CN113204037A - 数字码相位分辨率增强方法及系统 - Google Patents

数字码相位分辨率增强方法及系统 Download PDF

Info

Publication number
CN113204037A
CN113204037A CN202110759931.XA CN202110759931A CN113204037A CN 113204037 A CN113204037 A CN 113204037A CN 202110759931 A CN202110759931 A CN 202110759931A CN 113204037 A CN113204037 A CN 113204037A
Authority
CN
China
Prior art keywords
digital
code phase
phase resolution
resolution
discriminator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110759931.XA
Other languages
English (en)
Other versions
CN113204037B (zh
Inventor
马春江
唐小妹
孙广富
牟卫华
黄仰博
李蓬蓬
吕志成
肖志斌
林红磊
倪少杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202110759931.XA priority Critical patent/CN113204037B/zh
Publication of CN113204037A publication Critical patent/CN113204037A/zh
Application granted granted Critical
Publication of CN113204037B publication Critical patent/CN113204037B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Abstract

本发明公开了一种数字码相位分辨率增强方法及系统。通过建立数字相关器的码相位分辨率分析模型,构建数字鉴别器的分辨率误差模型,推导得到数字鉴别器平均码相位分辨率误差与相关器码相位分辨率之间的定量关系。以数字相关器的分辨率最小和数字鉴别器平均分辨率误差最小为设计准则,分别对数字相关器的相干积分时间、采样频率和数字鉴别器的码相位相关间隔进行设计。本发明实现简单,运算量小,实施方便,可直接用于传统的伪码跟踪环路。

Description

数字码相位分辨率增强方法及系统
技术领域
本发明涉及卫星导航领域,具体的涉及一种数字码相位分辨率增强方法及系统。
背景技术
在卫星导航接收机中,码相位是一种重要的时间同步观测量,广泛应用于各类时差测量系统。数字信号采样频率和码相位鉴别器的设计,会显著影响码相位的估计精度。当码相位鉴别器的采样频率与扩频码速率满足整数关系时,会产生明显的相位模糊,并导致码相位估计的分辨率下降。
码相位鉴别器由超前和滞后的两组码相位相关器组成。码相位鉴别器的相位分辨率取决于对应码相位相关器的分辨率和超前滞后的码相位相关间隔。通过提高数字信号的采样频率,增加离散信号对码相位采样的遍历度,可以有效提高相关器和鉴别器的码相位分辨率。然而,增加基带信号的采样频率,会提高基带信号处理的计算复杂度,并导致接收机的功耗增加。因此,需要在不明显提高接收机计算复杂度的条件下,对数字鉴别器的参数进行设计,增强数字码相位的分辨率。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种数字码相位分辨率增强方法及系统,能够提高数字码相位的分辨率并且不明显增加计算量。
根据本发明第一方面实施例的数字码相位分辨率增强方法,包括以下步骤:
构建数字相关器的码相位分辨率的解析表达式;
构建鉴别器平均码相位分辨率误差的表达式,并得到数字鉴别器平均码相位分辨率误差与数字相关器码相位分辨率之间的定量关系;
根据数字鉴别器平均码相位分辨率误差与数字相关器码相位分辨率之间的定量关系设计数字相关器中的相干积分时间和采样频率;
根据数字鉴别器平均码相位分辨率误差设计数字鉴别器中的相关间隔。
根据本发明第一方面实施例的数字码相位分辨率增强方法,至少具有如下技术效果:本发明实施方式通过使用最优的非等量采样参数,可以显著增强数字鉴别器的码相位分辨率,提高码相位的估计精度。此外整个过程中只改变了经典接收机的相干积分时间、基带信号采样频率和鉴别器相关间隔,并不涉及矩阵求逆、特征分解等复杂运算,因此本发明实现简单、运算量小、实施方便,可直接用于传统的伪码跟踪环路。
根据本发明的一些实施例,所述数字码相位相关器的相位分辨率的表达式为
Figure 523464DEST_PATH_IMAGE002
其中
Figure 722496DEST_PATH_IMAGE004
表示相干积分时间内的码片数,
Figure 564550DEST_PATH_IMAGE006
表示求解最小公倍数,
Figure 507229DEST_PATH_IMAGE008
表示数字相关器的积分累加点数,Tcoh表示数字相关器的相干积分时间。
根据本发明的一些实施例,所述数字鉴别器平均码相位分辨率误差
Figure 915077DEST_PATH_IMAGE010
的表达式为
Figure 471960DEST_PATH_IMAGE012
其中α为相关间隔D相对于分辨率p0的残余因子,残余因子α的表达式为
Figure 286463DEST_PATH_IMAGE014
Figure 78839DEST_PATH_IMAGE016
表示向下取整。
根据本发明的一些实施例,所述设计数字相关器中的相干积分时间和采样频率的步骤中若约束条件为相干积分时间Tcoh内的码片数Nc为整数,且码片个数不小于1;则满足约束条件的相干积分时间Tcoh表达式为
Figure 216559DEST_PATH_IMAGE018
其中,k表示相干积分时间内的码片数,Fc表示码片速率,满足约束条件的采样频率Fs的表达式为
Figure 475502DEST_PATH_IMAGE020
其中,l可以取任意正整数Z+,
Figure 774372DEST_PATH_IMAGE022
表示相干积分时间内的码片数,Fc表示码片速率,
Figure 776963DEST_PATH_IMAGE006
表示求解最小公倍数。
根据本发明的一些实施例,所述数字鉴别器中的相关间隔的表达式为
Figure 893824DEST_PATH_IMAGE024
其中m为不大于
Figure 792509DEST_PATH_IMAGE026
的正整数。
根据本发明第二方面实施例的数字码相位分辨率增强系统,包括:卫星导航接收机,所述卫星导航接收机用于运行上述的数字码相位分辨率增强方法。
根据本发明第一方面实施例的数字码相位分辨率增强系统,至少具有如下技术效果:本发明实施方式通过使用最优的非等量采样参数,可以显著增强数字鉴别器的码相位分辨率,提高码相位的估计精度。此外整个过程中只改变了经典接收机的相干积分时间、基带信号采样频率和鉴别器相关间隔,并不涉及矩阵求逆、特征分解等复杂运算,因此本发明实现简单、运算量小、实施方便,可直接用于传统的伪码跟踪环路。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例中数字码相位分辨率增强方法的流程图;
图2为低分辨率数字码相位鉴别曲线示意图;
图3为整数倍码片数与分数倍码片的相关曲线比较图;
图4为整数倍码片数与分数倍码片的相位分辨率分布情况图;
图5为不同采样频率条件下的数字码相位相关曲线图;
图6为不同采样频率条件下数字码相位分辨率分布情况图;
图7为几种相关间隔条件下的数字鉴别器曲线图;
图8为几种不同带宽条件下的数字相位鉴别器的分辨率比较图;
图9为不同码多普勒频率条件下的数字码相位鉴别曲线图;
图10为平均码相位分辨率误差随码多普勒频率变化曲线图;
图11图不同载噪比条件下的数字码相位鉴别曲线图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参考图1,一种数字码相位分辨率增强方法,包括以下步骤:
S100、建立数字相关器的码相位分辨率分析模型;
在卫星导航系统中,离散基带信号S(n)可以表示为:
Figure 378343DEST_PATH_IMAGE028
其中,Cn表示第n个扩频码序列;
Figure 856729DEST_PATH_IMAGE030
表示数字信号的采样间隔,Fs表示数字信号采样频率;
Figure 172303DEST_PATH_IMAGE032
表示单个码片宽度,Fc表示码片速率;
Figure 710732DEST_PATH_IMAGE034
表示信号的初始码相位;
Figure 33129DEST_PATH_IMAGE016
表示向下取整。
此时,信号S(n)的数字自相关函数
Figure 580785DEST_PATH_IMAGE036
可以表示为:
Figure 422970DEST_PATH_IMAGE038
其中,
Figure 663459DEST_PATH_IMAGE040
表示数字相关器的积分累加点数,Tcoh表示数字相关器的相干积分时间;
Figure 207573DEST_PATH_IMAGE042
表示接收信号与本地信号的码相位偏差。
定义数字码相位相关器的分辨率
Figure 558919DEST_PATH_IMAGE044
为:
Figure 258541DEST_PATH_IMAGE046
假设离散基带信号S(n)的本地码序列为{+1,-1}的周期码序列,此时,数字码相位相关器的相位分辨率
Figure 669931DEST_PATH_IMAGE044
与码相位偏差
Figure 373444DEST_PATH_IMAGE042
无关,在数值上等于常数p0,即:
Figure 387537DEST_PATH_IMAGE048
其中,
Figure 328948DEST_PATH_IMAGE050
表示相干积分时间内的码片数,
Figure 786605DEST_PATH_IMAGE052
表示求解最小公倍数。
S200、构建数字鉴别器的分辨率误差模型;
对于数字早减迟码相位鉴别器而言,其码相位鉴别函数
Figure 915098DEST_PATH_IMAGE054
可以表示为:
Figure 732882DEST_PATH_IMAGE056
其中,
Figure 263220DEST_PATH_IMAGE058
表示超前或滞后的码相位,D表示鉴别器的相关间隔。
数字码相位鉴别器的分辨率误差
Figure 891779DEST_PATH_IMAGE060
可以表示为:
Figure 773147DEST_PATH_IMAGE062
定义分辨率误差的平均值
Figure 66725DEST_PATH_IMAGE064
为:
Figure 841783DEST_PATH_IMAGE066
基于数字相关器码相位分辨率为常数的数字鉴别器,定义相关间隔D相对于分辨率p0的残余因子α为:
Figure 500297DEST_PATH_IMAGE068
其中,残余因子α的取值范围为
Figure 744328DEST_PATH_IMAGE070
;当比值
Figure 779280DEST_PATH_IMAGE072
为整数时,残余因子等于零。
假设信号初始码相位
Figure 674424DEST_PATH_IMAGE042
Figure 238260DEST_PATH_IMAGE074
范围内均匀分布,对应数字相关器的码相位分辨率为p0,则数字鉴别器分辨率误差的平均值
Figure 966657DEST_PATH_IMAGE075
为:
Figure 805300DEST_PATH_IMAGE077
其中,当残余因子α=0时,鉴别器的平均分辨率误差取最大为p0;当残余因子α=0.5时,鉴别器的平均分辨率误差取最小为0.5p0
S300、设计数字相关器中的相干积分时间Tcoh和采样频率Fs
为使相干积分时间Tcoh内的码片数Nc为整数,且要求码片个数不小于1,则可以得到满足约束的相干积分时间Tcoh为:
Figure 289371DEST_PATH_IMAGE079
其中,k表示相干积分时间内的码片数。
对应满足约束条件的采样频率Fs为:
Figure 352005DEST_PATH_IMAGE081
其中,l可以取任意正整数;l的取值越大,基带信号的采样频率越高,对应的数字相关器的码相位分辨率p0的值越小。
S400、设计数字鉴别器中的相关间隔D;
为使数字鉴别器的平均分辨率误差最小,需要设计相关间隔D的值,使残余因子α等于0.5,即:
Figure 429683DEST_PATH_IMAGE083
其中,m可取不大于
Figure 947383DEST_PATH_IMAGE085
的正整数。
本发明还涉及一种数字码相位分辨率增强系统,包括:卫星导航接收机,卫星导航接收机用于运行数字码相位分辨率增强方法。
下面以具体仿真实例来对本发明进行说明:
如图2所示为低分辨率数字码相位鉴别曲线示意图,其中理想码相位鉴别曲线是一条过零点的光滑直线,而实际的数字码相位鉴别曲线是一条具有一定相位模糊的折线,相位模糊的大小直接影响码相位估计的分辨率。
如图3所示为三种不同相干积分时间条件下的数字码相位相关曲线,并给出了零相位处的细节局部放大结果。仿真设置的扩频码速率为1.023 MHz,采样频率为5 MHz。当积分时间为1 ms时,码片数为1023,采样点数为5000;当积分时间为0.5 ms时,码片数为511.5,采样点数为2500;当积分时间为0.25 ms时,码片数为255.75,采样点数为1250。结果表明,积分时间为0.5 ms和0.25 ms时的相关曲线分辨率,要明显弱于积分时间为1 ms的相关曲线分辨率。
如图4所示为本地初始相位为0~1 ms范围内的相位分辨率情况,并给出了相应的统计结果。仿真结果表明,相干积分为1 ms的数字码相位分辨率为常值,即2.0x10-4码片;相干积分为0.5 ms的数字码相位分辨率有三种取值,分别是6.0x10-4码片、4.0x10-4码片和2.0x10-4码片,对应的出现概率分别为16.6%、66.7%和16.6%;相干积分为0.25 ms的数字码相位分辨率有三种取值,分别是1.4x10-3码片、1.0x10-3码片和4.0x10-4码片,对应的出现概率分别为0.9%、65.3%和33.8%。
如图5所示为仿真了三种不同采样频率条件下的数字码相位相关曲线,并给出了零相位处的细节局部放大结果。仿真设置的扩频码速率为1.023 MHz,积分时间为1 ms。当采样频率分别取4 MHz、5 MHz和6 MHz时,数字相关器的运算点数为4000、5000和6000。由于6000与1023的公因子为3,因此,虽然6 MHz的采样频率最大,但相位分辨率反而最低。
如图6所示为不同采样频率条件下数字码相位分辨率分布情况。其中,采样频率为4 MHz的码相位分辨率为2.5x10-4码片;采样频率为5 MHz的码相位分辨率为2.0x10-4码片;采样频率为6 MHz的码相位分辨率为6.0x10-4码片。
如图7所示为几种相关间隔条件下的数字鉴别器曲线的仿真结果,其中设置码速率为1.023 MHz,相干积分时间为1 ms,采样频率为5 MHz,对应相干积分的码片数为1023,采样点数为5000,此时,对应数字码相位相关器的相位分辨率为0.0002码片。其中鉴别器相关间隔D=0.5码片的相位分辨率最低为2.0x10-4码片,而相关器间隔D=0.5001码片的相位分辨率最高为1.0x10-4码片,这与理论分析结果相一致。
如图8所示为相应鉴别器鉴别曲线的仿真结果,设置码速率为1.023 MHz,积分时间为1 ms,采样频率为5 MHz,相关间隔为0.4092码片,对应数字相关器的相位分辨率为2.0x10-4码片。仿真考虑了射频前端带宽为2 MHz、3 MHz、4 MHz和5 MHz的四种情况,仿真结果表明,信号前端的有限带宽效应不影响数字码相位鉴别器的相位分辨率。
如图9所示为相应鉴别器鉴别曲线的仿真结果,设置码速率是1.023 MHz,积分时间是1 ms,采样频率是5 MHz,相关间隔是0.4092码片,对应数字码相位相关器的相位分辨率是2.0x10-4码片。仿真选取了码多普勒频率为0 m/s、100 m/s、200 m/s和500 m/s的四种情况。从结果看出,码多普勒频率会对数字码相位鉴别曲线会产生较明显影响。
如图10所示为平均码相位分辨率误差随码多普勒频率变化曲线的仿真结果,对0~1000 m/s范围内的码多普勒频率进行分析。仿真时多普勒频率的分辨率取1 m/s,在对平均码相位分辨率误差进行估计时,在
Figure 426906DEST_PATH_IMAGE087
范围内对接收信号的初始相位进行遍历,遍历的码相位刻度为0.01 p0,其中相位分辨率p0为2.0x10-4码片。结果表明,对于大部分的码多普勒频率而言,数字早减迟码相位鉴别器的平均分辨率误差随多普勒频率连续变化,但存在部分频率点,码相位平均分辨率误差会出现一定程度的跳变。
如图11所示为几种典型载噪比条件下的数字码相位鉴别曲线的仿真结果,其中设置码速率是1.023 MHz,积分时间是1 ms,采样频率是5 MHz,相关间隔是0.4092码片,不考虑前端带宽受限效应,对应数字码相位相关器的相位分辨率为2.0x10-4码片。仿真结果表明,虽然热噪声抖动会使码相位鉴别曲线偏移零点,但鉴别曲线的相位分辨率并未发生明显变化。
综上所述,本发明通过建立数字相关器的码相位分辨率分析模型,推导得到分辨率的解析表达式。构建数字鉴别器的分辨率误差模型,定义平均码相位分辨率误差作为评估指标,并推导得到数字鉴别器平均码相位分辨率误差与相关器码相位分辨率之间的定量关系。以数字相关器的分辨率最小为设计准则,分别对数字相关器相干积分时间和采样频率进行设计。最后,以数字鉴别器平均分辨率误差最小为设计准则,对数字鉴别器的码相位相关间隔进行设计。
本发明通过使用最优的非等量采样参数,可以显著增强数字鉴别器的码相位分辨率,提高码相位的估计精度。此外,在本文的整个实施过程中只改变了经典接收机的相干积分时间、基带信号采样频率和鉴别器相关间隔,并不涉及矩阵求逆、特征分解等复杂运算,因此本发明实现简单,运算量小,并且实施起来也非常方便,可直接用于传统的伪码跟踪环路。仿真结果表明,即使在考虑信号前端带宽受限、多普勒效应和环路热噪声抖动的条件下,本发明方法仍然有效。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (6)

1.一种数字码相位分辨率增强方法,其特征在于,包括以下步骤:
构建数字相关器的码相位分辨率的解析表达式;
构建鉴别器平均码相位分辨率误差的表达式,并得到数字鉴别器平均码相位分辨率误差与数字相关器码相位分辨率之间的定量关系;
根据数字鉴别器平均码相位分辨率误差与数字相关器码相位分辨率之间的定量关系设计数字相关器中的相干积分时间和采样频率;
根据数字鉴别器平均码相位分辨率误差设计数字鉴别器中的相关间隔。
2.根据权利要求1所述的数字码相位分辨率增强方法,其特征在于:
所述数字码相位相关器的相位分辨率的表达式为
Figure DEST_PATH_IMAGE002
其中
Figure DEST_PATH_IMAGE004
表示相干积分时间内的码片数,
Figure DEST_PATH_IMAGE006
表示求解最小公倍数,
Figure DEST_PATH_IMAGE008
表示数字相关器的积分累加点数,Tcoh表示数字相关器的相干积分时间。
3.根据权利要求2所述的数字码相位分辨率增强方法,其特征在于: 所述数字鉴别器平均码相位分辨率误差
Figure DEST_PATH_IMAGE010
的表达式为
Figure DEST_PATH_IMAGE012
其中α为相关间隔D相对于分辨率p0的残余因子,残余因子α的表达式为
Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE016
表示向下取整。
4.根据权利要求1所述的数字码相位分辨率增强方法,其特征在于:所述设计数字相关器中的相干积分时间和采样频率的步骤中若约束条件为相干积分时间Tcoh内的码片数Nc为整数,且码片个数不小于1;则满足约束条件的相干积分时间Tcoh表达式为
Figure DEST_PATH_IMAGE018
其中,k表示相干积分时间内的码片数,Fc表示码片速率,满足约束条件的采样频率Fs的表达式为
Figure DEST_PATH_IMAGE020
其中,l可以取任意正整数Z+,
Figure DEST_PATH_IMAGE022
表示相干积分时间内的码片数,Fc表示码片速率,
Figure DEST_PATH_IMAGE023
表示求解最小公倍数。
5.根据权利要求3所述的数字码相位分辨率增强方法,其特征在于:所述数字鉴别器中的相关间隔的表达式为
Figure DEST_PATH_IMAGE025
其中m为不大于
Figure DEST_PATH_IMAGE027
的正整数。
6.一种数字码相位分辨率增强系统,其特征在于,包括:卫星导航接收机,所述卫星导航接收机用于运行权利要求1至5任意一项所述的数字码相位分辨率增强方法。
CN202110759931.XA 2021-07-06 2021-07-06 数字码相位分辨率增强方法及系统 Active CN113204037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110759931.XA CN113204037B (zh) 2021-07-06 2021-07-06 数字码相位分辨率增强方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110759931.XA CN113204037B (zh) 2021-07-06 2021-07-06 数字码相位分辨率增强方法及系统

Publications (2)

Publication Number Publication Date
CN113204037A true CN113204037A (zh) 2021-08-03
CN113204037B CN113204037B (zh) 2021-10-08

Family

ID=77022726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110759931.XA Active CN113204037B (zh) 2021-07-06 2021-07-06 数字码相位分辨率增强方法及系统

Country Status (1)

Country Link
CN (1) CN113204037B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235238A1 (en) * 2002-06-24 2003-12-25 Comsys Communication & Signal Processing Ltd. Multipath channel tap delay estimation in a CDMA spread spectrum receiver
KR100687243B1 (ko) * 2006-01-25 2007-02-26 주식회사 네비콤 다중 경로 오차 제거를 위한 코드추적루프 및 다중 경로오차 제거 방법
US20070046536A1 (en) * 2005-08-31 2007-03-01 Zhike Jia Fast fourier transform with down sampling based navigational satellite signal tracking
US20080151971A1 (en) * 2006-12-22 2008-06-26 Jun Mo Narrow correlator technique for multipath mitigation
CN101216549A (zh) * 2008-01-11 2008-07-09 哈尔滨工程大学 中短波扩频导航系统距离差观测量提取方法
US20150063432A1 (en) * 2013-06-26 2015-03-05 Topcon Positioning Systems, Inc. Digital system and method of estimating non-energy parameters of signal carrier
US20190041528A1 (en) * 2017-08-02 2019-02-07 Thales Management & Services Deutschland Gmbh Method for operating a gnss receiver, with gnss signal deselection
CN110045398A (zh) * 2019-04-30 2019-07-23 中国人民解放军国防科技大学 一种基于最优相关间隔的码相位过零点偏差抑制方法
CN112672283A (zh) * 2020-12-28 2021-04-16 北京邮电大学 一种定位接收机中跟踪环路误差的处理装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235238A1 (en) * 2002-06-24 2003-12-25 Comsys Communication & Signal Processing Ltd. Multipath channel tap delay estimation in a CDMA spread spectrum receiver
US20070046536A1 (en) * 2005-08-31 2007-03-01 Zhike Jia Fast fourier transform with down sampling based navigational satellite signal tracking
KR100687243B1 (ko) * 2006-01-25 2007-02-26 주식회사 네비콤 다중 경로 오차 제거를 위한 코드추적루프 및 다중 경로오차 제거 방법
US20080151971A1 (en) * 2006-12-22 2008-06-26 Jun Mo Narrow correlator technique for multipath mitigation
CN101216549A (zh) * 2008-01-11 2008-07-09 哈尔滨工程大学 中短波扩频导航系统距离差观测量提取方法
US20150063432A1 (en) * 2013-06-26 2015-03-05 Topcon Positioning Systems, Inc. Digital system and method of estimating non-energy parameters of signal carrier
US20190041528A1 (en) * 2017-08-02 2019-02-07 Thales Management & Services Deutschland Gmbh Method for operating a gnss receiver, with gnss signal deselection
CN110045398A (zh) * 2019-04-30 2019-07-23 中国人民解放军国防科技大学 一种基于最优相关间隔的码相位过零点偏差抑制方法
CN112672283A (zh) * 2020-12-28 2021-04-16 北京邮电大学 一种定位接收机中跟踪环路误差的处理装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNJIANG MA 等: "Zero-bias mitigation method based on optimal correlation interval for digital code phase discriminator", 《ELECTRONICS LETTERS》 *
田丰 等: "高阶BOC信号多区域鉴别器的无模糊多径抑制算法", 《国防科技大学学报》 *

Also Published As

Publication number Publication date
CN113204037B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
US5874916A (en) Frequency selective TDOA/FDOA cross-correlation
KR100425297B1 (ko) 효율적인 심볼 타이밍 옵셋을 추정하는 ofdm 수신시스템 및 그 방법
JP4498841B2 (ja) Gps相関ピーク信号の探索方法及びこれのためのシステム。
CN106291614B (zh) 用于在多路径环境中跟踪卫星无线电导航信号的装置
JP3271504B2 (ja) 周波数推定回路およびそれを用いたafc回路
US6445756B1 (en) Peak detecting circuit for detecting a peak of a time discrete signal by an approximate function
CN111865865B (zh) 适用于高灵敏度星载ads-b接收机的频偏及相偏估计方法
CN113204037B (zh) 数字码相位分辨率增强方法及系统
CN108027442B (zh) 具有定点西格玛罗滤波器的卫星导航接收机
CN100452670C (zh) 用于通信系统中的代码跟踪的设备和方法
US20040024801A1 (en) System and method for computing histograms with exponentially-spaced bins
US7627063B2 (en) Device and method for determining a time of arrival of a receive sequence
JP2008523748A (ja) 相関値を決定するための装置および方法
US6891362B2 (en) Method and apparatus for estimating the phase of a signal
US8259874B1 (en) Apparatus and method for optimization of carrier recovery in a receiver of a communication system
US6542101B1 (en) Method and apparatus for performing analog-to-digital conversion using previous signal sample(s)
US6278865B1 (en) Receiver and method for measuring the frequency difference between a turning frequency and a transmission frequency
US6720917B2 (en) Acquisition for GPS C/A code and P(Y) code
CN112099060B (zh) 一种基于环路的自适应载波频率跟踪方法及装置
CN109633709B (zh) 一种卫星通信系统中实用高效的频偏估计方法
CN113640842A (zh) 一种基于智能多普勒搜索的直扩信号捕获方法
CN113219503B (zh) 数字码相位的分辨率误差平滑方法及卫星导航接收机
US20040096019A1 (en) Frequency offset calculation method using log transforms and linear approximation
CN115113243B (zh) 一种联合频率插值估计的导航信号捕获方法
US7082156B2 (en) Method of detecting, and a receiver for, a spread spectrum signal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant