CN113185969A - 一种用于水体中金属离子实时检测的荧光薄膜及其制备方法 - Google Patents
一种用于水体中金属离子实时检测的荧光薄膜及其制备方法 Download PDFInfo
- Publication number
- CN113185969A CN113185969A CN202110473956.3A CN202110473956A CN113185969A CN 113185969 A CN113185969 A CN 113185969A CN 202110473956 A CN202110473956 A CN 202110473956A CN 113185969 A CN113185969 A CN 113185969A
- Authority
- CN
- China
- Prior art keywords
- organic framework
- high molecular
- metal
- molecular polymer
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2333/10—Homopolymers or copolymers of methacrylic acid esters
- C08J2333/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2487/00—Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/183—Metal complexes of the refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta or W
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/186—Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/188—Metal complexes of other metals not provided for in one of the previous groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Manufacturing & Machinery (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明公开了一种用于水体中金属离子实时检测的荧光薄膜及其制备方法。所述金属离子为铜或镉离子,所述薄膜采用高分子聚合物和金属有机框架材料混合制备得到,将高分子聚合物用有机溶剂溶解后,向其中加入特定金属有机框架材料,搅拌均匀后涂覆在玻璃或硅片等衬底上,揭下后即得到荧光薄膜。本发明制得的薄膜装载能力大,检出限低,线性检测范围广,对一系列干扰离子具有较强的抗干扰能力,能够灵敏地分析检测出水中的铜、镉离子。响应时间为5~15秒,成本低廉,制备简单。
Description
技术领域
本发明属于离子检测材料领域,涉及一种用于水体中金属离子实时检测的荧光薄膜及其制备方法,尤其是针对水体中铜、镉离子实时检测的荧光薄膜及其制备方法。
背景技术
近年来随着工业与农业的持续稳定发展,对经济带来了快速增长的同时,也让环境污染尤其是水污染的情况愈演愈烈,这是需要人类关心和解决的重大问题。重金属污水的肆意排放,垃圾的随意丢弃,甚至是简简单单的食物链传播都会对环境以及人类自身造成不可逆的危害。重金属污染主要来源于工业与生活污染,如铜、镉元素等。铜是一种重要的微量营养元素,对一些酶及其它细胞活动也起很重要的作用,但作为重金属离子,摄入过量的铜可能引起严重的健康问题,导致神经退行性疾病,如帕金森氏症和威尔森氏病等。镉是人体非必需元素,当体内镉元素过量积累,损伤肾小管,病者出现糖尿、蛋白尿和氨基酸尿。使骨骼的代谢受阻,造成骨质疏松、萎缩、变形等一系列症状。因此,通过制定合理的方法来测定各种公共资源和公用事业中这些金属离子的污染状况非常重要。
在过去的几十年中,已经建立了许多检测重金属离子的方法,包括原子吸收光谱法(AAS),表面等离子体共振光谱法(SPR),紫外-可见分光光度法,电感耦合等离子体原子发射光谱法(ICP-AES),液相色谱法,伏安法等。这些测试方法可以灵敏地检测出金属离子,但是具有所需设备十分昂贵、运营成本高昂、所需分析时间较长等缺点。因此,有必要开发一种可靠、方便的方法来进行检测。与上述传统分析方法不同,荧光传感器由于价格低廉、灵敏度高、选择性良好以及响应速度快等优点而吸引了许多研究者的关注。
作为一类新兴的多孔材料,金属有机框架材料具有易调控的结构、规则的晶型、尺寸可调的孔道等特点,近年来在发光、气体存储、磁学、非线性光学等领域具有广泛应用前景。而荧光金属有机框架材料由于对于金属离子检测灵敏度高、选择性好,在各种离子的检测与去除方面应用广泛。然而,金属有机框架粉末的可塑性较差,原位合成的金属有机框架膜力学性能不高,极易破碎,使用过程中膜易产生缺陷。为解决上述问题,金属有机骨架材料因其具有与聚合物之间良好的相容性、高孔隙率和比表面积等优势,作为混合基质膜中的优良填充材料得到了广泛关注,即柔性的聚合物材料中与刚性的金属有机框架材料进行简单混合。柔性的高分子聚合物具有良好的可加工性,将其引入金属有机框架材料中可以在一定程度上结合二者的优势,改善金属有机框架材料的力学性能,提高金属有机框架材料的稳定性与可加工性。
基于以上内容,开发一种可实时实地、简单快捷且成本低廉的水体铜、镉离子荧光检测薄膜是非常有意义的。通过将薄膜与手持式荧光光谱仪结合使用,可通过检测薄膜光谱变化进而实现铜、镉离子浓度的检测。
发明内容
本发明的目的在于针对现有技术的不足,提供多种负载金属有机框架的薄膜及其制备方法,从而开发多种可以快速方便成本低的铜、镉离子检测薄膜。
本发明采用如下技术方案:
一种用于水体中金属离子实时检测的荧光薄膜,所述的金属离子为铜、镉离子,所述薄膜采用70~80重量份的高分子聚合物和20~30重量份的金属有机框架材料混合制备得到。
上述技术方案中,所述的高分子聚合物为聚偏氟乙烯(PVDF)、聚二甲硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)或聚醚砜(PES);所述的金属有机框架材料中的金属离子为铽、钕、锌、铈、铬、镥、钴、铕、铜、锆、铝、镝、铒或镉。配体为氨基对苯二甲酸、2-甲基咪唑、2-氨基-4,4'-联苯二甲酸、4,4-二氨基-1,1-联苯-3,3-二羧酸、[1,1'-联苯]-2,2',3,3',5,5',6,6'-八羧酸或2,5-二氨基对苯二甲酸。金属有机框架材料粒径为400~3000nm。
本发明的用于水体中铜、镉离子实时检测的荧光薄膜的制备方法,包括如下步骤:
(1).金属有机框架材料的制备:将金属盐和有机配体溶解在有机溶剂中,超声波溶解30~60分钟。然后将溶液转移到水热反应釜中,25~140℃下反应48~72小时。冷却到室温后,离心分离清洗多次反应产物,在真空下60℃干燥8~12小时后得到金属有机框架粉末。
(2).金属有机框架材料与高分子聚合物混合物的制备:将高分子聚合物分散于溶剂中,20~25℃超声溶解10~20分钟;待高分子聚合物完全溶解后,将上述金属有机框架粉末按一定质量比加入到高分子聚合物溶液,室温下磁力搅拌12~24小时,得到金属有机框架材料与高分子聚合物的混合物。
(3).薄膜的制备:取适量金属有机框架材料与高分子聚合物的混合物涂覆在等衬底上,用真空泵去除混合物中的气泡,放入40~80℃烘箱干燥4~8小时,揭下后得到用于水体中铜、镉离子实时检测的荧光薄膜。
上述步骤中,所述的有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、无水甲醇、丙酮或者N,N-二乙基甲酰胺中任意一种;所述的溶剂为N,N-二甲基甲酰胺、无水甲醇、三氯甲烷、乙醇、甲苯、丙酮或水中任意一种;所述的衬底为玻璃或硅片衬底;所述的质量比为1:4~3:7;所述的薄膜的厚度为30~5800μM。
本发明的发明原理为:
作为一类新兴的多孔材料,金属有机框架材料具有易调控的结构、规则的晶型、尺寸可调的孔道等特点。荧光金属有机框架材料由于对于金属离子检测灵敏度高、选择性好,在各种离子的检测与去除方面应用广泛。金属有机骨架材料因其具有与聚合物之间良好的相容性、高孔隙率和比表面积等优势,可以作为混合基质膜中的优良填充材料,即柔性的聚合物材料中与刚性的金属有机框架材料进行简单混合。柔性的高分子聚合物具有良好的可加工性,将其引入金属有机框架材料中可以在一定程度上结合二者的优势,改善金属有机框架材料的力学性能,提高金属有机框架材料的稳定性与可加工性。由于上述原理,本发明的薄膜采用高分子聚合物和金属有机框架材料混合制备得到,将高分子聚合物用有机溶剂溶解后,向其中加入金属有机框架材料,搅拌均匀后涂覆在玻璃或硅片等衬底上,揭下后即得到荧光薄膜。本发明方法中通过采用特定配比的高分子聚合物及金属有机框架材料,先获得二者混合物再结合除气泡后进行特定温度下干燥处理的工艺,最终可以制得性能优异的荧光薄膜。改变制备方法会严重影响薄膜性能,重者破裂、脱落,无法使用,也即无法进行荧光实时检测应用。这样制得的薄膜有良好的离子透过性,将薄膜浸泡后,水中铜、镉离子与薄膜负载的金属有机框架发生配位或离子交换反应,改变薄膜原有荧光强度,因此可实现检测离子浓度的功能。通过负载不同金属有机框架材料,可实现对不同金属离子的检测,尤其是采用铝与2-氨基-4,4'-联苯二甲酸、或者锆与[1,1'-联苯]-2,2',3,3',5,5',6,6'-八羧酸形成的金属有机框架材料可以用于水体中铜离子的检测,锌与4,4-二氨基-1,1-联苯-3,3-二羧酸形成的金属有机框架材料可用于水体中镉离子的检测,且均具有较低的检出限和极广的线性检测范围。薄膜性质稳定,不影响金属有机框架与重金属离子作用,具有良好的可行性,可实时、实地检测自然环境的水中铜、镉离子浓度。
本发明的有益效果在于:
1、本发明使用的薄膜有良好的离子透过性,由于性质稳定,不改变金属有机框架原有特性;且本发明的薄膜有较高的力学强度,制备工艺简单,成本低,制备方法具有良好的可行性。
2、本发明使用的金属有机框架材料,可与铜、镉离子发生配位或离子交换,导致荧光淬灭或增强,有较高的灵敏度和准确度,响应范围广,薄膜对铜离子和镉离子的检测限分别可以达到2.3μM和1.2μM,响应时间为5~15秒。
3、本发明使用的金属有机框架材料,只对特定重金属离子进行荧光响应,对一系列干扰离子具有较强的抗干扰能力,当水中存在其他重金属离子时,也不会改变对待测离子的灵敏度。
4、本发明可用于一种水中铜、镉离子检测方法,该方法可以不受实验条件限制,具有高效的实际水样铜、镉离子浓度检测能力,为离子实际检测方法提供了新视角,推进了铜离子实际检测的方便快捷。
具体实施方式
下面将结合实例进一步阐明本发明的内容,但这些实例并不限制本发明的保护范围,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。
实施例1:
本实施例的用于水体中铜离子实时检测的荧光薄膜。采用80重量份的聚甲基丙烯酸甲酯(PMMA)高分子聚合物,20重量份的粒径为3000nm铝与2-氨基-4,4'-联苯二甲酸形成的金属有机框架材料制备得到。具体方法为:
(1).金属有机框架材料的制备:将六水氯化铝(AlCl3·6H2O、99.9%、0.51g)和2-氨基-4,4'-联苯二甲酸(99.0%、0.56g)溶解在无水甲醇中(99.8%,30ml),超声波溶解30分钟。然后将混合溶液转移到50ml玻璃瓶中,25℃下反应48小时。冷却到室温后,离心分离并用DMF和无水甲醇清洗三次反应产物,并在真空60℃下干燥8小时后得到金属有机框架粉末。
(2).金属有机框架材料与高分子聚合物混合物的制备:将500mg PMMA分散于20ml三氯甲烷中,25℃下超声15min,待高分子聚合物完全溶解后,将金属有机框架粉末:高分子聚合物溶液按质量比1:19加入到高分子聚合物溶液,室温下磁力搅拌24小时,得到金属有机框架材料与高分子聚合物的混合物。
(3).薄膜的制备:取适量金属有机框架材料与高分子聚合物的混合物涂覆在玻璃或硅片等衬底上,用真空泵去除混合物中的气泡,放入40℃烘箱干燥4小时,揭下后得到用于水体中铜、镉离子实时检测的荧光薄膜。
结合手持式荧光光谱仪,此薄膜使用335nm波长激光激发,主要检测450nm处的荧光强度。薄膜中掺杂的金属有机框架材料是一种新型灵敏检测水中铜离子的多功能材料。由于外壳层的高密度配位位点,因此具有较好的铜离子富集性能,从而提高了相应的荧光淬灭效率,此外此金属有机框架材料具有优越的吸附性能,用此金属有机框架材料制备的薄膜线性检测范围30~600μM,检测限可达10μM。
实施例2:
本实施例的用于水体中镉离子实时检测的荧光薄膜。采用70重量份的聚偏氟乙烯(PVDF)高分子聚合物,30重量份的粒径为400nm锌与4,4-二氨基-1,1-联苯-3,3-二羧酸形成的金属有机框架材料制备得到。具体方法为:
(1).将0.1mmol六水硝酸锌、0.1mmol 4,4-二氨基-1,1-联苯-3,3-二羧酸和4ml的DMF超声波溶解60分钟。然后将溶液转移到水热反应釜中,140℃下反应72小时。冷却到室温后,离心分离清洗多次反应产物,在真空60℃下干燥12小时后得到金属有机框架粉末。
(2).金属有机框架材料与高分子聚合物混合物的制备:将500mg PVDF分散于20mlDMF中,20℃下超声20min,待高分子聚合物完全溶解后,将金属有机框架粉末:高分子聚合物溶液按质量比3:7加入到高分子聚合物溶液,室温下磁力搅拌12小时,得到金属有机框架材料与高分子聚合物的混合物。
(3).薄膜的制备:取适量金属有机框架材料与高分子聚合物的混合物涂覆在玻璃或硅片等衬底上,用真空泵去除溶液中的气泡,放入80℃烘箱干燥8小时,揭下后得到用于水体中铜、镉离子实时检测的荧光薄膜。
结合手持式荧光光谱仪,此薄膜使用310nm波长激光激发,主要检测536nm处的荧光强度。与镉离子相互作用的配体的荧光信号远高于锌离子,镉离子引入金属有机框架可能容易形成更稳定的框架结构,即锌离子-镉离子金属有机框架,能够促进整个系统的刚度。同时,考虑到锌离子和镉离子的外壳电子结构相似,因此镉离子和锌离子之间的离子交换作用可能是镉离子诱导荧光增强的机制。用此金属有机框架材料制备的薄膜线性检测范围2~20μM,检测限可达1.2μM。
实施例3:
本实施例的用于水体中铜离子实时检测的荧光薄膜。采用75重量份的聚乙烯醇(PVA)高分子聚合物,20重量份的粒径为1600nm锆与[1,1'-联苯]-2,2',3,3',5,5',6,6'-八羧酸形成的金属有机框架材料制备得到。具体方法为:
(1).金属有机框架材料的制备:将氯化锆(ZrCl4、0.9234g)和[1,1'-联苯]-2,2',3,3',5,5',6,6'-八羧酸(99.0%、1.7205g)溶解在中N,N-二甲基乙酰胺(99.8%,30ml),超声波溶解30分钟。然后将混合溶液转移到50ml玻璃瓶中,65℃下反应24小时。冷却到室温后,离心分离清洗三次反应产物,并在真空60℃下干燥8小时后得到金属有机框架粉末。
(2).金属有机框架材料与高分子聚合物混合物的制备:将500mg PVA分散于20ml水中,25℃下超声15min,待高分子聚合物完全溶解后,将金属有机框架粉末:高分子聚合物溶液按质量比1:3加入到高分子聚合物溶液,室温下磁力搅拌24小时,得到金属有机框架材料与高分子聚合物的混合物。
(3).薄膜的制备:取适量金属有机框架材料与高分子聚合物的混合物涂覆在玻璃或硅片等衬底上,用真空泵去除混合物中的气泡,放入60℃烘箱干燥8小时,揭下后得到用于水体中铜、镉离子实时检测的荧光薄膜。
结合手持式荧光光谱仪,此薄膜使用300nm波长激光激发,主要检测540nm处的荧光强度。铜离子与游离羧酸基团之间发生配位作用,因此荧光淬灭的机理可能是由于铜离子被吸附到孔洞中,干扰了配体的电子结构,导致配体向铽离子中心的能量传递效率降低。用此金属有机框架材料制备的薄膜线性检测范围10~180μM,检测限可达2.3μM。
Claims (9)
1.一种用于水体中金属离子实时检测的荧光薄膜,其特征在于,所述金属离子为铜、镉离子,所述薄膜采用70~80重量份的高分子聚合物和20~30重量份的金属有机框架材料混合制备得到。
2.根据权利要求1所述的用于水体中金属离子实时检测的荧光薄膜,其特征在于,所述的高分子聚合物为聚偏氟乙烯(PVDF)、聚二甲硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)或聚醚砜(PES)。
3.根据权利要求1所述的用于水体中金属离子实时检测的荧光薄膜,其特征在于,所述的金属有机框架材料中的金属离子为铽、钕、锌、铈、铬、镥、钴、铕、铜、锆、铝、镝、铒或镉;配体为2,氨基-对苯二甲酸、2-甲基咪唑、2-氨基-4,4'-联苯二甲酸、4,4-二氨基-1,1-联苯-3,3-二羧酸、[1,1'-联苯]-2,2',3,3',5,5',6,6'-八羧酸或2,5-二氨基对苯二甲酸;金属有机框架材料粒径为400~3000nm。
4.根据权利要求1所述的用于水体中金属离子实时检测的荧光薄膜,其特征在于,所述的金属有机框架材料中金属离子为铝,配体为2-氨基-4,4'-联苯二甲酸;或者金属离子为锌,配体为4,4-二氨基-1,1-联苯-3,3-二羧酸;或者金属离子为锆,配体为[1,1'-联苯]-2,2',3,3',5,5',6,6'-八羧酸。
5.制备如权利要求1~4任一项所述的用于水体中金属离子实时检测的荧光薄膜的方法,其特征在于,包括以下步骤:
1)金属有机框架材料的制备:将金属盐和有机配体溶解在有机溶剂中,超声波溶解30~60分钟;然后将溶液转移到水热反应釜中,25~140℃下反应48~72小时;冷却到室温后,离心分离清洗多次反应产物,在真空下60℃干燥8~12小时后得到金属有机框架粉末;
2)金属有机框架材料与高分子聚合物混合物的制备:将高分子聚合物分散于溶剂中,20~25℃超声溶解10~20分钟;待高分子聚合物完全溶解后,将上述金属有机框架粉末加入到高分子聚合物溶液,室温下磁力搅拌12~24小时,得到金属有机框架材料与高分子聚合物的混合物;
3)薄膜的制备:取金属有机框架材料与高分子聚合物的混合物涂覆在玻璃或硅片衬底上,用真空泵去除混合物中的气泡,放入40~80℃烘箱干燥4~8小时,揭下后得到用于水体中金属离子实时检测的荧光薄膜。
6.根据权利要求5所述的用于水体中金属离子实时检测的荧光薄膜的制备方法,其特征在于,步骤1)所述的有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、无水甲醇、丙酮或者N,N-二乙基甲酰胺中任意一种。
7.根据权利要求5所述的用于水体中金属离子实时检测的荧光薄膜的制备方法,其特征在于,步骤2)所述的溶剂为N,N-二甲基甲酰胺、无水甲醇、三氯甲烷、乙醇、甲苯、丙酮或水中任意一种。
8.根据权利要求5所述的用于水体中金属离子实时检测的荧光薄膜的制备方法,其特征在于,步骤2)所述的金属有机框架粉末与高分子聚合物溶液的质量比为1:4~3:7。
9.根据权利要求5所述的用于水体中金属离子实时检测的荧光薄膜的制备方法,其特征在于,步骤3)所述的薄膜的厚度为30~5800μM。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110473956.3A CN113185969B (zh) | 2021-04-29 | 2021-04-29 | 一种用于水体中金属离子实时检测的荧光薄膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110473956.3A CN113185969B (zh) | 2021-04-29 | 2021-04-29 | 一种用于水体中金属离子实时检测的荧光薄膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113185969A true CN113185969A (zh) | 2021-07-30 |
CN113185969B CN113185969B (zh) | 2022-05-13 |
Family
ID=76980734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110473956.3A Active CN113185969B (zh) | 2021-04-29 | 2021-04-29 | 一种用于水体中金属离子实时检测的荧光薄膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113185969B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114011384A (zh) * | 2021-11-03 | 2022-02-08 | 浙江大学 | 一种用于水中重金属离子去除和荧光检测的薄膜及其制备方法 |
CN114479104A (zh) * | 2022-01-24 | 2022-05-13 | 辽宁大学 | 一种基于可视化串联检测Pi和邻苯二胺的试剂及检测方法 |
CN114807291A (zh) * | 2022-04-29 | 2022-07-29 | 哈尔滨工业大学(深圳) | 一种检测水体中重金属浓度的方法 |
CN116376038A (zh) * | 2023-02-10 | 2023-07-04 | 成都理工大学 | 一种用于细胞成像和铜离子检测的纳米金属有机配合物制备方法 |
CN117125994A (zh) * | 2023-07-11 | 2023-11-28 | 宜兴市荣利钨钼制品有限公司 | 一种抗热震碳化硅电热元件及其加工工艺 |
CN118109099A (zh) * | 2024-04-30 | 2024-05-31 | 安徽三旺化学有限公司 | 一种具有荧光效果的丙烯酸涂料 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105481900A (zh) * | 2015-11-20 | 2016-04-13 | 天津工业大学 | 一种用于金属离子污染物检测的过渡金属-有机框架材料 |
CN106459590A (zh) * | 2014-03-27 | 2017-02-22 | 巴斯夫欧洲公司 | 包含金属有机骨架材料的多孔膜 |
CN108752368A (zh) * | 2018-07-11 | 2018-11-06 | 郑州工程技术学院 | 一种具有荧光识别性能的含锌金属有机框架材料及其合成方法和应用 |
CN111196877A (zh) * | 2018-11-20 | 2020-05-26 | 天津工业大学 | 一种金属有机框架-聚醚砜复合膜在低分子有机胺类检测中的应用 |
-
2021
- 2021-04-29 CN CN202110473956.3A patent/CN113185969B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106459590A (zh) * | 2014-03-27 | 2017-02-22 | 巴斯夫欧洲公司 | 包含金属有机骨架材料的多孔膜 |
CN105481900A (zh) * | 2015-11-20 | 2016-04-13 | 天津工业大学 | 一种用于金属离子污染物检测的过渡金属-有机框架材料 |
CN108752368A (zh) * | 2018-07-11 | 2018-11-06 | 郑州工程技术学院 | 一种具有荧光识别性能的含锌金属有机框架材料及其合成方法和应用 |
CN111196877A (zh) * | 2018-11-20 | 2020-05-26 | 天津工业大学 | 一种金属有机框架-聚醚砜复合膜在低分子有机胺类检测中的应用 |
Non-Patent Citations (2)
Title |
---|
SOFIAN M. KANAN ET AL.,: ""Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions"", 《COMMENTS ON INORGANIC CHEMISTRY》 * |
YANAN PAN ET AL.,: ""A new three-dimensional zinc-based metal-organic framework as a fluorescent sensor for detection of cadmium ion and nitrobenzene"", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114011384A (zh) * | 2021-11-03 | 2022-02-08 | 浙江大学 | 一种用于水中重金属离子去除和荧光检测的薄膜及其制备方法 |
CN114479104A (zh) * | 2022-01-24 | 2022-05-13 | 辽宁大学 | 一种基于可视化串联检测Pi和邻苯二胺的试剂及检测方法 |
CN114807291A (zh) * | 2022-04-29 | 2022-07-29 | 哈尔滨工业大学(深圳) | 一种检测水体中重金属浓度的方法 |
CN116376038A (zh) * | 2023-02-10 | 2023-07-04 | 成都理工大学 | 一种用于细胞成像和铜离子检测的纳米金属有机配合物制备方法 |
CN116376038B (zh) * | 2023-02-10 | 2024-09-24 | 成都理工大学 | 一种用于细胞成像和铜离子检测的纳米金属有机配合物制备方法 |
CN117125994A (zh) * | 2023-07-11 | 2023-11-28 | 宜兴市荣利钨钼制品有限公司 | 一种抗热震碳化硅电热元件及其加工工艺 |
CN118109099A (zh) * | 2024-04-30 | 2024-05-31 | 安徽三旺化学有限公司 | 一种具有荧光效果的丙烯酸涂料 |
Also Published As
Publication number | Publication date |
---|---|
CN113185969B (zh) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113185969B (zh) | 一种用于水体中金属离子实时检测的荧光薄膜及其制备方法 | |
Liu et al. | Aggregation-induced emission supramolecular organic framework (AIE SOF) gels constructed from supramolecular polymer networks based on tripodal pillar [5] arene for fluorescence detection and efficient removal of various analytes | |
Lv et al. | Zinc metal–organic framework for selective detection and differentiation of Fe (III) and Cr (VI) ions in aqueous solution | |
Rath et al. | Water stable Zn (II) metal–organic framework as a selective and sensitive luminescent probe for Fe (III) and chromate ions | |
Xu et al. | A Stable Zr (IV)-Based Metal–Organic Framework Constructed from C═ C Bridged Di-isophthalate Ligand for Sensitive Detection of Cr2O72–in Water | |
Wang et al. | Improving covalent organic frameworks fluorescence by triethylamine pinpoint surgery as selective biomarker sensor for diabetes mellitus diagnosis | |
Liu et al. | A Stable Cd (II)-Based Metal–Organic Framework: Synthesis, Structure, and Its Eu3+ Functionalization for Ratiometric Sensing on the Biomarker 2-(2-Methoxyethoxy) Acetic Acid | |
JP6329595B2 (ja) | 表面プラズモン共鳴センサチップ及びその製造方法、応用 | |
Zhu et al. | Highly sensitive luminescent probe of aniline and trace water in organic solvents based on covalently modified lanthanide metal–organic frameworks | |
Guan et al. | Bismuth-carboxylate ligand 1, 3, 6, 8-Tetrakis (p-benzoic acid) pyrene frameworks, photophysical properties, biological imaging, and fluorescent sensor for biothiols | |
Mei et al. | Numerical recognition system and ultrasensitive fluorescence sensing platform for Al3+ and UO22+ based on Ln (III)-functionalized MOF-808 via thiodiglycolic acid intermediates | |
Shi et al. | Fluorescence chemosensory ultrathin films for Cd2+ based on the assembly of benzothiazole and layered double hydroxide | |
Yao et al. | Acylhydrazone functionalized benzimidazole-based metallogel for the efficient detection and separation of Cr 3+ | |
CN1773287A (zh) | 有机磷农药仿生识别检测试剂盒 | |
CN111196877A (zh) | 一种金属有机框架-聚醚砜复合膜在低分子有机胺类检测中的应用 | |
CN109467710A (zh) | 二维金属卟啉基cof材料以及薄膜制备方法和应用 | |
Qiao et al. | Multifunctional Luminescent 3D Ln-MOFs with High Sensitivity for Trace Detection of Micronutrients | |
An et al. | Lignocellulose/chitosan hybrid aerogel composited with fluorescence molecular probe for simultaneous adsorption and detection of heavy metal pollutants | |
CN117003688A (zh) | 一种基于四苯乙烯的荧光单体及其制备方法与应用 | |
Yang et al. | Fabrication of a stable europium-based luminescent sensor for fast detection of urinary 1-hydroxypyrene constructed from a tetracarboxylate ligand | |
Ghosh et al. | Ultrafast and nanomolar level detection of H 2 S in aqueous medium using a functionalized UiO-66 metal–organic framework based fluorescent chemosensor | |
Shukla et al. | High Cell Volume Zn-Metal–organic Framework: Unveiling the Pseudo-capacitor Properties and Selective Colorimetric Recognition of Oxyanions | |
CN110441285A (zh) | 一种基于MXene的新型SERS纸芯片的制备方法及应用 | |
CN108426867B (zh) | 在水中检测Fe3+和抗生素头孢曲松钠的MOF-Cd探针及其制备方法和应用 | |
Xia et al. | 2D COFs paper composites fabricated by the in situ growth for visual detection of target metal ions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |