CN113181934A - 基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用 - Google Patents

基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用 Download PDF

Info

Publication number
CN113181934A
CN113181934A CN202110458172.3A CN202110458172A CN113181934A CN 113181934 A CN113181934 A CN 113181934A CN 202110458172 A CN202110458172 A CN 202110458172A CN 113181934 A CN113181934 A CN 113181934A
Authority
CN
China
Prior art keywords
self
cus
driven
catalyst
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110458172.3A
Other languages
English (en)
Other versions
CN113181934B (zh
Inventor
王虹
马恩慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202110458172.3A priority Critical patent/CN113181934B/zh
Publication of CN113181934A publication Critical patent/CN113181934A/zh
Application granted granted Critical
Publication of CN113181934B publication Critical patent/CN113181934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种基于photo‑Fenton反应降解四环素的自驱动催化剂及其制备与应用,其是在利用水热合成法制备的CuS@Fe3O4复合材料的表面通过物理气相沉积法沉积一层金属铂后构建得到的具有不对称结构的复合物。由于铂层的存在,所合成的复合材料可以通过催化双氧水分解产生气泡,利用气泡产生的推动力推动着复合材料自主运动;这种自驱动催化剂还可在磁场和光辐射的双重刺激响应下实现多种模式的推进和引导;这种定向自主运动可增强周围流体的混合,并加速活性物质产生,进而能高效地降解水中的污染物,为水净化领域提供一种全新策略。

Description

基于photo-Fenton反应降解四环素的自驱动催化剂及其制备 与应用
技术领域
本发明涉及无机纳米材料及环境领域,具体是涉及一种基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用。
背景技术
近年来,由于工业化进程的高速发展,导致有机污染物的过量排放问题日趋严重。其中,水溶性污染物是造成环境中地表水和地下水污染的最直接原因。而且,许多污染物很难用常规化学或生物方法进行有效处理,水净化工程迎来巨大挑战。
早年间抗生素作为一类能改善人类健康的药物在很长一段时间内都得到广泛的使用,但是正是由于过度使用的问题以及它们在水环境中持久难分解的特性,使得抗生素如今已成为一种新兴的污染物。过量抗生素的存在不仅会对水生和陆地生物构成威胁,而且还可能诱导细菌产生耐药性。目前,利用常规手段并不能有效地降解水中的抗生素。因此,迫切需要研发一种有效的策略或者方法来实现水体中抗生素净化的目标。
Fenton反应是高级氧化过程(AOPs)之一,被认为是处理水污染物的有效方法。Fenton反应是通过催化分解H2O2产生强大的羟基自由基和超氧化物,这被认为是最具氧化性的反应性物质,可将多种有机污染物降解为小的无污染分子。为了提高Fenton反应的氧化效率,Fenton反应与光催化协同发展,photo-Fenton催化被提出应用于高效降解水中污染物。
中国专利CN112062200A公开一种含Cu生物炭吸附协同催化氧化去除水体中四环素的方案,其利用含Cu生物炭催化剂与过氧化氢溶液形成非均相类Fenton体系,产生羟基自由基降解四环素,还通过掺杂金属Fe使催化剂获得磁响应特性,使其在外加磁场作用下易于从体系中分离;CN112062200A公开一种微米级类芬顿催化剂及其制备方法和应用,该类Fenton催化剂是黄铜矿CuFeO2,其可活化H2O2以产生强氧化性的羟自由基,实现对环境有机污染物的氧化降解和矿化中的应用。上述两种方案都可用于环境治理领域,但是方案的不足之处在于,其所公开的催化剂均没有自驱动特性,反应过程中需借助外部器械增强催化剂在溶液中的传质效果,催化剂可能难以伸入到一些狭小空间进行反应,存在反应盲区,治理效果并不是特别理想。
微纳米马达能将化学能转化为自主运动的特性引起了相关领域技术人员的浓厚兴趣。微纳米马达的自驱动运动可以使周围的流体在受污染的样品之间更强地混合,从而加速污染物的降解。特别是对于依靠气泡推动力实现自驱动的微纳米马达,持续产生微气泡进一步增强了溶液中的传质,进而可提高降解效果。如将自驱动的微纳米马达与高效地AOPs工艺相结合,不仅能够取缔外部机械的使用,而且可以实现长距离、大范围作业,甚至可以深入到传统手段无法触及的狭小空间执行净水任务。
因此,将卓越的自驱动能力与非均相photo-Fenton催化相结合,必将会为水污染治理提供了一种高效、环保、低成本的污染物降解策略,为水体净化带来了新思路和新方案。
发明内容
本发明的目的在于解决现有技术中的不足,提供一种基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用,该催化剂具有独特的定向自驱动特性,在含有双氧水的溶液中具有高的运动速度,而且在磁场和光辐射的双重刺激响应下可以实现多种模式的推进和引导。
本发明的技术方案为:一种基于photo-Fenton反应降解四环素的自驱动催化剂,该自驱动催化剂CuS@Fe3O4/Pt是在水热合成法制备的CuS@Fe3O4复合材料表面通过物理气相沉积法沉积一层金属铂构建得到的,该材料具备不对称的结构特征;
该自驱动催化剂能够利用自身的不对称性通过催化过氧化氢分解产生的气泡获得驱动力以增强溶液中的传质;
该自驱动催化剂具备磁控定向运动的特性,可磁性回收利用;
该自驱动催化剂在紫外线照射下可向光点处聚集,具备光响应的集群定向运动特征。
上述基于photo-Fenton反应降解四环素的自驱动催化剂的制备方法如下:
(1)CuS微球的制备
将0.2~0.4g CuCl2·2H2O超声溶解到40mL乙二醇中,完全溶解后,将0.6g硫脲缓慢加入上述溶液中,搅拌一段时间,将溶液转到反应釜中加热反应,降温至室温,离心干燥得到片层堆积CuS微球材料;
(2)CuS@Fe3O4复合材料的制备
将0.3~0.6g的CuS微球超声分散在30mL的去离子水中,将0.3g的柠檬酸钠、0.1g的FeCl3·6H2O和0.01g的尿素溶解在分散液中后,将0.06g的聚丙烯酸钠缓慢加入到上述分散液中,连续搅拌,将该混合液转到反应釜中加热反应,离心、清洗、干燥得到CuS@Fe3O4复合材料;
(3)CuS@Fe3O4/Pt自驱动马达的制备
将0.5~1.0mg的CuS@Fe3O4复合材料超声分散在20mL水中,然后在玻璃片上铺成薄层,自然晾干,取晾干后的玻璃片置于真空离子溅射仪的工作台上,铂靶溅射得到CuS@Fe3O4/Pt自驱动马达。
进一步地,步骤(1)中,加热反应温度为120-130℃,保温8~14h。
进一步地,步骤(2)中,加热反应温度为180-240℃,保温2~6h。
进一步地,步骤(3)中,铂靶溅射时真空度为6~8Pa,溅射电压为8~10mA,溅射时间为6~8s。
上述基于photo-Fenton反应降解四环素的自驱动催化剂可用于降解水体污染物四环素,具体操作时是先将配制的CuS@Fe3O4/Pt加入四环素废水溶液中,加入一定质量浓度的过氧化氢溶液,提供光照,在无机械搅拌的情况下,复合材料通过催化双氧水分解产生气泡以推动复合材料自主运动完成对四环素的降解。
本发明的有益效果为:
1.本发明通过将光催化剂和Fenton反应相结合而制备出基于photo-Fenton反应的自驱动催化剂,该复合催化材料能够利用自身的不对称性通过催化过氧化氢分解产生气泡获得驱动力,同时,产生的微气泡进一步增强了溶液中的传质,在可见光的照射下,可快速高效地降解水中污染物;
2.本发明制备的自驱动的催化剂在磁场和光辐射的刺激响应性下、能够在不同的体系下实现推进和引导,磁性响应实现催化剂快速分离和收集,CuS本身的光热效应可以造成溶液中热量的不均匀分布,光刺激响应可以实现催化剂的群体性运动;
3.本发明制备的基于photo-Fenton反应的自驱动催化剂可以通过自主运动和所产生气泡的作用,增强周围流体的混合,加速活性物质产生,克服机械搅拌的限制,不受设备制约,方便回收再利用,绿色环保避免二次污染;
4.由于本发明制备的自驱动催化剂是通过催化双氧水分解产生的气泡的推动力推动着复合材料自主运动的,相比于机械推动而言,该种推动方式可促使催化剂深入到传统手段无法触及的狭小空间执行任务,缩短操作时间,提高治理效率;
5.本发明也可用于制备其它具有自驱动特性的催化剂,通过电子束蒸镀、离子溅射等其它物理气相沉积方法负载金属层,此外,铂金属可以用银等其它能够催化双氧水分解的金属代替,所氧化降解的污染物也不限于四环素,能够通过photo-Fenton反应氧化降解的污染物均可通过此方法提高降解效率,应用范围广,有助于拓宽水净化领域的处理思路。
附图说明
图1中A为实施例1制备的CuS微球的扫描电镜(SEM)图,B和C为实施例1制备的CuS@Fe3O4复合材料的SEM图和X射线衍射(XRD)图谱;
图2为实施例1制备的CuS@Fe3O4/Pt自驱动马达的X射线能量色散光谱;
图3中A为实施例1制得的CuS@Fe3O4/Pt自驱动马达自驱动气泡推动图、B为不同双氧水浓度下的运动轨迹图;
图4中A为实施例1制得的CuS@Fe3O4/Pt自驱动马达磁控定向运动图、B为磁性回收图;
图5为实施例1制得的CuS@Fe3O4/Pt自驱动马达光响应集群定向驱动图;
图6中A为实施例1制得的CuS@Fe3O4/Pt和CuS@Fe3O4在不同条件下降解四环素的结果分析图、B为CuS@Fe3O4/Pt自驱动马达在可见光的照射下30分钟降解四环素的效率图;
图7为实施例1制得的CuS@Fe3O4/Pt自驱动马达基于photo-Fenton反应催化降解四环素的循环利用效率统计图。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
实施例1:CuS@Fe3O4/Pt自驱动催化剂的制备
(1)CuS微球的制备
将0.2g的CuCl2·2H2O超声溶解到40mL乙二醇中,完全溶解后,将0.6g硫脲缓慢加入上述溶液中,搅拌3小时后,将溶液转到反应釜中加热到120℃,保温12h,降温至室温,离心干燥得到片层堆积CuS微球材料;
(2)CuS@Fe3O4复合材料的制备
将0.3g的CuS微球超声分散在30mL的去离子水中,将0.3g的柠檬酸钠、0.1g的FeCl3·6H2O和0.01g的尿素溶解在分散液中后,将0.06g的聚丙烯酸钠缓慢加入到上述分散液中,连续搅拌3h,将该混合液转到反应釜中,加热至200℃,保温4h,离心、清洗、干燥得到CuS@Fe3O4复合材料;
(3)CuS@Fe3O4/Pt自驱动马达的制备
将0.5mg的CuS@Fe3O4复合材料超声分散在20mL水中,然后在玻璃片上铺成薄层,自然晾干,取晾干后的玻璃片置于真空离子溅射仪的工作台上,在真空度为8Pa,溅射电压为8mA的环境下,使用铂靶溅射8s,得到CuS@Fe3O4/Pt自驱动马达。
对实施例1所制备的CuS微球、CuS@Fe3O4复合材料和CuS@Fe3O4/Pt自驱动马达进行表征测试。
图1中A为实施例1步骤(1)所制备的CuS微球的扫描电镜(SEM)图,CuS微球为直径约为5微米的片层堆积的球形,片层堆积的多孔结构为Fe3O4纳米粒子的原位生长和Pt沉积提供了稳定而丰富的位点。
图1中B和C为实施例1步骤(2)所制备的CuS@Fe3O4复合材料的SEM图和X射线衍射(XRD)分析图,Fe3O4纳米粒子原位镶嵌在CuS微球的表面,而且其并没有改变CuS微球的形貌和结构,其仍然保持均匀的球形。从CuS@Fe3O4复合材料的XRD谱图上观察到的衍射峰与CuS和Fe3O4纳米粒子完全匹配,没有明显的杂质和偏差。
图2展示实施例1步骤(3)所制备的CuS@Fe3O4/Pt自驱动马达的X射线能量色散光谱(EDX)元素,Fe、O元素均匀的分布CuS微球表面,Pt元素集中分布在CuS@Fe3O4在一侧,证明不对称结构的CuS@Fe3O4/Pt自驱动马达构建成功。
实施例2:CuS@Fe3O4/Pt自驱动催化剂的制备
实施例2与实施例1的不同之处仅在于,步骤(1)中CuCl2·2H2O的质量为0.4g,加热保温时间14h,其它步骤过程与实施例1中均相同。
实施例3:CuS@Fe3O4/Pt自驱动催化剂的制备
实施例3与实施例1的不同之处仅在于,步骤(2)中CuS微球的质量为0.6g,加热保温时间2h,其它步骤过程与实施例1中均相同。
实施例4:CuS@Fe3O4/Pt自驱动催化剂的制备
实施例4与实施例1的不同之处仅在于,步骤(3)中CuS@Fe3O4复合材料的质量为1.0mg,溅射时间为6s,其它步骤过程与实施例1中均相同。
相关性能检测:
1、自驱动性能测试
将实施例1所制备的CuS@Fe3O4/Pt自驱动马达分散在质量浓度为1%的双氧水和质量浓度为0.3%的十二烷基苯磺酸钠混合溶液中,在倒置显微镜下观察CuS@Fe3O4/Pt自驱动马达运动情况;
对实施例1中所制备的CuS@Fe3O4/Pt自驱动马达在双氧水中的气泡推动情况进行了分析后发现,如图3中A所示,一侧产生的氧气气泡推动了CuS@Fe3O4/Pt运动。图3中B显示在不同双氧水浓度下的运动轨迹图,从图中可以看出,随着双氧水浓度的增加,CuS@Fe3O4/Pt自驱动马达运动速度增快。
2、磁控定向运动和磁性回收利用性能检测
对实施例1所制备的CuS@Fe3O4/Pt自驱动马达的磁控定向运动和磁性回收利用进行了分析。在配置的溶液周围放置永久磁铁,如图4中A所示,在外加磁场下,CuS@Fe3O4/Pt自驱动马达可以实现定向气泡推动。如图4中B所示,在磁铁的作用下,CuS@Fe3O4/Pt自驱动马达实现快速分离,分离收集后的物质或可进行再利用。
3、集群驱动性能的检测
将CuS@Fe3O4/Pt自驱动马达分散在去离子水中,在外部添加强度为200mW/cm2,波长为385nm的紫外光刺激,在倒置显微镜下观察集群驱动运动。
图5展示在不同方向紫外光照射下,CuS@Fe3O4/Pt自驱动马达的集群运动轨迹图,CuS@Fe3O4/Pt自驱动马达在紫外线照射下从周围聚集到光点,实现光响应的集群定向运动。
4、基于photo-Fenton反应、利用CuS@Fe3O4/Pt自驱动降解水中四环素
配制20mL浓度为30mg/L的四环素废水溶液,然后加入16mg实施例1中制备的CuS@Fe3O4/Pt自驱动马达,再加入1.0mL浓度为30%的过氧化氢溶液,在没有机械搅拌的情况下,利用300W氙灯照射反应30min,每5分钟取一次样,并通过紫外分光光度法分析混合物中四环素的浓度。之后利用磁铁回收,进行四个循环实验。
如图6所示,为了探讨不同条件下催化剂对四环素降解速率的影响,依次将相同质量的CuS@Fe3O4复合材料和CuS@Fe3O4/Pt应用于降解四环素,分别控制双氧水和光照射的条件来研究四环素降解速率,所制备的CuS@Fe3O4/Pt自驱动马达在可见光的照射下30分钟降解四环素的效率达94%。同时,如图7所示,通过磁性分离,经过四个循环实验后,四环素的降解效率仍然达到81%,证明了CuS@Fe3O4/Pt自驱动马达具有良好的可重复使用性和长期稳定性。因此,所设计的自驱动催化剂能够有效地降解水中污染物,为水体净化提供新的策略。
以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。

Claims (7)

1.一种基于photo-Fenton反应降解四环素的自驱动催化剂,其特征在于,该自驱动催化剂CuS@Fe3O4/Pt是在水热合成法制备的CuS@Fe3O4复合材料表面通过物理气相沉积法沉积一层金属铂构建得到的,该材料具备不对称的结构特征;
该自驱动催化剂能够利用自身的不对称性通过催化过氧化氢分解产生的气泡获得驱动力以增强溶液中的传质;
该自驱动催化剂在紫外线照射下可向光点处聚集,具备光响应的集群定向运动特征。
2.如权利要求1所述的基于photo-Fenton反应降解四环素的自驱动催化剂,其特征在于,该自驱动催化剂具备磁控定向运动的特性,可磁性回收利用。
3.如权利要求1-2中任一项所述的基于photo-Fenton反应降解四环素的自驱动催化剂的制备方法,其特征在于,具体步骤如下:
(1)CuS微球的制备
将0.2~0.4g CuCl2·2H2O超声溶解到40mL乙二醇中,完全溶解后,将0.6g硫脲缓慢加入上述溶液中,搅拌一段时间,将溶液转到反应釜中加热反应,降温至室温,离心干燥得到片层堆积CuS微球材料;
(2)CuS@Fe3O4复合材料的制备
将0.3~0.6g的CuS微球超声分散在30mL的去离子水中,将0.3g的柠檬酸钠、0.1g的FeCl3·6H2O和0.01g的尿素溶解在分散液中后,将0.06g的聚丙烯酸钠缓慢加入到上述分散液中,连续搅拌,将该混合液转到反应釜中加热反应,离心、清洗、干燥得到CuS@Fe3O4复合材料;
(3)CuS@Fe3O4/Pt自驱动马达的制备
将0.5~1.0mg的CuS@Fe3O4复合材料超声分散在20mL水中,然后在玻璃片上铺成薄层,自然晾干,取晾干后的玻璃片置于真空离子溅射仪的工作台上,铂靶溅射得到CuS@Fe3O4/Pt自驱动马达。
4.如权利要求3所述的基于photo-Fenton反应降解四环素的自驱动催化剂的制备方法,其特征在于,步骤(1)中,加热反应温度为120-130℃,保温8~14h。
5.如权利要求3所述的基于photo-Fenton反应降解四环素的自驱动催化剂的制备方法,其特征在于,步骤(2)中,加热反应温度为180-240℃,保温2~6h。
6.如权利要求3所述的基于photo-Fenton反应降解四环素的自驱动催化剂的制备方法,其特征在于,步骤(3)中,铂靶溅射时真空度为6~8Pa,溅射电压为8~10mA,溅射时间为6~8s。
7.如权利要求1-2中任一项所述的基于photo-Fenton反应降解四环素的自驱动催化剂在降解水体污染物四环素过程中的应用,其特征在于,将配制的CuS@Fe3O4/Pt加入四环素废水溶液中,加入一定质量浓度的过氧化氢溶液,提供光照,在无机械搅拌的情况下,复合材料通过催化双氧水分解产生气泡以推动复合材料自主运动完成对四环素的降解。
CN202110458172.3A 2021-04-27 2021-04-27 基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用 Active CN113181934B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110458172.3A CN113181934B (zh) 2021-04-27 2021-04-27 基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110458172.3A CN113181934B (zh) 2021-04-27 2021-04-27 基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用

Publications (2)

Publication Number Publication Date
CN113181934A true CN113181934A (zh) 2021-07-30
CN113181934B CN113181934B (zh) 2022-11-01

Family

ID=76979554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110458172.3A Active CN113181934B (zh) 2021-04-27 2021-04-27 基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用

Country Status (1)

Country Link
CN (1) CN113181934B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113786499A (zh) * 2021-10-20 2021-12-14 南通大学 一种基于纳米马达的细菌生物被膜清除方法
CN115814817A (zh) * 2022-12-19 2023-03-21 长安大学 一种ZnO@CuS压电-光催化纳米复合材料的制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109926049A (zh) * 2019-03-19 2019-06-25 华南师范大学 一种用于有机污染物降解的微球马达及其制备方法和应用
CN111328320A (zh) * 2017-11-07 2020-06-23 于利奇研究中心有限公司 制备氢化非晶含硅胶体和/或复合胶体以及用氢化非晶含硅复合胶体包封物质的方法,以及氢化非晶含硅胶体和/或复合胶体和用含硅复合层包封的物质及其用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328320A (zh) * 2017-11-07 2020-06-23 于利奇研究中心有限公司 制备氢化非晶含硅胶体和/或复合胶体以及用氢化非晶含硅复合胶体包封物质的方法,以及氢化非晶含硅胶体和/或复合胶体和用含硅复合层包封的物质及其用途
CN109926049A (zh) * 2019-03-19 2019-06-25 华南师范大学 一种用于有机污染物降解的微球马达及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MOHAMMAD SALEH NAJAFINEJAD等: "Green synthesis of the Fe3O4@polythiophen-Ag magnetic nanocatalyst using grapefruit peel extract: Application of the catalyst for reduction of organic dyes in water", 《JOURNAL OF MOLECULAR LIQUIDS》 *
NEGIN NASSEH等: "Fabrication of novel magnetic CuS/Fe3O4/GO nanocomposite for organic pollutant degradation under visible light irradiation", 《ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH》 *
车丽媛: "CuO复合材料的制备及其拟芬顿性能的研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *
韩严和等: "TiO2-Pt/CuS光电材料的制备及性能研究", 《功能材料》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113786499A (zh) * 2021-10-20 2021-12-14 南通大学 一种基于纳米马达的细菌生物被膜清除方法
CN113786499B (zh) * 2021-10-20 2023-08-29 南通大学 一种基于纳米马达的细菌生物被膜清除方法
CN115814817A (zh) * 2022-12-19 2023-03-21 长安大学 一种ZnO@CuS压电-光催化纳米复合材料的制备方法及应用
CN115814817B (zh) * 2022-12-19 2024-06-07 长安大学 一种ZnO@CuS压电-光催化纳米复合材料的制备方法及应用

Also Published As

Publication number Publication date
CN113181934B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN107298477B (zh) 一种催化过硫酸盐降解废水中有机污染物的方法
CN113181934B (zh) 基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用
Zhu et al. Research progress on removal of phthalates pollutants from environment
Li et al. Improvement of Sulfamethazine photodegradation by Fe (III) assisted MIL-53 (Fe)/percarbonate system
Shangguan et al. Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater
CN112827497B (zh) 一种臭氧催化材料的制备方法
CN109954518B (zh) 一种磁性石墨烯-TiO2光化生物污水处理方法及装置
Sibhatu et al. Synthesis and process parametric effects on the photocatalyst efficiency of CuO nanostructures for decontamination of toxic heavy metal ions
CN102836702A (zh) 一种过渡金属离子印迹负载型M-POPD-TiO2-漂珠复合光催化剂及其制备方法和应用
CN109107589A (zh) 一种制备介孔硫修饰四氧化三铁/碳纳米管复合物的方法及应用
CN111659453B (zh) 一种可见光-臭氧协同催化的催化剂及其制备方法
CN114849748A (zh) 一种CoS/Ti3C2 MXene复合材料的制备及其应用
Khairudin et al. Magnetically recyclable flake-like BiOI-Fe3O4 microswimmers for fast and efficient degradation of microplastics
CN107138160B (zh) 纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用
Tiwari et al. A comprehensive evaluation of the integrated photocatalytic-fixed bed bioreactor system for the treatment of Acid Blue 113 dye
Wang et al. Novel ZIF-8@ CHs catalysts for photocatalytic degradation of tetracycline hydrochloride
CN108543542A (zh) 一种三维多孔复合光催化剂的制备方法及应用
Huy et al. Design of novel p–n heterojunction ZnBi2O4-ZnS photocatalysts with impressive photocatalytic and antibacterial activities under visible light
Yang et al. Magnetic photocatalytic antimicrobial materials for water disinfection
CN113042105A (zh) 一种羟基磷灰石纳米线结合钴MOFs串珠状催化剂的制备方法
CN114984980B (zh) 一种双功能FeCo2O4-CdS管状微马达及其制备方法和应用
CN107262128B (zh) 可见光响应型多孔氮化硼基复合光催化材料及制备方法
CN113813981B (zh) 空间分隔型金属氮化物量子点催化剂的合成及其环境应用
CN111229279B (zh) 一种氮化碳量子点负载多级孔反蛋白石结构CuO-SiO2的制备及其应用
CN112499818A (zh) 一种基于可见光敏化多相光类芬顿体系高效治理废水中抗生素的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant