化生物炭;
S2:将羟基化生物炭置入至N-N二甲基甲酰胺溶液内溶胀,然后缓慢加入环氧氯丙烷溶液进行醚化反应;
S3:在S2步骤进行醚化反应后反应液的中滴入乙二胺溶液,随后逐滴滴入胺基化试剂进行胺化反应,胺化反应后滤出固体物质后进行清洗、烘干,得到季铵化生物炭。
作为本发明进一步的方案:所述S1步骤中:农业废弃物为椰壳、花生壳、锯末、农作物秸秆中的至少一种;热解反应的温度为300~500℃,热解时间为0.5~5h。
作为本发明进一步的方案:所述S1步骤氧化处理中,生物炭与氧化剂的固液比为10~50g/L,氧化处理温度为20~90℃,氧化处理时间为1~2h,采取的氧化剂为HNO3、H2O2、H2SO4中的任意一种,氧化剂的质量分数为20~80%。
作为本发明进一步的方案:所述S2步骤中,羟基化生物炭与N-N二甲基甲酰胺溶液的固液比为10~50g/L,溶胀时间为2~4h。
作为本发明进一步的方案:所述S2步骤中,环氧氯丙烷的投加量为0.001~0.1L/g,滴加速率为3~5mL/min,醚化温度60~90℃,醚化时间1~5h。
作为本发明进一步的方案:所述S3步骤中,乙二胺的投加量为0.0005~0.005L/g,胺化反应试剂为三甲胺、三乙胺、三丙胺中的任意一种,胺化反应试剂的投加量为0.005~0.02L/g,滴加速率为10~20滴/分钟,胺化温度为60~90℃,胺化时间2~5h。
作为本发明进一步的方案:所述S3步骤中,清洗、烘干的详细步骤为:滤出固体物质依次用盐酸、氢氧化钠以及乙醇清洗并烘干至恒重,其中材料清洗的所用盐酸和氢氧化钠的摩尔浓度为0.5~2.0mol/L,乙醇的质量分数为50~70%,材料烘干温度为40~60℃。
一种根据上述任一项所述的制备方法制得的生物炭基阴离子交换剂,所述生物炭基阴离子交换剂的骨架为生物炭,骨架上通过共价键连有1.0-5.5mmol/g的季铵基团,所述生物炭基阴离子交换剂的粒径为0.1~0.8mm,比表面积为20~100m2/g。
作为本发明进一步的方案:所述生物炭基阴离子交换剂表面阴离子交换容量0.2~5.0mmol/g,含氮量2~10%,所述季铵基团上每个烃基的C原子个数为1-3个。
一种如上述所述的生物炭基阴离子交换剂的应用方法,将生物炭基阴离子交换剂填入固定床吸附柱内,然后通过固定床吸附柱处理各类废水、污水中阴离子污染物,处理完毕后,可在原位使用质量分数5~10%的NaOH溶液以0.5~2.0BV/h流速进行再生,然后水洗至近中性后重复使用。
与现有技术相比,本发明的有益效果是:
1、本发明通过采用HNO3、H2O2、H2SO4氧化剂在生物炭表面植入高密度羟基,然后在N-N二甲基甲酰胺环境与环氧氯丙烷进行醚化反应、以乙二胺做催化剂与胺基化试剂季铵化反应,在以上特定的溶液、试剂条件中,才得以制备出含量为1.0-5.5mmol/g高密度季铵基团的生物炭基阴离子交换剂,解决了在高温热解的生物炭表面季铵基团难以嫁接的问题,且能够实现在高温热解的生物炭表面植入高密度的季铵基团,进而使得本生物炭基阴离子交换剂能够高效去除水中磷、氟、砷等阴离子型污染物,拓宽了生物炭在水处理领域的应用空间,提供了一种高效去除阴离子型污染物的离子交换剂,为农业废弃生物质的资源化利用以及碳的减排开辟了新的途径。
2、本发明制备的生物炭基阴离子交换剂原料来源广泛、制备方法所用成本较低,且可将各类污/废水中磷、氟等阴离子型污染物降低至相应标准以下,且解吸率高、可重复利用率强,大大降低污水处理成本,为水处理提供了一种经济高效的离子交换剂。
附图说明
图1为本发明使用三乙胺作为胺基化反应试剂时的化学反应原理图;
图2为实施例1制备的生物炭基阴离子交换剂对水中磷酸根的交换容量;
图3为对比例1对水中磷酸根的交换容量;
图4为实施例1制备的生物炭基阴离子交换剂除磷的固定床穿透曲线;
图5为实施例1制备的生物炭基阴离子交换剂除磷的固定床原位累积脱附曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种生物炭基阴离子交换剂的制备方法,包括以下步骤:
S1:将椰壳、花生壳、锯末、农作物秸秆中的至少一种在限氧或绝氧环境下进行热解反应,热解反应的温度为300~500℃,热解时间为0.5~5h,获得生物炭,然后将生物炭与HNO3、H2O2、H2SO4中的任意一种氧化剂的按固液比为10~50g/L、反应温度20~90℃、反应时间1~2h进行氧化反应,得到羟基化生物炭;
S2:将羟基化生物炭与N-N二甲基甲酰胺溶液按固液比为10~50g/L的比例,使羟基化生物炭在N-N二甲基甲酰胺溶液内进行溶胀,溶胀时间为2~4h,然后以滴加速率为3~5mL/min加入环氧氯丙烷溶液进行醚化反应,醚化温度60~90℃,醚化时间1~5h,环氧氯丙烷溶液的投加量为0.001~0.1L/g;
S3:在S2步骤进行醚化反应后的反应液中滴入乙二胺溶液做催化剂,乙二胺溶液的投加量为0.0005~0.005L/g,随后以滴加速率为10~20滴/分钟滴入三甲胺、三乙胺、三丙胺中的任意一种胺基化试剂进行胺化反应,胺基化试剂的投加量为0.005~0.02L/g,胺化反应后滤出固体物质相继用0.5~2.0mol/L盐酸、0.5~2.0mol/L氢氧化钠以及50~70%乙醇清洗并在40~60℃下烘干至恒重,得到季铵化生物炭。
本发明的原理为:本发明首先将热解获得的生物炭采用HNO3、H2O2、H2SO4等氧化剂氧化,通过氧化过程在生物炭表面植入高密度羟基;然后羟基化生物炭与环氧氯丙烷在N-N二甲基甲酰胺环境中发生醚化反应,其中,N-N二甲基甲酰胺溶液提供后续反应的媒介,环氧氯丙烷溶液的作用是与生物炭表面羟基发生醚化反应;最后在乙二胺的催化作用下,醚化生物炭与胺基化试剂发生季铵化反应,在生物炭表面生长高密度季铵基团,便得到生物炭基阴离子交换剂,乙二胺作为胺化反应的催化剂,所涉及反应过程如图1所示,图1中胺基化试剂采用三乙胺;且本申请必须采用N-N二甲基甲酰胺、环氧氯丙烷、乙二胺结合才能在生物炭表面嫁接得到含量为1.0-5.5mmol/g的高密度季铵基团。本发明制备得到的生物炭基阴离子交换剂,解决了在高温热解的生物炭表面季铵基团难以嫁接的问题,且能够实现在高温热解的生物炭表面植入高密度的季铵基团,由于季铵基团含量大,其可用于交换污染物的位点多,进而使得本发明能更高效地去除水中磷、氟、砷等阴离子型污染物。
如上述所述制备方法制得的一种生物炭基阴离子交换剂,所述生物炭基阴离子交换剂的骨架为生物炭,骨架上通过共价键连有含量为1.0-5.5mmol/g季铵基团,所述季铵基团上每个烃基的C原子个数为1-3个,所述生物炭基阴离子交换剂的粒径为0.1~0.8mm,比表面积为20~100m2/g;所述生物炭基阴离子交换剂表面阴离子交换容量0.2~5.0mmol/g,含氮量2~10%。
如上述所述的一种生物炭基阴离子交换剂的应用方法,首先将生物炭基阴离子交换剂填入固定床吸附柱内,然后通过固定床吸附柱处理各类废水、污水中阴离子污染物,处理完毕后,可在原位使用质量分数5~10%的NaOH溶液以0.5~2.0BV/h流速进行再生,然后水洗至近中性后重复使用;本发明能够通过加入高浓度NaOH促使已经吸附在季铵基团的阴离子解吸,释放吸附位点,进而实现重复利用,且本发明的解吸率高,可重复利用率强,大大降低了污水处理的成本。
实施例1
生物炭基阴离子交换剂的制备:
将10g玉米秸秆置于管式炉,在400℃、氩气气氛下热解1h,制备生物炭,随后将生物炭加入至1L质量分数为60%的HNO3溶液内,80℃水浴加热1h,获得羟基化生物炭;
然后将该生物炭加入至1L N-N二甲基甲酰胺溶液中溶胀2h,再以3mL/min加入500mL环氧氯丙烷溶液进行醚化反应,控制温度80℃,搅拌1h;
再继续缓慢加入25mL乙二胺溶液作为催化剂,搅拌均匀后,以15滴/分钟加入100mL三乙胺溶液进行胺化反应,控制混合液温度80℃,搅拌2h,接着滤出固体物料,相继用摩尔浓度1.0mol/L的盐酸、氢氧化钠溶液冲洗,然后再使用质量分数50%的乙醇溶液清洗,最后固体物质在45℃烘干至恒重,即获得生物炭基阴离子交换剂。
所得阴离子交换剂的粒径为0.2-0.5mm,比表面积约为46m2/g,表面阴离子交换容量约1.8mmol/g,含N量约8.2%;本实施例制备的生物炭基阴离子交换剂对水中磷酸根的交换容量见图2,最大实验交换容量可达0.89mmol(P)/g。
生物炭基阴离子交换剂的应用:
去除含磷、氯阴离子污染物:取湿体积5mL的本实施例制得的生物炭基阴离子交换剂填装入直径20mm、高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含PO4 3-(以P计)1mg/L,Cl-50mg/L,采用蠕动泵控制废水以流速10BV/h自上而下通过吸附柱固定床层,柱吸附结果如图4所示。当出水中PO4 3-(以P计)的浓度达到穿透点0.5mg/L(《城镇污水处理厂污染物排放标准》中的一级A标准)时,对应的有效处理床体积近600BV。交换饱和的吸附材料使用浓度10%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为1.0BV/h,原位脱附结果如图5所示。经10BV再生液洗脱后累积脱附率可达98%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
去除含锑、氯阴离子污染物:首先取湿体积10mL的本实施例制备的生物炭材料填装入直径20mm,高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含SbO4 3-(以Sb计)2mg/L,Cl-50mg/L,采用蠕动泵控制废水以流速5BV/h自上而下通过固定床层,当出水中SbO4 3-(以Sb计)的浓度达到穿透点0.3mg/L(锡、锑、汞工业污染物排放标准)时,对应的有效处理床体积为390BV。交换饱和的吸附材料使用浓度10%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为1.0BV/h,经10BV再生液洗脱后累积脱附率可达94%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
实施例2
生物炭基阴离子交换剂的制备:
将5g椰壳置于管式炉,在500℃、氩气气氛下热解3h,制备生物炭,随后加入至200mL质量分数为30%的双氧水溶液内,30℃水浴加热1.5h,获得羟基化生物炭;
然后将该生物炭加入至200mL N-N二甲基甲酰胺溶液中溶胀3h,再以4mL/min加入100mL环氧氯丙烷溶液进行醚化反应,控制温度70℃,搅拌1h;
再继续缓慢加入5mL乙二胺溶液作为催化剂,搅拌均匀后,以10滴/分钟加入25mL三甲胺溶液进行胺化反应,控制混合液温度60℃,搅拌3h,接着滤出固体物料,相继用摩尔浓度0.8mol/L的盐酸、氢氧化钠溶液冲洗,然后再使用质量分数60%的乙醇溶液清洗,最后固体物质在55℃烘干至恒重,即获得生物炭基阴离子交换剂。
所得阴离子交换剂的粒径为0.4-0.6mm,比表面积约为29m2/g,表面阴离子交换容量约1.1mmol/g,含N量约4.8%。
生物炭基阴离子交换剂的应用:
首先取湿体积7mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm、高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含PO4 3-(以P计)2mg/L,Cl-50mg/L,采用蠕动泵控制废水以流速5BV/h自上而下通过固定床层,当出水中PO4 3-(以P计)的浓度达到穿透点0.5mg/L(《城镇污水处理厂污染物排放标准》中的一级A标准)时,对应的有效处理床体积为180BV。交换饱和的吸附材料使用浓度5%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为0.5BV/h,经10BV再生液洗脱后累积脱附率可达95%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水继续下一批次的运行。
实施例3
生物炭基阴离子交换剂的制备:
将20g花生壳置于管式炉,在400℃、氩气气氛下热解1h,制备生物炭,随后加入至500mL质量分数为75%的硫酸溶液内,90℃水浴加热2h,获得羟基化生物炭;
然后将该生物炭加入至500mL N-N二甲基甲酰胺溶液中溶胀4h,再以3mL/min加入200mL环氧氯丙烷溶液进行醚化反应,控制温度80℃,搅拌1h;
再继续缓慢加入70mL乙二胺溶液作为催化剂,搅拌均匀后,以10滴/分钟加入250mL三丙胺溶液进行胺化反应,控制混合液温度80℃,搅拌4h,接着滤出固体物料,相继用摩尔浓度1.5mol/L的盐酸、氢氧化钠溶液冲洗,然后再使用质量分数60%的乙醇溶液清洗,最后固体物质在45℃烘干至恒重,即获得生物炭基阴离子交换剂。
所得阴离子交换剂的粒径为0.1-0.3mm,比表面积约为86m2/g,表面阴离子交换容量约4.0mmol/g,含N量约8.5%。本实施例制备的生物炭基阴离子交换剂的阴离子交换容量可与常用的大孔强碱性阴离子交换树脂D201(4.1-4.5mmol/g)相媲美。
生物炭基阴离子交换剂的应用:
首先取湿体积5mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm、高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含F-10mg/L,Cl-20mg/L,采用蠕动泵控制废水以流速10BV/h自上而下通过固定床层,当出水中F-的浓度达到穿透点1.5mg/L(世界卫生组织规定的饮用水标准)时,对应的有效处理床体积为720BV。交换饱和的吸附材料使用浓度10%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为1.0BV/h,经10BV再生液洗脱后累积脱附率可达99%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水继续下一批次的运行。
实施例4
生物炭基阴离子交换剂的制备:
将1g锯末置于管式炉,在500℃、氩气气氛下热解0.5h,制备生物炭,随后加入至50mL质量分数为68%的硝酸溶液内,70℃水浴加热1.5h,获得羟基化生物炭;
然后将该生物炭加入至50mL N-N二甲基甲酰胺溶液中溶胀4h,再以5mL/min加入20mL环氧氯丙烷溶液进行醚化反应,控制温度90℃,搅拌5h;
再继续缓慢加入1.5mL乙二胺溶液作为催化剂,搅拌均匀后,以20滴/分钟加入10mL三乙胺溶液进行胺化反应,控制混合液温度90℃,搅拌3h,接着滤出固体物料,相继用摩尔浓度1.0mol/L的盐酸、氢氧化钠溶液冲洗,然后再使用质量分数70%的乙醇溶液清洗,最后固体物质在50℃烘干至恒重,即获得生物炭基阴离子交换剂。
所得阴离子交换剂的粒径为0.1-0.2mm,比表面积约为92m2/g,表面阴离子交换容量约2.3mmol/g,含N量约7.5%。
生物炭基阴离子交换剂的应用:
首先取湿体积5mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm、高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含AsO4 3-(以As计)3mg/L,Cl-50mg/L,采用蠕动泵控制废水以流速10BV/h自上而下通过固定床层,当出水中AsO4 3-(以As计)的浓度达到穿透点0.5mg/L(《污水综合排放标准》中相关限值)时,对应的有效处理床体积为580BV。交换饱和的吸附材料使用浓度5%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为1.0BV/h,经10BV再生液洗脱后累积脱附率可达98%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水继续下一批次的运行。
实施例5
生物炭基阴离子交换剂的制备:
将10g小麦秸秆置于管式炉,在500℃、氩气气氛下热解1h,制备生物炭,随后加入至700mL质量分数为45%的硝酸溶液内,80℃水浴加热1h,获得羟基化生物炭;
然后将该生物炭加入至700mL N-N二甲基甲酰胺溶液中溶胀2h,再以4mL/min加入200mL环氧氯丙烷溶液进行醚化反应,控制温度65℃,搅拌2h;
再继续缓慢加入10mL乙二胺溶液作为催化剂,搅拌均匀后,以15滴/分钟加入100mL三甲胺溶液进行胺化反应,控制混合液温度70℃,搅拌4h,接着滤出固体物料,相继用摩尔浓度0.5mol/L的盐酸、氢氧化钠溶液冲洗,然后再使用质量分数55%的乙醇溶液清洗,最后固体物质在45℃烘干至恒重,即获得生物炭基阴离子交换剂。
所得阴离子交换剂的粒径为0.5-0.8mm,比表面积约为25m2/g,表面阴离子交换容量约1.7mmol/g,含N量约6.2%。
生物炭基阴离子交换剂的应用:
去除含砷阴离子型污染物:首先取湿体积5mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm、高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含AsO4 3-(以As计)3mg/L,Cl-80mg/L,采用蠕动泵控制废水以流速5BV/h自上而下通过固定床层,当出水中AsO4 3-(以As计)的浓度达到穿透点0.5mg/L(《污水综合排放标准》中相关限值)时,对应的有效处理床体积为720BV。交换饱和的吸附材料使用浓度5%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为0.5BV/h,经10BV再生液洗脱后累积脱附率可达97%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
去除含氟阴离子型污染物:首先将湿体积5mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm,高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含F-3mg/L,Cl-30mg/L,采用蠕动泵控制废水以流速8BV/h自上而下通过固定床层,当出水中F-的浓度达到穿透点1.5mg/L(世界卫生组织规定的饮用水标准)时,对应的有效处理床体积为1120BV。交换饱和的吸附材料使用浓度10%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为1.0BV/h,经10BV再生液洗脱后累积脱附率可达97%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
实施例6
生物炭基阴离子交换剂的制备:
将2g大豆秸秆置于管式炉,在400℃、氩气气氛下热解1h,制备生物炭,随后加入至100mL质量分数为25%的过氧化氢溶液内,25℃水浴加热2h,获得羟基化生物炭;
然后将该生物炭加入至100mL N-N二甲基甲酰胺溶液中溶胀3h,再以4mL/min加入200mL环氧氯丙烷溶液进行醚化反应,控制温度80℃,搅拌1h;
再继续缓慢加入7mL乙二胺溶液作为催化剂,搅拌均匀后,以12滴/分钟加入25mL三丙胺溶液进行胺化反应,控制混合液温度70℃,搅拌3h,接着滤出固体物料,相继用摩尔浓度1.0mol/L的盐酸、氢氧化钠溶液冲洗,然后再使用质量分数50%的乙醇溶液清洗,最后固体物质在45℃烘干至恒重,即获得生物炭基阴离子交换剂。
所得阴离子交换剂的粒径为0.1-0.3mm,比表面积约为58m2/g,表面阴离子交换容量约3.1mmol/g,含N量约8.3%。
生物炭基阴离子交换剂的应用:
去除含砷阴离子型污染物:首先取湿体积5mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm、高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含AsO4 3-(以As计)5mg/L,Cl-80mg/L,采用蠕动泵控制废水以流速5BV/h自上而下通过固定床层,当出水中AsO4 3-(以As计)的浓度达到穿透点0.5mg/L(《污水综合排放标准》中相关限值)时,对应的有效处理床体积为540BV。交换饱和的吸附材料使用浓度5%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为0.5BV/h,经10BV再生液洗脱后累积脱附率可达98%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
去除含氟、氯阴离子型污染物:首先将湿体积5mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm,高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含F-5mg/L,Cl-30mg/L,采用蠕动泵控制废水以流速10BV/h自上而下通过固定床层,当出水中F-的浓度达到穿透点1.5mg/L(世界卫生组织规定的饮用水标准)时,对应的有效处理床体积为950BV。交换饱和的吸附材料使用浓度10%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为0.5BV/h,经10BV再生液洗脱后累积脱附率可达99%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
实施例7
生物炭基阴离子交换剂的制备:
将3g小麦秸秆置于管式炉,在300℃、氩气气氛下热解5h,制备生物炭,随后加入至200mL质量分数为55%的硫酸溶液内,50℃水浴加热1h,获得羟基化生物炭;
然后将该生物炭加入至200mL N-N二甲基甲酰胺溶液中溶胀3h,再以4mL/min加入60mL环氧氯丙烷溶液进行醚化反应,控制温度75℃,搅拌2h;
再继续缓慢加入3mL乙二胺溶液作为催化剂,搅拌均匀后,以15滴/分钟加入10mL三甲胺溶液进行胺化反应,控制混合液温度75℃,搅拌3h,接着滤出固体物料,相继用摩尔浓度1.0mol/L的盐酸、氢氧化钠溶液冲洗,然后再使用质量分数65%的乙醇溶液清洗,最后固体物质在50℃烘干至恒重,即获得生物炭基阴离子交换剂。
所得阴离子交换剂的粒径为0.3-0.5mm,比表面积约为46m2/g,表面阴离子交换容量约3.5mmol/g,含N量约8.5%。
生物炭基阴离子交换剂的应用:
去除阴离子型污染物氟:首先将湿体积10mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm,高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含F-3mg/L,Cl-50mg/L,采用蠕动泵控制废水以流速5BV/h自上而下通过固定床层,当出水中F-的浓度达到穿透点1.5mg/L(世界卫生组织规定的饮用水标准)时,对应的有效处理床体积为1423BV。交换饱和的吸附材料使用浓度10%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为0.5BV/h,经10BV再生液洗脱后累积脱附率可达98%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
去除阴离子型污染物砷:首先取湿体积7mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm、高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含AsO4 3-(以As计)10mg/L,Cl-60mg/L,采用蠕动泵控制废水以流速5BV/h自上而下通过固定床层,当出水中AsO4 3-(以As计)的浓度达到穿透点0.5mg/L(《污水综合排放标准》中相关限值)时,对应的有效处理床体积为410BV。交换饱和的吸附材料使用浓度5%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为0.5BV/h,经10BV再生液洗脱后累积脱附率可达97%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
实施例8
生物炭基阴离子交换剂的制备:
将1g玉米秸秆置于管式炉,在500℃、氩气气氛下热解1h,制备生物炭,随后加入至30mL质量分数为50%的硝酸溶液内,80℃水浴加热1h,获得羟基化生物炭;
然后将该生物炭加入至40mL N-N二甲基甲酰胺溶液中溶胀4h,再以3mL/min加入20mL环氧氯丙烷溶液进行醚化反应,控制温度85℃,搅拌3h;
再继续缓慢加入0.7mL乙二胺溶液作为催化剂,搅拌均匀后,以10滴/分钟加入10mL三乙胺溶液进行胺化反应,控制混合液温度85℃,搅拌4h,接着滤出固体物料,相继用摩尔浓度0.5mol/L的盐酸、氢氧化钠溶液冲洗,然后再使用质量分数55%的乙醇溶液清洗,最后固体物质在50℃烘干至恒重,即获得生物炭基阴离子交换剂。
所得阴离子交换剂的粒径为0.2-0.5mm,比表面积约为47m2/g,表面阴离子交换容量约2.1mmol/g,含N量约6.9%。
生物炭基阴离子交换剂的应用:
首先量取湿体积8mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm、高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含PO4 3-(以P计)3mg/L,Cl-50mg/L,采用蠕动泵控制废水以流速5BV/h自上而下通过固定床层,当出水中PO4 3-(以P计)的浓度达到穿透点0.5mg/L(《城镇污水处理厂污染物排放标准》中的一级A标准)时,对应的有效处理床体积为610BV。交换饱和的吸附材料使用浓度7%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为0.5BV/h,经10BV再生液洗脱后累积脱附率可达97%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
实施例9
生物炭基阴离子交换剂的制备:
将2.5g水稻秸秆置于管式炉,在450℃、氩气气氛下热解3h,制备生物炭,随后加入至100mL质量分数为65%的硫酸溶液内,70℃水浴加热2h,获得羟基化生物炭;
然后将该生物炭加入至100mL N-N二甲基甲酰胺溶液中溶胀3.5h,再以5mL/min加入40mL环氧氯丙烷溶液进行醚化反应,控制温度75℃,搅拌3h;
再继续缓慢加入1mL乙二胺溶液作为催化剂,搅拌均匀后,以10滴/分钟加入30mL三丙胺溶液进行胺化反应,控制混合液温度80℃,搅拌3h,接着滤出固体物料,相继用摩尔浓度1.0mol/L的盐酸、氢氧化钠溶液冲洗,然后再使用质量分数60%的乙醇溶液清洗,最后固体物质在55℃烘干至恒重,即获得生物炭基阴离子交换剂。
所得阴离子交换剂的粒径为0.1-0.2mm,比表面积约为67m2/g,表面阴离子交换容量约1.9mmol/g,含N量约6.2%。
生物炭基阴离子交换剂的应用:
首先量取湿体积5mL的本实施例制备的生物炭基阴离子交换剂填装入直径20mm、高度210mm玻璃吸附柱内,以自配废水为处理对象,废水内含PO4 3-(以P计)5mg/L,Cl-70mg/L,采用蠕动泵控制废水以流速10BV/h自上而下通过固定床层,当出水中PO4 3-(以P计)的浓度达到穿透点0.5mg/L(《城镇污水处理厂污染物排放标准》中的一级A标准)时,对应的有效处理床体积为230BV。交换饱和的吸附材料使用浓度5%的NaOH溶液在吸附柱内原位再生,再生温度为25℃,流速为0.5BV/h,经10BV再生液洗脱后累积脱附率可达95%以上,再用6-10BV纯水冲洗至近中性,再次泵入废水开始下一批次的运行。
对比例1
本对比例为普通生物炭,其制备过程与实施例1中的热解过程相同,无氧化、醚化以及胺化工序,本对比例的生物炭的粒径为0.2-0.5mm,表面积约为29m2/g,表面阴离子交换容量仅仅为0.2mmol/g,含N量不足1.8%,本对比例对水中磷酸根的交换容量见图3,可见,本对比例材料对磷酸根几乎无交换去除作用。
通过实施例1-9,以及对比例1之间的对比,可以明显看出本发明制得的生物炭基阴离子交换剂对废水、污水内的阴离子污染物具有显著的去除作用,去除效率高,且经再生液洗脱后累积脱附率可达94%以上,可重复利用率很高,本发明在提高去除阴离子污染物效率的基础上,又降低了污水、废水处理的成本。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

1.一种生物炭基阴离子交换剂的制备方法,其特征在于,包括如下步骤:
S1:将农业废弃物在限氧或绝氧环境下进行热解反应获得生物炭,然后进行氧化处理,得到羟基化生物炭;
S2:将羟基化生物炭置入N-N二甲基甲酰胺溶液内溶胀,然后缓慢加入环氧氯丙烷溶液进行醚化反应;
S3:在S2步骤进行醚化反应后的反应液中滴入乙二胺溶液,随后逐滴滴入胺基化试剂进行胺化反应,胺化反应后滤出固体物质后进行清洗、烘干,得到季铵化生物炭。
2.根据权利要求1所述的一种生物炭基阴离子交换剂的制备方法,其特征在于,所述S1步骤中:农业废弃物为椰壳、花生壳、锯末、农作物秸秆中的至少一种;热解反应的温度为300~500℃,热解时间为0.5~5h。
3.根据权利要求1所述的一种生物炭基阴离子交换剂的制备方法,其特征在于,所述S1步骤氧化处理中,生物炭与氧化剂的固液比为10~50g/L,氧化处理温度为20~90℃,氧化处理时间为1~2h,采取的氧化剂为HNO3、H2O2、H2SO4中的任意一种,氧化剂的质量分数为20~80%。
4.根据权利要求1所述的一种生物炭基阴离子交换剂的制备方法,其特征在于,所述S2步骤中,羟基化生物炭与N-N二甲基甲酰胺溶液的固液比为10~50g/L,溶胀时间为2~4h。
5.根据权利要求1所述的一种生物炭基阴离子交换剂的制备方法,其特征在于,所述S2步骤中,环氧氯丙烷的投加量为0.001~0.1L/g,滴加速率为3~5mL/min,醚化温度60~90℃,醚化时间1~5h。
6.根据权利要求1所述的一种生物炭基阴离子交换剂的制备方法,其特征在于,所述S3步骤中,乙二胺的投加量为0.0005~0.005L/g,胺化反应试剂为三甲胺、三乙胺、三丙胺中的任意一种,胺化反应试剂的投加量为0.005~0.02L/g,滴加速率为10~20滴/分钟,胺化温度为60~90℃,胺化时间2~5h。
7.根据权利要求1所述的一种生物炭基阴离子交换剂的制备方法,其特征在于,所述S3步骤中,清洗、烘干的详细步骤为:滤出固体物质依次用盐酸、氢氧化钠以及乙醇清洗并烘干至恒重,其中材料清洗的所用盐酸和氢氧化钠的摩尔浓度为0.5~2.0mol/L,乙醇的质量分数为50~70%,材料烘干温度为40~60℃。
8.一种根据上述权利要求1-7任一项所述的制备方法制得的生物炭基阴离子交换剂,其特征在于,所述生物炭基阴离子交换剂的骨架为生物炭,骨架上通过共价键连有1.0-5.5mmol/g的季铵基团,所述生物炭基阴离子交换剂的粒径为0.1~0.8mm,比表面积为20~100m2/g。
9.根据权利要求8所述的一种生物炭基阴离子交换剂,其特征在于,所述生物炭基阴离子交换剂表面阴离子交换容量0.2~5.0mmol/g,含氮量2~10%,所述季铵基团上每个烃基的C原子个数为1-3个。
10.一种如权利要求8-9所述的生物炭基阴离子交换剂的应用方法,其特征在于,将生物炭基阴离子交换剂填入固定床吸附柱内,然后通过固定床吸附柱处理各类废水、污水中阴离子污染物,处理完毕后,可在原位使用质量分数5~10%的NaOH溶液以0.5~2.0BV/h流速进行再生,然后水洗至近中性后重复使用。
CN202110476766.7A 2021-04-29 2021-04-29 一种生物炭基阴离子交换剂及其制备方法与应用 Pending CN113210023A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110476766.7A CN113210023A (zh) 2021-04-29 2021-04-29 一种生物炭基阴离子交换剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110476766.7A CN113210023A (zh) 2021-04-29 2021-04-29 一种生物炭基阴离子交换剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN113210023A true CN113210023A (zh) 2021-08-06

Family

ID=77090075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110476766.7A Pending CN113210023A (zh) 2021-04-29 2021-04-29 一种生物炭基阴离子交换剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113210023A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057528A (zh) * 2021-11-25 2022-02-18 中国科学院沈阳应用生态研究所 一种靶向控制氮转化微生物功能的土壤调理剂及应用方法
CN114570335A (zh) * 2022-05-09 2022-06-03 农业农村部环境保护科研监测所 脱除水体硝酸根的季胺改性秸秆材料、制备方法及应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764635A (zh) * 2012-08-10 2012-11-07 广西师范大学 木薯秸杆/木薯渣制备季胺盐阳离子型吸附剂的方法及应用
CN102806073A (zh) * 2012-09-13 2012-12-05 山东大学 一种阳离子型活性炭的制备方法
CN104084143A (zh) * 2014-07-23 2014-10-08 武汉理工大学 一种生物质水处理环境功能材料的制备方法
CN105080502A (zh) * 2015-07-29 2015-11-25 上海沃杉化工有限公司 一种麦秸秆改性阴离子吸附剂的制备方法
CN105268408A (zh) * 2014-07-24 2016-01-27 上海赛凌化工科技有限公司 一种废水中阴离子除去剂的制备方法
CN106179239A (zh) * 2016-07-12 2016-12-07 梁珑 柚子皮改性氨基功能化吸附剂的制备方法及其应用
CN107668034A (zh) * 2017-10-12 2018-02-09 南京信息工程大学 一种固化季铵盐的生物质材料及其制备方法与应用
CN108079960A (zh) * 2016-11-23 2018-05-29 韩会义 一种网状季胺基阴离子吸附剂
CN108160044A (zh) * 2017-12-29 2018-06-15 山东大学 一种吸附重金属和阴离子的具多元官能团抗菌性沼渣吸附剂的制备方法
CN110947366A (zh) * 2018-09-26 2020-04-03 南京林业大学 一种水中络合重金属吸附剂制备方法
GB202018479D0 (en) * 2020-10-29 2021-01-06 Univ South China Normal A straw fiber adsorption material, its preparation methods and applications

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764635A (zh) * 2012-08-10 2012-11-07 广西师范大学 木薯秸杆/木薯渣制备季胺盐阳离子型吸附剂的方法及应用
CN102806073A (zh) * 2012-09-13 2012-12-05 山东大学 一种阳离子型活性炭的制备方法
CN104084143A (zh) * 2014-07-23 2014-10-08 武汉理工大学 一种生物质水处理环境功能材料的制备方法
CN105268408A (zh) * 2014-07-24 2016-01-27 上海赛凌化工科技有限公司 一种废水中阴离子除去剂的制备方法
CN105080502A (zh) * 2015-07-29 2015-11-25 上海沃杉化工有限公司 一种麦秸秆改性阴离子吸附剂的制备方法
CN106179239A (zh) * 2016-07-12 2016-12-07 梁珑 柚子皮改性氨基功能化吸附剂的制备方法及其应用
CN108079960A (zh) * 2016-11-23 2018-05-29 韩会义 一种网状季胺基阴离子吸附剂
CN107668034A (zh) * 2017-10-12 2018-02-09 南京信息工程大学 一种固化季铵盐的生物质材料及其制备方法与应用
CN108160044A (zh) * 2017-12-29 2018-06-15 山东大学 一种吸附重金属和阴离子的具多元官能团抗菌性沼渣吸附剂的制备方法
CN110947366A (zh) * 2018-09-26 2020-04-03 南京林业大学 一种水中络合重金属吸附剂制备方法
GB202018479D0 (en) * 2020-10-29 2021-01-06 Univ South China Normal A straw fiber adsorption material, its preparation methods and applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戴子若: "生物炭复合材料处理水体重金属的研究进展" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057528A (zh) * 2021-11-25 2022-02-18 中国科学院沈阳应用生态研究所 一种靶向控制氮转化微生物功能的土壤调理剂及应用方法
CN114570335A (zh) * 2022-05-09 2022-06-03 农业农村部环境保护科研监测所 脱除水体硝酸根的季胺改性秸秆材料、制备方法及应用

Similar Documents

Publication Publication Date Title
Matheickal et al. Biosorption of lead from aqueous solutions by marine algae Ecklonia radiata
CN111871389B (zh) 一种氢氧化镧改性气凝胶除磷吸附剂的制备方法
CN113210023A (zh) 一种生物炭基阴离子交换剂及其制备方法与应用
CN112441659B (zh) 一种利用多级介孔生物炭材料激活过硫酸盐降解处理有机污染物的方法
CN101402485B (zh) 一种内聚营养源srb污泥固定化颗粒及制备和其在处理重金属废水上的应用
CN111495318B (zh) 氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用
CN109734199A (zh) 固定化微生物结构体及其制备方法
CN114229983A (zh) 利用含铁剩余污泥制备催化活性生物炭及抗生素去除方法
CN101920188B (zh) 一种锰矿改性方法及在地下水渗透反应墙除砷中的应用
CN106693923A (zh) 一种用于回收水中磷的凝胶、其制造方法及应用
CN108892209A (zh) 一种掺杂铜尾砂的多孔污泥基粒子电极催化剂的制备方法与应用
CN108514866A (zh) 一种半纤维素基高效环保重金属离子吸附剂的制备方法
CN101062820A (zh) 城市生活垃圾填埋场渗滤液处理工艺
CN112569900A (zh) 一种新型市政污泥生物炭的制备方法及其应用
CN114291900A (zh) 一种硫自养反硝化颗粒及其制备方法与应用
CN115403229B (zh) 一种养殖废水的处理方法
CN111732148B (zh) 一种从地表富营养水体中回收磷酸盐的系统
CN111548808A (zh) 一种污泥生物质炭及其制备方法和用途
CN105692583A (zh) 软模板法制备β-环糊精基掺硼介孔碳材料的方法
CN100478289C (zh) 一种处理中晚期垃圾渗滤液的方法
Singh Utilization of nanoparticle-loaded adsorbable materials for leachate treatment
CN110627209B (zh) 一种去除低碳氮比废水中硝酸盐的铁耦合自养反硝化系统及方法
CN105084553A (zh) 一种基于生物碳的螺旋状磁性生物膜反应器
CN112094039A (zh) 一种电镀污水污泥脱水固化剂及其制备方法
CN116477815B (zh) 一种生活污水的处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination