CN113203485A - 一种通过单次曝光实现轴向相位差波前重建的装置及方法 - Google Patents

一种通过单次曝光实现轴向相位差波前重建的装置及方法 Download PDF

Info

Publication number
CN113203485A
CN113203485A CN202110459392.8A CN202110459392A CN113203485A CN 113203485 A CN113203485 A CN 113203485A CN 202110459392 A CN202110459392 A CN 202110459392A CN 113203485 A CN113203485 A CN 113203485A
Authority
CN
China
Prior art keywords
diffraction
flat plate
reflecting mirror
detected
complex amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110459392.8A
Other languages
English (en)
Other versions
CN113203485B (zh
Inventor
白剑
赵磊
费文辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110459392.8A priority Critical patent/CN113203485B/zh
Publication of CN113203485A publication Critical patent/CN113203485A/zh
Application granted granted Critical
Publication of CN113203485B publication Critical patent/CN113203485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4266Diffraction theory; Mathematical models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J2009/002Wavefront phase distribution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

本发明公开一种通过单次曝光实现轴向相位差波前重建的装置及方法,该装置包括依次设置的激光器、扩束器、待测平板、会聚透镜、分光镜、反射镜一和反射镜二以及图像采集装置,该装置不需要移动图像采集装置即可实现不同离焦量的两幅衍射光斑的同时采集,充分利用了图像采集装置有效区域。波前重建方法利用轴向相位差法重建,根据功率谱密度计算得出最佳离焦位置,然后调整反射镜位置实现最佳离焦位置衍射光斑采集。轴向相位差结合负反馈调节方法实现相位恢复方法快速收敛,待测平板的复振幅快速估计。

Description

一种通过单次曝光实现轴向相位差波前重建的装置及方法
技术领域
本发明涉及光学测量和成像技术领域,尤其涉及一种通过单次曝光实现轴向相位差波前重建的装置及方法。
背景技术
相位恢复算法在天文学、波前探测、超分辨、x射线衍射等领域有着重要的应用。该方法结合目标支持度信息,从测量的强度模式中提取相位信息。迭代相位恢复算法是最实用的相位恢复方法,它利用瞳孔与焦平面或近焦平面之间的关系进行傅里叶变换,迭代估计瞳孔复波前。
根据被测光强的个数,相位恢复方法分为单幅图像相位恢复和多幅图像相位恢复。单图像相位恢复方法,如误差减小算法、混合输入输出算法等,这些方法广泛应用于定量相位成像、显微成像等领域以前提议的。在这里,多图像相位检索方法被称为轴向相位差相位恢复。与Ptychography迭上代引擎相比,轴向相位差相位恢复方法具有更简单的实验装置,适用于一般的图像重建和波前测量。轴向相位差相位恢复方法已成功地应用于波前测量、自适应光学等领域。
然而,对于经典的轴向相位差相位恢复,可以得出这样的结论:它在某种意义上是误差减小算法的扩展,因为对于每个测量平面和期望平面之间的轴向相位差相位恢复迭代,期望平面仅在支持区域中更新,而期望平面的其余部分不变。误差减小算法相当于最速下降梯度搜索算法,这是最弱的非线性优化算法。传统的轴向相位差相位恢复对波前测量具有良好的稳定性,而对图像重建的精度和收敛速度不高。然而,混合输入-输出是一种具有反馈约束的复振幅恢复算法,其性能优于误差减小算法,其目标是用单一的强度测量进行重建。
另外,传统的轴向相位恢复算法无法同时采集多幅衍射光斑图,并且传统的混合输入-输出算法只适用于单强度相位成像,而单图像混合输入输出算法可能会超出全局最优解,无法准确重建相位。多幅图像的相位恢复由于其稳定性高而得到广泛的研究,多幅图像的灰度模式改善了算法的约束。
发明内容
针对现有技术的不足,本发明提供一种通过单次曝光实现轴向相位差波前重建的装置及方法,该装置使用分光镜实现了两幅图的同时采集,重建方法将混合输入输出算法与轴向多图算法结合提高了收敛效率。
本发明的目的通过如下的技术方案来实现:
一种通过单次曝光实现轴向相位差波前重建的装置,该装置包括激光器、扩束器、待测平板、会聚透镜、分光镜、反射镜一、反射镜二和图像采集装置,所述扩束器、待测平板、会聚透镜、分光镜依次设置在所述激光器的出射光路上,所述反射镜一和反射镜二分别位于所述分光镜的两个相互垂直的出射光路上,所述反射镜一和反射镜二与所述分光镜的距离不同,且分别相对于其所在出射光路倾斜布置;所述图像采集装置位于能够同时采集反射镜一、反射镜二的反射光的位置上,用于同时获取两幅不同离焦位置的衍射光斑。
进一步地,所述反射镜一的倾斜程度为:所述反射镜一与其入射光路的夹角为80°。
进一步地,所述反射镜二的倾斜程度为:所述反射镜二与其入射光路的夹角为80°。
一种通过单次曝光实现轴向相位差波前重建的方法,该方法基于波前重建装置来实现,该方法具体包括如下步骤:
S1:所述激光器产生光波,所述光波经过所述扩束器扩束、所述待测平板透射、所述分光镜分光成两个垂直的光束后,两个垂直的光束分别经所述反射镜一和反射镜二反光后,由所述图像采集装置同时获取两幅不同离焦位置的衍射光斑;
S2:根据功率谱密度计算两个不同频段范围的衍射光斑的最佳离焦位置,然后将所述的反射镜一和反射镜二分别移动到各自的最佳离焦位置,使用所述的图像采集装置采集含有待测平板信息的衍射光斑;
S3:对采集到的衍射光斑进行分割处理,获取两幅在各自最佳离焦位置上的衍射光斑;
S4:采用轴向相位差相位恢复方法,对S3处理得到的衍射光斑进行相位恢复,获得待测平板的复振幅。
进一步地,所述的S4通过如下子步骤实现:
S4.1:分别设置支持域D、所述两幅衍射光斑对应的离焦量Δf1,Δf2、负反馈权重系数β、待测平板重建的迭代总数N、波前检测的初始迭代计数j=1、待测平板重建初始估计值g1(x,y),其中,(x,y)为所述待测平板的坐标;
S4.2:由所述的待测平板位置衍射计算至第k个衍射光斑位置处,获得计算的衍射复振幅
Figure BDA0003041815860000021
其中,
Figure BDA0003041815860000022
式中,
Figure BDA0003041815860000023
代表衍射计算算子,gk(x,y)表示待测平板第k个衍射光斑位置处的波前重建估计值;φ(x,y,Δfk)是离焦项
Figure BDA0003041815860000031
这里的i2=-1,
Figure BDA0003041815860000032
是(x,y)的归一化坐标,Δfk是离焦量;k=1,2。
S4.3:使用采集到的衍射光斑替换计算得到的复振幅的模,然后逆傅里叶变换衍射计算至待测平板,得到估计的待测平板复振幅gwj(x,y),具体如下式:
Figure BDA0003041815860000033
Figure BDA0003041815860000034
代表逆衍射计算算子;
S4.4:对估计的待测平板复振幅进行支持域D约束处理
Figure BDA0003041815860000035
S4.5:如果k=1,那么令k=2,否则,k=1;如果j<N,j=j+1,并返回S4.2,否则结束迭代,获得满足衍射光斑约束的复振幅估计值;
S4.6:对S4.5获得的复振幅估计值的振幅和相位分别使用去噪算法处理,移除噪声影响,并截取支持域之内的复振幅值得到真实的待测平板复振幅。
本发明的有益效果如下:
(1)本发明的波前重建装置通过一个图像采集装置能够同时采集两幅不同离焦位置的衍射光斑,规避了采用多个图像采集装置引入的采集装置位置误差,同时整个装置结构紧凑,提高装置的灵活度,即使在空间有限的情况下通过一个图像采集装置即可实现实时动态成像。
(2)本发明的波前重建方法根据功率谱密度计算得出最佳离焦位置,然后调整反射镜位置实现最佳离焦位置衍射光斑采集,提高了算法的收敛速度;多图像相位恢复算法结合负反馈调节方法实现相位恢复方法快速收敛,且克服了传统相位恢复方法中的孪生像问题。
附图说明
图1为本发明的波前重建装置的装置示意图;
图2为本发明的波前重建方法的流程图;
图3为采用本发明的波前重建方法以及传统的没有负反馈调节的多图相位恢复方法的恢复的相位和振幅图,其中,(a1)和(a2)为本发明所提方法的恢复的相位和振幅图,(b1)和(b2)为没有负反馈调节的多图相位恢复方法的恢复的相位和振幅图,(c1)和(c2)为真实图的相位和振幅。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的通过单次曝光实现轴向相位差波前重建的装置,包括激光器1、扩束器2、待测平板3、会聚透镜4、分光镜5、反射镜一6、反射镜二7和图像采集装置8,扩束器2、待测平板3、会聚透镜4、分光镜5依次平行设置在激光器1的出射光路上,且扩束器2、待测平板3、会聚透镜4、分光镜5共光轴。反射镜一6和反射镜二7分别位于分光镜5的两个相互垂直的出射光路上,反射镜一6和反射镜二7与分光镜5的距离不同,反射镜一6和反射镜二7分别相对于其所在出射光路倾斜布置;图像采集装置8位于能够同时采集反射镜一6、反射镜二7的反射光的位置上,用于同时获取两幅不同离焦位置的衍射光斑。
优选地,反射镜一6和反射镜二7的倾斜程度为:它们各自与各自入射光路的夹角为80°。
如图2所示,本发明的通过单次曝光实现轴向相位差波前重建的方法,包括如下步骤:
S1:所述激光器产生光波,所述光波经过所述扩束器扩束、所述待测平板透射、所述分光镜分光成两个垂直的光束后,两个垂直的光束分别经所述反射镜一和反射镜二反光后,由所述图像采集装置同时获取两幅不同离焦位置的衍射光斑;
S2:根据功率谱密度计算两个不同频段范围的衍射光斑的最佳离焦位置,然后将所述的反射镜一和反射镜二分别移动到各自的最佳离焦位置,使用所述的图像采集装置采集含有待测平板信息的衍射光斑;
S3:对采集到的衍射光斑进行分割处理,获取两幅在各自最佳离焦位置上的衍射光斑;
S4:采用轴向相位差相位恢复方法,对S3处理得到的衍射光斑进行相位恢复,获得待测平板的复振幅,所述的S4通过如下子步骤实现:
S4.1:分别设置支持域D、所述两幅衍射光斑对应的离焦量Δf1,Δf2、负反馈权重系数β、待测平板重建的迭代总数N、波前检测的初始迭代计数j=1、待测平板重建初始估计值g1(x,y),其中,(x,y)为所述待测平板的坐标;
S4.2:由所述的待测平板位置衍射计算至第k个衍射光斑位置处,获得计算的衍射复振幅
Figure BDA0003041815860000041
其中,
Figure BDA0003041815860000051
式中,
Figure BDA0003041815860000052
代表衍射计算算子,gk(x,y)表示待测平板第k个衍射光斑位置处的波前重建估计值;φ(x,y,Δfk)是离焦项
Figure BDA0003041815860000053
这里的i2=-1,
Figure BDA0003041815860000054
是(x,y)的归一化坐标,Δfk是离焦量;k=1,2。
S4.3:使用采集到的衍射光斑替换计算得到的复振幅的模,然后逆傅里叶变换衍射计算至待测平板,得到估计的待测平板复振幅gwj(x,y),具体如下式:
Figure BDA0003041815860000055
Figure BDA0003041815860000056
代表逆衍射计算算子;
S4.4:对估计的待测平板复振幅进行支持域D约束处理
Figure BDA0003041815860000057
S4.5:如果k=1,那么令k=2,否则,k=1;如果j<N,j=j+1,并返回S4.2,否则结束迭代,获得满足衍射光斑约束的复振幅估计值;
S4.6:对S4.5获得的复振幅估计值的振幅和相位分别使用去噪算法处理,移除噪声影响,并截取支持域之内的复振幅值得到真实的待测平板复振幅。
下面给出本发明的方法的一个具体实施例,对该方法的技术效果进行说明。
该实施例中,会聚透镜焦距选择s=500mm,z1,z2=[-10,-15]mm,支持域D=20mm,图像重建的迭代总数N=500。
在该实施例中,采集两幅离焦衍射图像进行波前的相位和振幅重建,选用的衍射计算模型为快速傅里叶变换模型,图3为本发明所提方法的恢复结果图。图3(a1)和(a2)为本发明所提方法的恢复的相位和振幅图,图3(b1)和(b2)为没有负反馈调节的多图相位恢复方法的恢复的相位和振幅图,图3(c1)和(c2)为真实图的相位和振幅,从图中可以看出本发明提出的方法能够准确恢复波前的振幅和相位,恢复结果与真实值形貌轮廓一致,重建精度优于负反馈调节的多图相位恢复方法。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (5)

1.一种通过单次曝光实现轴向相位差波前重建的装置,其特征在于,该装置包括激光器、扩束器、待测平板、会聚透镜、分光镜、反射镜一、反射镜二和图像采集装置,所述扩束器、待测平板、会聚透镜、分光镜依次设置在所述激光器的出射光路上,所述反射镜一和反射镜二分别位于所述分光镜的两个相互垂直的出射光路上,所述反射镜一和反射镜二与所述分光镜的距离不同,且分别相对于其所在出射光路倾斜布置;所述图像采集装置位于能够同时采集反射镜一、反射镜二的反射光的位置上,用于同时获取两幅不同离焦位置的衍射光斑。
2.根据权利要求1所述的通过单次曝光实现轴向相位差波前重建的装置,其特征在于,所述反射镜一的倾斜程度为:所述反射镜一与其入射光路的夹角为80°。
3.根据权利要求1所述的通过单次曝光实现轴向相位差波前重建的装置,其特征在于,所述反射镜二的倾斜程度为:所述反射镜二与其入射光路的夹角为80°。
4.一种通过单次曝光实现轴向相位差波前重建的方法,其特征在于,该方法基于权利要求1所述的波前重建装置来实现,该方法具体包括如下步骤:
S1:所述激光器产生光波,所述光波经过所述扩束器扩束、所述待测平板透射、所述分光镜分光成两个垂直的光束后,两个垂直的光束分别经所述反射镜一和反射镜二反光后,由所述图像采集装置同时获取两幅不同离焦位置的衍射光斑;
S2:根据功率谱密度计算两个不同频段范围的衍射光斑的最佳离焦位置,然后将所述的反射镜一和反射镜二分别移动到各自的最佳离焦位置,使用所述的图像采集装置采集含有待测平板信息的衍射光斑。
S3:对采集到的衍射光斑进行分割处理,获取两幅在各自最佳离焦位置上的衍射光斑;
S4:采用轴向相位差相位恢复方法,对S3处理得到的衍射光斑进行相位恢复,获得待测平板的复振幅。
5.根据权利要求4所述的通过单次曝光实现轴向相位差波前重建的方法,其特征在于,所述的S4通过如下子步骤实现:
S4.1:分别设置支持域D、所述两幅衍射光斑对应的离焦量Δf1,Δf2、负反馈权重系数β、待测平板重建的迭代总数N、波前检测的初始迭代计数j=1、待测平板重建初始估计值g1(x,y),其中,(x,y)为所述待测平板的坐标;
S4.2:由所述的待测平板位置衍射计算至第k个衍射光斑位置处,获得计算的衍射复振幅
Figure FDA0003041815850000021
其中,
Figure FDA0003041815850000022
式中,
Figure FDA0003041815850000023
代表衍射计算算子,gk(x,y)表示待测平板第k个衍射光斑位置处的波前重建估计值;φ(x,y,Δfk)是离焦项
Figure FDA0003041815850000024
这里的i2=-1,
Figure FDA0003041815850000025
是(x,y)的归一化坐标,Δfk是离焦量;k=1,2。
S4.3:使用采集到的衍射光斑替换计算得到的复振幅的模,然后逆傅里叶变换衍射计算至待测平板,得到估计的待测平板复振幅gwj(x,y),具体如下式:
Figure FDA0003041815850000026
Figure FDA0003041815850000027
代表逆衍射计算算子;
S4.4:对估计的待测平板复振幅进行支持域D约束处理
Figure FDA0003041815850000028
S4.5:如果k=1,那么令k=2,否则,k=1;如果j<N,j=j+1,并返回S4.2,否则结束迭代,获得满足衍射光斑约束的复振幅估计值;
S4.6:对S4.5获得的复振幅估计值的振幅和相位分别使用去噪算法处理,移除噪声影响,并截取支持域之内的复振幅值得到真实的待测平板复振幅。
CN202110459392.8A 2021-04-27 2021-04-27 一种通过单次曝光实现轴向相位差波前重建的装置及方法 Active CN113203485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110459392.8A CN113203485B (zh) 2021-04-27 2021-04-27 一种通过单次曝光实现轴向相位差波前重建的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110459392.8A CN113203485B (zh) 2021-04-27 2021-04-27 一种通过单次曝光实现轴向相位差波前重建的装置及方法

Publications (2)

Publication Number Publication Date
CN113203485A true CN113203485A (zh) 2021-08-03
CN113203485B CN113203485B (zh) 2022-08-05

Family

ID=77028892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110459392.8A Active CN113203485B (zh) 2021-04-27 2021-04-27 一种通过单次曝光实现轴向相位差波前重建的装置及方法

Country Status (1)

Country Link
CN (1) CN113203485B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185606A (ja) * 1988-01-19 1989-07-25 Ricoh Co Ltd 位相差検出装置
US20080159642A1 (en) * 2005-02-03 2008-07-03 Igor Lyuboshenko Method for Obtaining a Phase Image from an Intensity Image
EP2243007A1 (en) * 2007-10-30 2010-10-27 AMO WaveFront Sciences, LLC System and methods of phase diversity wavefront sensing
US20140077064A1 (en) * 2012-09-14 2014-03-20 Thales Optic instrument with wavefront analyser
CN104266769A (zh) * 2014-10-23 2015-01-07 北京理工大学 一种相位恢复方法
CN105675151A (zh) * 2016-01-06 2016-06-15 上海大学 一种基于光强传输方程相位恢复应用装置
CN106289543A (zh) * 2016-07-25 2017-01-04 南京理工大学 大动态离焦范围单帧双幅图像光强采集装置及其采集方法
US20180120553A1 (en) * 2016-10-27 2018-05-03 Scopio Labs Ltd. System for image reconstruction using a known pattern
EP3358321A1 (en) * 2017-02-03 2018-08-08 Wooptix S.L. Method and optical system for acquiring the tomographical distribution of wave fronts of electromagnetic fields
CN109472842A (zh) * 2018-12-17 2019-03-15 长沙理工大学 一种无透镜成像的相位恢复图像再现方法
CN110160751A (zh) * 2019-05-16 2019-08-23 浙江大学 一种基于相位恢复的宽频段波前误差检测装置及检测方法
CN110470245A (zh) * 2019-08-21 2019-11-19 浙江大学 一种基于菲涅尔波带片衍射信息融合的相位恢复检测装置及相位恢复方法
CN111307759A (zh) * 2020-04-12 2020-06-19 北京工业大学 一种连续太赫兹波傅里叶叠层显微成像系统和方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185606A (ja) * 1988-01-19 1989-07-25 Ricoh Co Ltd 位相差検出装置
US20080159642A1 (en) * 2005-02-03 2008-07-03 Igor Lyuboshenko Method for Obtaining a Phase Image from an Intensity Image
EP2243007A1 (en) * 2007-10-30 2010-10-27 AMO WaveFront Sciences, LLC System and methods of phase diversity wavefront sensing
US20140077064A1 (en) * 2012-09-14 2014-03-20 Thales Optic instrument with wavefront analyser
CN104266769A (zh) * 2014-10-23 2015-01-07 北京理工大学 一种相位恢复方法
CN105675151A (zh) * 2016-01-06 2016-06-15 上海大学 一种基于光强传输方程相位恢复应用装置
CN106289543A (zh) * 2016-07-25 2017-01-04 南京理工大学 大动态离焦范围单帧双幅图像光强采集装置及其采集方法
US20180120553A1 (en) * 2016-10-27 2018-05-03 Scopio Labs Ltd. System for image reconstruction using a known pattern
EP3358321A1 (en) * 2017-02-03 2018-08-08 Wooptix S.L. Method and optical system for acquiring the tomographical distribution of wave fronts of electromagnetic fields
CN109472842A (zh) * 2018-12-17 2019-03-15 长沙理工大学 一种无透镜成像的相位恢复图像再现方法
CN110160751A (zh) * 2019-05-16 2019-08-23 浙江大学 一种基于相位恢复的宽频段波前误差检测装置及检测方法
CN110470245A (zh) * 2019-08-21 2019-11-19 浙江大学 一种基于菲涅尔波带片衍射信息融合的相位恢复检测装置及相位恢复方法
CN111307759A (zh) * 2020-04-12 2020-06-19 北京工业大学 一种连续太赫兹波傅里叶叠层显微成像系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. MATI´AS DI MARTINO等: "Single-shot phase recovery using two laterally separated defocused images", 《OPTICS COMMUNICATIONS》 *
郭怡明等: "一种混合迭代算法在大离焦距离TIE相位恢复中的应用", 《光学学报》 *

Also Published As

Publication number Publication date
CN113203485B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN110160751B (zh) 一种基于相位恢复的宽频段波前误差检测装置及检测方法
Lukin Adaptive optics in the formation of optical beams and images
US9690105B2 (en) Calibratable beam shaping system and method
CN109916522B (zh) 一种基于全息图延拓的像差补偿方法及其实现装置
CN110146258B (zh) 一种Poisson noise模型下对扩展目标成像时的相位恢复方法
CN111694016B (zh) 一种非干涉合成孔径超分辨成像重构方法
US7635832B2 (en) Hybrid diversity method utilizing adaptive diversity function for recovering unknown aberrations in an optical system
CN110895792B (zh) 一种图像拼接方法及装置
CN113203485B (zh) 一种通过单次曝光实现轴向相位差波前重建的装置及方法
CN111207910B (zh) 基于色散条纹斜率分析的拼接镜共位相误差校正方法
JP3584285B2 (ja) 歪画像補正方法及び装置
CN115901192A (zh) 具有实时对准功能的光学系统波前拼接检测方法及装置
CN115131201A (zh) 基于叠层重建的远场漫反射合成孔径超分辨成像方法
Xie et al. Restoration of sparse aperture images using spatial modulation diversity technology based on a binocular telescope testbed
Paxman et al. Aberration correction for phased-array telescopes using phase diversity
JP6823334B2 (ja) 高na集光素子の出口波面計測方法及び出口波面計測システム
Bolcar et al. Method of phase diversity in multi-aperture systems utilizing individual sub-aperture control
Matkivsky et al. A new method for finding optical aberrations on the basis of analysis of the object hologram without additional measurements
Mazzoleni et al. Design and performances of the Shack-Hartmann sensor within the Active Phasing Experiment
JP7519598B1 (ja) シアリング干渉測定方法及びシアリング干渉測定装置
Jin et al. Spatial consistency calibration based on phase difference minimization for parallel slightly off-axis digital holographic microscopy
CN115201110B (zh) 一种噪声实时分离的叠层衍射计算成像方法和装置
Pluzhnik et al. Wavefront retrieval through random pupil plane phase probes: Gerchberg-Saxton approach
CN115326366B (zh) 一种基于单幅干涉图的快速测量透镜焦距的装置及方法
US7928351B1 (en) Near field diversity method for estimation and correction of aberrations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant