CN113178496A - 一种基于类黑磷材料的太阳能电池及其制备方法 - Google Patents

一种基于类黑磷材料的太阳能电池及其制备方法 Download PDF

Info

Publication number
CN113178496A
CN113178496A CN202110464507.2A CN202110464507A CN113178496A CN 113178496 A CN113178496 A CN 113178496A CN 202110464507 A CN202110464507 A CN 202110464507A CN 113178496 A CN113178496 A CN 113178496A
Authority
CN
China
Prior art keywords
layer
stack
double
ges
gese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110464507.2A
Other languages
English (en)
Other versions
CN113178496B (zh
Inventor
洪嘉祥
雷双瑛
江源长
陈洁
黄庆安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110464507.2A priority Critical patent/CN113178496B/zh
Publication of CN113178496A publication Critical patent/CN113178496A/zh
Application granted granted Critical
Publication of CN113178496B publication Critical patent/CN113178496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本文给出了一种用不同的类黑磷烯材料的不同稳定堆垛结构实现异质结薄膜太阳能电池及其制备方法。所述异质结薄膜太阳能电池由下至上依次包括五层结构:下电极、衬底、双层旋转AB堆垛GeS、双层AD堆垛的GeSe和上电极。双层旋转AB堆垛GeS和双层AD堆垛的GeSe结合可构成Ⅱ型半导体异质结,以AD结构为给体,其能带间隙为1.474eV,以AB结构为受体。通过机械剥离的方法来得到不同堆垛结构的双层类黑磷结构。在白光照射下,本文提供的太阳能电池其开路电压理论上达到1.15V,短路电流密度达到299.13A/㎡,太阳能电池的AM1.5能量转换效率高达22.44%。

Description

一种基于类黑磷材料的太阳能电池及其制备方法
技术领域
本发明涉及一种用少层GeSe堆垛和少层GeS堆垛结构实现半导体太阳能电池的方法,属于半导体技术领域。
背景技术
人类的发展史就是人类对于能量的利用历史。从原始社会的用木材燃烧提供能量,到18世纪发动机和蒸汽机等重型机械的发明,人类利用能源的方式越来越先进。随着人类社会的不断发展和进步,人类对能源的需求日趋增加,太阳能是生活中最常见的能源,更是地球上绝大多数可再生能源的来源,对太阳能的直接利用成为了人们探索的一个课题。
利用和开发太阳能的重要产品之一就是太阳能电池,其利用光生伏特效应,将电池暴露在阳光下的时候,其能吸收转化光子为电子,然后对电子进行输运收集,从而将太阳能转变为了电能。
具有原子层厚度的2D材料因其优越的的性质受到了人们的广泛研究,如石墨烯、MoS2、黑磷烯等等。近期,新型的类黑磷烯材料受到了人们的关注。类黑磷材料和黑磷材料具有及其相似的性质,如高电子迁移率和优越的光学性质等等。且类黑磷烯相比于黑磷烯更加稳定。本文通过理论计算,选取2种稳定的类黑磷烯结构即双层GeSe-AD堆垛和双层旋转GeS-AB堆垛。本文通过这2种结构构成Ⅱ型半导体异质结来制造半导体太阳能电池。在白光照射下,本文提供的太阳能电池其开路电压理论上达到1.15V,短路电流密度达到299.13A/㎡,太阳能电池的AM1.5能量转换效率高达22.44%。
发明内容
技术问题:本发明的目的在于提供一种异质结太阳能电池及其制备方法,使用二维材料GeSe和GeS的不同堆垛结构组成Ⅱ型异质结制备太阳能电池,降低制备成本,且具有很高的光电转化效率。
技术方案:一种异质结薄膜太阳能电池,该异质结太阳能电池由下而上包括如下结构:最底层为衬底,第二层为阳极,第三层为双层AD堆垛的GeSe结构;第四层为双层旋转AB堆垛GeS,最上层为阴极。
所述异质结太阳能电池中的双层AD堆垛的GeSe和双层旋转AB堆垛GeS为双层,厚度为
Figure BDA0003043027050000021
双层旋转GeS-AB堆垛结构为:第一层相对于第二层进行了180°的旋转,且第一层结构相当于相对第二层沿a方向移动了约0.281个周期,而双层GeS-AD堆垛的第二层相当于第一层沿b方向移动了半个周期的距离;AB堆垛双层薄膜和AD堆垛双层薄膜组成异质结,AD堆垛作为给体部分,AB堆垛作为受体部分,AD堆垛的GeSe和双层旋转AB堆垛GeS构成了一个Ⅱ型异质结。
所述异质结材料分别为双层AD堆垛的GeSe和双层旋转AB堆垛GeS,这两种结构都是通过探针剥离法将初始结构进行错位得到得到的。
这里采用的阳极和衬底都为一体化的ITO玻璃,阴极为金属层。
一种所述的异质结薄膜太阳能电池的制备方法,该制备方法包括以下步骤:
a.衬底和电极的制备:采用光刻法在衬底上制备阳极
b.用液相法分别制备GeSe薄膜和GeS薄膜;
c.GeSe堆垛和GeS堆垛制备:
1)将上述得到的GeS膜,在电子显微镜下,通过探针剥离的方法,剥离得到双层的GeS膜;
2)将1)得到的GeS在电子显微镜下,使用探针移动层与层间的相对距离或进行层间的旋转变换,得到所要求的双层旋转GeS-AB堆垛,最后再将二者通过层间的范德瓦尔斯力相互结合形成横向异质结;
3)经过步骤1)和2)相同的方法制备得到GeSe-AD堆垛;
d.器件组合:
将c得到的双层GeSe-AD堆垛通过二维材料转移装置转移到ITO电极上方,然后将c得到的双层旋转GeS-AB堆垛通过二维材料转移系统堆叠在GeS-AD堆叠的上方,最后对得到的器件进行退火处理;
e.制备阴极:将d得到的器件,通过表面蒸镀法在表面蒸镀一层金属膜作为阴极。
衬底和电极的具体制备方法为:采用导电玻璃作为衬底和电极,首先在导电玻璃上涂上均匀的光刻胶,通过光刻技术得到对应电极图形的反图形,然后用刻蚀液腐蚀掉未被保护的部分,最后用丙酮溶液清洗掉多余的光刻胶,将得到的电极结构用酒精和去离子水进行超声清洗,然后用氮气吹干。
用液相法制备GeS纳米薄膜,将计量比的锗氯化二噁烷络合物、硫脲、油酰胺0LA分别在空气中轻微的磁力搅拌;将搅拌后的液体混合物超声处理,除去油胺中的空气;随后将反应容器连接到Schlenk线,抽真空,除去水分和氧气;在磁力搅拌下通氮气进行惰性气体保护;将处理过后的液体混合物加热,随着温度的升高,液体逐渐变成了黄色透明溶液,反应混合物在氮气流下回流反应;反应结束将溶液冷却至室温,沉淀离心分离,洗涤,真空干燥获得样品。
用液相法制的GeSe,首先将化学计量比的Se粉和油酰胺混合,在空气中轻微磁力搅拌,然后超声去除OLA中的空气,把反应容器连接到Schlenk线,抽真空以除去体系中的氧气和水份,磁力搅拌下再充入氮气;然后加热,溶液呈透明的棕色时,表明Se完全溶解在OLA中,向上述溶液中加入异丙醇锗,反应混合物在N2流中回流反应,反应结束冷却至室温,沉淀经离心分离,洗涤真空干燥获得样品。
有益效果:
1.本发明中选取的是二维材料,所述异质结材料分别为双层AD堆垛的GeSe和双层旋转AB堆垛GeS,都为探针法剥离,这类材料的厚度能达到原子级别,这两种材料都为双层结构,厚度很薄,具有良好的透光性和导电性,所以可以将半导体太阳能电池制作的极薄。
2.本发明选用的阳极材料ITO可以和功能材料欧姆接触,很好的消除了接触电阻。
3.本发明选用的材料堆叠形成Ⅱ型半导体异质结太阳能电池,其具有极高的光电转化效率。所采用的异质结为Ⅱ型异质结结构,所谓Ⅱ型异质结通常定义为该异质结的能带结构表现为:ΔEc(窄带与宽带导带底能量差)和ΔEv(窄带与宽带价带顶能量差)的符号相同;因此本结构就定义为双层GeSe-AD堆垛的CBM(导带底)在双层旋转GeSe-AB堆垛的CBM之上,而双层GeSe-AD堆垛的VBM(价带顶)也在双层旋转GeSe-AB堆垛VBM之上。Ⅱ型能带对准形成的内建电场能有效分离光生电子-空穴对,这对于光能量的收集是有利的。
附图说明:
图1为本发明提供的异质结太阳能电池的结构示意图。其中,衬底1,2为阳极,3为双层AD堆垛的GeSe结构;4为双层旋转AB堆垛GeS,5为阴极。
图2为双层GeSe-AD堆垛和双层旋转GeS-AB堆垛的能带分布图。
具体实施方式
本发明所述异质结薄膜太阳能电池,该异质结太阳能电池由下而上包括如下结构:最底层位玻璃衬底,第二层为导电玻璃电极,第三层为双层AD堆垛的GeSe结构;第四层为双层旋转AB堆垛GeS,最上层为上电极。
本发明所述的异质结薄膜太阳能电池,所述异质结太阳能电池中的双层AD堆垛的GeSe和双层旋转AB堆垛GeS厚度需要做到双层,厚度为
Figure BDA0003043027050000041
双层旋转GeS-AB堆垛结构为:第一层相对于第二层进行了180°的旋转,且第一层结构相当于相对第二层沿a方向移动了约0.281个周期,而双层GeS-AD堆垛的第二层相当于第一层沿b方向移动了半个周期的距离;AB堆垛双层薄膜和AD堆垛双层薄膜组成异质结,AD堆垛作为给体部分,AB堆垛作为受体部分,AD堆垛的GeSe和双层旋转AB堆垛GeS构成了一个Ⅱ型异质结。
本发明所述的异质结薄膜太阳能电池,所述异质结材料分别为双层AD堆垛的GeSe和双层旋转AB堆垛GeS,这两种结构都是通过探针剥离法得到的;这两种材料都为双层结构,厚度很薄,具有良好的透光性和导电性。
本发明所述的异质结半导体太阳能电池,双层AD型GeSe堆垛和双层旋转AB型GeS堆垛通过探针剥离的方法将初始结构进行错位得到。
本发明所述的异质结薄膜太阳能电池,所采用的异质结为Ⅱ型异质结结构,所谓Ⅱ型异质结通常定义为该异质结的能带结构表现为:ΔEc(窄带与宽带导带底能量差)和ΔEv(窄带与宽带价带顶能量差)的符号相同;因此本结构就定义为双层GeSe-AD堆垛的CBM(导带底)在双层旋转GeSe-AB堆垛的CBM之上,而双层GeSe-AD堆垛的VBM(价带顶)也在双层旋转GeSe-AB堆垛VBM之上。Ⅱ型能带对准形成的内建电场能有效分离光生电子-空穴对,这对于光能量的收集是有利的。
本发明所述的异质结太阳能电池,这里采用的阳极和衬底衬底可以选用一体化的铟锡氧化物玻璃(ITO)、铝锌氧化物玻璃(AZO)或铟锌氧化物玻璃(IZO);其能和GeSe堆垛形成良好的欧姆接触,从而显著提升器件性能。可选地,阴极材料为业界常规选择,如可以使用金属铝。
本发明的异质结半导体太阳能电池的制备方法包括以下步骤:
a.衬底和电极的制备
本发明中采用导电玻璃作为衬底和电极,首先在导电玻璃上涂上均匀的光刻胶,通过光刻技术得到对应电极图形的反图形,然后用刻蚀液腐蚀掉未被保护的部分,最后用丙酮溶液清洗掉多余的光刻胶,将得到的电极结构用酒精和去离子水进行超声清洗,然后用氮气吹干。
b.GeSe薄膜和GeS薄膜的制备
本发明使用液相法制备GeS纳米片,将0.2g锗氯化二噁烷络合物、0.4g硫脲、20ml油酰胺0LA分别加入到25ml的三颈瓶中,在空气中轻微的磁力搅拌;将搅拌后的液体混合物超声处理5min,除去油胺中的空气;随后将三颈瓶连接到Schlenk线,抽真空30min,除去水分和氧气;在磁力搅拌下通氮气30min进行惰性气体保护;将处理过后的液体混合物加热至593k,随着温度的升高,液体逐渐变成了黄色透明溶液。反应混合物在氮气流中593k温度下回流4h;反应结束将溶液冷却至室温,沉淀离心分离,用去离子水和无水乙醇洗涤多次,在40℃真空干燥4h获得样品。
用类似方法制的GeSe,首先将0.4gSe粉和20ml油酰胺加到25ml三颈瓶中,在空气中轻微磁力搅拌,然后将三颈瓶超声5分钟去除OLA中的空气。把三颈瓶连接到Schlenk线,抽真空30min以出去体系中的氧气和水份,磁力搅拌下再充入氮气30min;然后加热烧瓶到约120℃,溶液呈透明的棕色时,表明Se完全溶解再OLA中。向上述溶液中加入120uL异丙醇锗,反应混合物在N2流中320℃回流12h。反应结束冷却至室温,沉淀经离心分离,用去离子水和无水乙醇洗涤多次,在40℃真空干燥4h获得样品。
c.GeSe堆垛和GeS堆垛制备
1)将上述得到的GeS膜,在电子显微镜下,通过探针剥离的方法,剥离得到双层的GeS膜;
2)将1)得到的GeS在电子显微镜下,使用探针移动层与层间的相对距离或进行层间的旋转变换,得到我们所要求的双层旋转GeS-AB堆垛。最后再将二者通过层间的范德瓦尔斯力相互结合形成横向异质结;
3)经过相同的方法可以制备得到GeSe-AD堆垛;
d.器件组合
将c得到的双层GeSe-AD堆垛通过二维材料转移装置转移到ITO电极上方,然后将c得到的双层旋转GeSe-AB堆垛通过二维材料转移系统堆叠在GeS-AD堆叠的上方,最后我们对得到的器件进行退火处理。
e.将d得到的器件,通过表面蒸镀金属再其表面蒸镀一层铝膜作为上电极。
图1中,双层AD型GeSe堆垛和双层旋转AB型GeS堆垛组成的异质结为半导体太阳能电池的核心部分,在光照射的情况下,把光能转换为电能。其原因在于:当双层AD型GeSe与双层旋转AB型GeS相接触时,由于两者的能带结构不同,两者导带底CBM和价带顶VBM的排列组成了Ⅱ型半导体异质结,在接触界面形成耗尽层,在光照射的情况下,由于光生伏特效应,在异质结的两端会产生电势差,当接通电极两端时就会产生电流。
实施例
a.衬底和电极的制备
本发明中采用ITO导电玻璃作为衬底和电极,首先在ITO玻璃上涂上均匀的光刻胶,通过光刻技术得到对应电极图形的反图形,然后用ITO刻蚀液腐蚀掉未被保护的ITO,最后用丙酮溶液清洗掉多余的光刻胶,将得到的电极结构用酒精和去离子水进行超声清洗,然后用氮气吹干。
b.GeSe薄膜和GeS薄膜的制备
本发明使用液相法制备GeS纳米片,将0.2g锗氯化二噁烷络合物、0.4g硫脲、20ml油酰胺0LA分别加入到25ml的三颈瓶中,在空气中轻微的磁力搅拌;将搅拌后的液体混合物超声处理5min,除去油胺中的空气;随后将三颈瓶连接到Schlenk线,抽真空30min,除去水分和氧气;在磁力搅拌下通氮气30min进行惰性气体保护;将处理过后的液体混合物加热至593k,随着温度的升高,液体逐渐变成了黄色透明溶液。反应混合物在氮气流中593k温度下回流4h;反应结束将溶液冷却至室温,沉淀离心分离,用去离子水和无水乙醇洗涤多次,在40℃真空干燥4h获得样品。
用类似方法制的GeSe,首先将0.4gSe粉和20ml油酰胺加到25ml三颈瓶中,在空气中轻微磁力搅拌,然后将三颈瓶超声5分钟去除OLA中的空气。把三颈瓶连接到Schlenk线,抽真空30min以出去体系中的氧气和水份,磁力搅拌下再充入氮气30min;然后加热烧瓶到约120℃,溶液呈透明的棕色时,表明Se完全溶解再OLA中。向上述溶液中加入120uL异丙醇锗,反应混合物在N2流中320℃回流12h。反应结束冷却至室温,沉淀经离心分离,用去离子水和无水乙醇洗涤多次,在40℃真空干燥4h获得样品。
c.GeSe堆垛和GeS堆垛制备
1)将上述得到的GeS膜,在电子显微镜下,通过探针剥离的方法,剥离得到双层的GeS膜;
2)将1)得到的GeS在电子显微镜下,使用探针移动层与层间的相对距离或进行层间的旋转变换,得到我们所要求的双层旋转GeS-AB堆垛。最后再将二者通过层间的范德瓦尔斯力相互结合形成横向异质结;
3)经过相同的方法可以制备得到GeSe-AD堆垛;
d.器件组合
将c得到的双层GeSe-AD堆垛通过二维材料转移装置转移到ITO电极上方,然后将c得到的双层旋转GeSe-AB堆垛通过二维材料转移系统堆叠在GeS-AD堆叠的上方,最后我们对得到的器件进行退火处理。
e.将d得到的器件,通过表面蒸镀金属再其表面蒸镀一层铝膜作为上电极。

Claims (8)

1.一种基于类黑磷材料的太阳能电池,其特征在于,该异质结太阳能电池由下而上包括如下结构:最底层为衬底(1),第二层为阳极(2),第三层为双层AD堆垛的GeSe结构(3);第四层为双层旋转AB堆垛GeS(4),最上层为阴极(5)。
2.根据权利要求1所述的基于类黑磷材料的太阳能电池,其特征在于:所述异质结太阳能电池中的双层AD堆垛的GeSe和双层旋转AB堆垛GeS为双层,厚度为
Figure FDA0003043027040000011
双层旋转GeS-AB堆垛结构为:第一层相对于第二层进行了180°的旋转,且第一层结构相当于相对第二层沿a方向移动了约0.281个周期,而双层GeS-AD堆垛的第二层相当于第一层沿b方向移动了半个周期的距离;AB堆垛双层薄膜和AD堆垛双层薄膜组成异质结,AD堆垛作为给体部分,AB堆垛作为受体部分,AD堆垛的GeSe和双层旋转AB堆垛GeS构成了一个Ⅱ型异质结。
3.根据权利要求1所述的基于类黑磷材料的太阳能电池,其特征在于,所述异质结材料分别为双层AD堆垛的GeSe和双层旋转AB堆垛GeS,这两种结构都是通过探针剥离法将初始结构进行错位得到得到的。
4.根据权利要求1所述的基于类黑磷材料的太阳能电池,其特征在于,这里采用的阳极(2)和衬底(1)都为一体化的ITO玻璃,阴极为金属层。
5.一种权利要求1所述的基于类黑磷材料的太阳能电池的制备方法,其特征在于,该制备方法包括以下步骤:
a.衬底和电极的制备:采用光刻法在衬底上制备阳极
b.用液相法分别制备GeSe薄膜和GeS薄膜;
c.GeSe堆垛和GeS堆垛制备:
1)将上述得到的GeS膜,在电子显微镜下,通过探针剥离的方法,剥离得到双层的GeS膜;
2)将1)得到的GeS在电子显微镜下,使用探针移动层与层间的相对距离或进行层间的旋转变换,得到所要求的双层旋转GeS-AB堆垛,最后再将二者通过层间的范德瓦尔斯力相互结合形成横向异质结;
3)经过步骤1)和2)相同的方法制备得到GeSe-AD堆垛;
d.器件组合:
将c得到的双层GeSe-AD堆垛通过二维材料转移装置转移到ITO电极上方,然后将c得到的双层旋转GeS-AB堆垛通过二维材料转移系统堆叠在GeS-AD堆叠的上方,最后对得到的器件进行退火处理;
e.制备阴极:将d得到的器件,通过表面蒸镀法在表面蒸镀一层金属膜作为阴极。
6.如权利要求5所述的基于类黑磷材料的太阳能电池的制备方法,其特征在于,衬底和电极的具体制备方法为:采用导电玻璃作为衬底和电极,首先在导电玻璃上涂上均匀的光刻胶,通过光刻技术得到对应电极图形的反图形,然后用刻蚀液腐蚀掉未被保护的部分,最后用丙酮溶液清洗掉多余的光刻胶,将得到的电极结构用酒精和去离子水进行超声清洗,然后用氮气吹干。
7.如权利要求5所述的基于类黑磷材料的太阳能电池的制备方法,其特征在于,用液相法制备GeS纳米薄膜,将计量比的锗氯化二噁烷络合物、硫脲、油酰胺0LA分别在空气中轻微的磁力搅拌;将搅拌后的液体混合物超声处理,除去油胺中的空气;随后将反应容器连接到Schlenk线,抽真空,除去水分和氧气;在磁力搅拌下通氮气进行惰性气体保护;将处理过后的液体混合物加热,随着温度的升高,液体逐渐变成了黄色透明溶液,反应混合物在氮气流下回流反应;反应结束将溶液冷却至室温,沉淀离心分离,洗涤,真空干燥获得样品。
8.如权利要求5所述的基于类黑磷材料的太阳能电池的制备方法,其特征在于,用液相法制的GeSe,首先将化学计量比的Se粉和油酰胺混合,在空气中轻微磁力搅拌,然后超声去除OLA中的空气,把反应容器连接到Schlenk线,抽真空以除去体系中的氧气和水份,磁力搅拌下再充入氮气;然后加热,溶液呈透明的棕色时,表明Se完全溶解在OLA中,向上述溶液中加入异丙醇锗,反应混合物在N2流中回流反应,反应结束冷却至室温,沉淀经离心分离,洗涤真空干燥获得样品。
CN202110464507.2A 2021-04-28 2021-04-28 一种基于类黑磷材料的太阳能电池及其制备方法 Active CN113178496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110464507.2A CN113178496B (zh) 2021-04-28 2021-04-28 一种基于类黑磷材料的太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110464507.2A CN113178496B (zh) 2021-04-28 2021-04-28 一种基于类黑磷材料的太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN113178496A true CN113178496A (zh) 2021-07-27
CN113178496B CN113178496B (zh) 2022-09-02

Family

ID=76926970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110464507.2A Active CN113178496B (zh) 2021-04-28 2021-04-28 一种基于类黑磷材料的太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN113178496B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057953A (zh) * 2016-07-13 2016-10-26 东南大学 一种异质结薄膜太阳能电池及其制备方法
CN106129811A (zh) * 2016-07-13 2016-11-16 东南大学 一种用少层黑磷的不同堆垛结构实现激光半导体的方法
CN106229363A (zh) * 2016-07-28 2016-12-14 孙健春 一种含有黑磷层的太阳能电池及黑磷层的制备方法
CN108336382A (zh) * 2018-01-09 2018-07-27 东南大学 一种利用石墨烯黑磷烯异质结作为电极的氢燃料电池及其制备方法
CN108963021A (zh) * 2018-06-13 2018-12-07 东南大学 一种基于化学修饰的黑磷材料太阳能电池及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057953A (zh) * 2016-07-13 2016-10-26 东南大学 一种异质结薄膜太阳能电池及其制备方法
CN106129811A (zh) * 2016-07-13 2016-11-16 东南大学 一种用少层黑磷的不同堆垛结构实现激光半导体的方法
CN106229363A (zh) * 2016-07-28 2016-12-14 孙健春 一种含有黑磷层的太阳能电池及黑磷层的制备方法
CN108336382A (zh) * 2018-01-09 2018-07-27 东南大学 一种利用石墨烯黑磷烯异质结作为电极的氢燃料电池及其制备方法
CN108963021A (zh) * 2018-06-13 2018-12-07 东南大学 一种基于化学修饰的黑磷材料太阳能电池及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEI, SY 等: "Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus", 《NANO LETTERS》 *

Also Published As

Publication number Publication date
CN113178496B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
Um et al. Dopant-free all-back-contact Si nanohole solar cells using MoO x and LiF films
Lang et al. Perovskite solar cells with large-area CVD-graphene for tandem solar cells
He et al. 15% Efficiency ultrathin silicon solar cells with fluorine-doped titanium oxide and chemically tailored poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) as asymmetric heterocontact
Li et al. High-performance Schottky solar cells using ZrS 2 nanobelt networks
Liu et al. Solution‐processed high‐quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells
Tiwari et al. Functionalised graphene as flexible electrodes for polymer photovoltaics
Kwon et al. Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency
Lin et al. Chromium trioxide hole-selective heterocontacts for silicon solar cells
Li et al. The transparent SnO/ZnO quantum dots/SnO2 pn junction towards the enhancement of photovoltaic conversion
CN211376648U (zh) 具有双层tco导电膜的异质结太阳能电池结构
Chen et al. 14.1% efficiency hybrid planar-Si/organic heterojunction solar cells with SnO2 insertion layer
KR20110051821A (ko) 유기태양전지의 P형 전도막으로 사용되는 NiO 전도막, 이의 제조방법 및 이를 포함하는 광전변환효율이 향상된 유기태양전지
Zhang et al. Regulation of the photogenerated carrier transfer process during photoelectrochemical water splitting: A review
Zhou et al. Review on methods for improving the thermal and ambient stability of perovskite solar cells
KR20130044850A (ko) 태양전지 및 이의 제조방법
Lin et al. Conductive cuprous iodide hole-selective contacts with thermal and ambient stability for silicon solar cells
Gao et al. Improving junction quality via modifying the Si surface to enhance the performance of PEDOT: PSS/Si hybrid solar cells
Huang et al. Amino acid modified Ti3C2Tx as electron transport layers for high-performance organic solar cells
CN113140648B (zh) 一种异质结半导体光电探测器及其制备方法
Feleki et al. p–i–n perovskite solar cells on steel substrates
Lu et al. Doping-free titanium nitride carrier selective contacts for efficient organic–inorganic hybrid solar cells
CN113178496B (zh) 一种基于类黑磷材料的太阳能电池及其制备方法
CN113394302B (zh) 一种基于不同类黑磷材料的太阳能电池及制备方法
CN103400941A (zh) 基于杂多酸阳极修饰层的有机太阳能电池及其制备方法
CN112563421A (zh) 一种基于DNT-Ph-Br的界面钝化层钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant