CN113161494B - 光电人工突触的制备方法以及光电人工突触 - Google Patents

光电人工突触的制备方法以及光电人工突触 Download PDF

Info

Publication number
CN113161494B
CN113161494B CN202110440689.XA CN202110440689A CN113161494B CN 113161494 B CN113161494 B CN 113161494B CN 202110440689 A CN202110440689 A CN 202110440689A CN 113161494 B CN113161494 B CN 113161494B
Authority
CN
China
Prior art keywords
substrate
electrode
artificial
artificial synapse
functional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110440689.XA
Other languages
English (en)
Other versions
CN113161494A (zh
Inventor
胡来归
蔡依辰
詹义强
秦亚杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guanghua Lingang Engineering Application Technology Research and Development Shanghai Co Ltd
Original Assignee
Guanghua Lingang Engineering Application Technology Research and Development Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guanghua Lingang Engineering Application Technology Research and Development Shanghai Co Ltd filed Critical Guanghua Lingang Engineering Application Technology Research and Development Shanghai Co Ltd
Priority to CN202110440689.XA priority Critical patent/CN113161494B/zh
Publication of CN113161494A publication Critical patent/CN113161494A/zh
Priority to PCT/CN2021/111179 priority patent/WO2022222308A1/zh
Application granted granted Critical
Publication of CN113161494B publication Critical patent/CN113161494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Light Receiving Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种光电人工突触的制备方法,包括如下步骤:提供一衬底;在所述衬底上制作具有沟道功能区的图形电极;在所述衬底表面制作覆盖所述图形电极的有机半导体光响应功能层;在所述光响应功能层表面制备铁电极化调控层;退火后获得人工突触。本发明人工突触的实现基于铁电极化的多级调控与有机光电半导体的光电响应。利用滴涂法获得高质量面内极化铁电薄膜构建平面多层结构。与依赖导电细丝与离子掺杂的其他忆阻器人工突触相比具有操作电压低、保持特性好、制备工艺简便可控等优势。本发明可模拟重要的突触功能,对光刺激响应快,能耗低,可用于神经形态计算、图像识别、机器视觉、卷积神经网络等领域。

Description

光电人工突触的制备方法以及光电人工突触
技术领域
本发明涉及半导体器件领域,尤其涉及一种光电人工突触的制备方法以及光电人工突触。
背景技术
随着电子信息技术的快速发展,人工智能作为二十一世纪三大尖端技术之一,在短短几十年间获得了颠覆性的发展。机器视觉及图像识别作为人工智能的分支之一正在快速发展,在工业、农业、交通等领域都有很大的应用潜力,但存在着信息获取、数据处理和存储分隔导致的传输壁垒。目前数据的处理能力(CPU)以及数据存储器各自都到达了很高的水准,但内在的传输上的延迟逐渐成为了最大的制约,传输功耗占比也越发不可忽视。而打破这一内在缺陷的根本就是消除数据处理与存储之间的界限,理想的方案是让单元同时实现运算与存储功能。2008年惠普实验室的Dmitri B.Strukov等人首次研发出基于二氧化钛材料的MIM型忆阻器,掀起了忆阻器研究的热潮。已被报道的光学忆阻人工突触的实现方案有导电细丝、肖特基结、光学栅极等,同时高性能的记忆性铁电材料加入带来了更多的可能性。目前铁电材料已经通过铁电隧穿结、铁电场效应晶体管、相分离共混等技术成功获得了较高性能的人工突触器件。
发明内容
本发明所要解决的技术问题是,提供一种操作电压低、保持特性好、制备工艺简便可控的光电人工突触的制备方法以及光电人工突触。
为了解决上述问题,本发明提供了一种光电人工突触的制备方法,包括如下步骤:提供一衬底;在所述衬底上制作具有沟道功能区的图形电极;在所述衬底表面制作覆盖所述图形电极的有机半导体光响应功能层;在所述光响应功能层表面制备铁电极化调控层;退火后获得人工突触。
可选的,所述的衬底选自于硅、氧化硅、玻璃、氧化铟锡玻璃、PI、PET、以及PDMS中的一种。
可选的,所述的电极为金属电极,制备工艺选自于真空电阻热蒸发沉积、电子束沉积、以及磁控溅射中的任意一种;图形化方法选自于光刻、激光直写、以及电子束曝光中的任意一种。
可选的,所述金属电极的厚度范围是20nm-200nm。
可选的,所述图形电极的图形选自于平行电极、叉指电极、以及对电极中的一种或其组合,电极间距5微米以下。
可选的,所述的有机半导体是具有光电响应能力的有机小分子或聚合物半导体材料;制备工艺选自于物理气相沉积、旋涂法、滴涂法、浸渍提拉法中的任意一种。
可选的,所述铁电极化调控层采用低张力滴涂法制作。
为了解决上述问题,本发明提供了一种光电人工突触,包括:衬底;所述衬底表面的具有沟道功能区的图形电极;所述衬底表面的覆盖所述图形电极的有机半导体光响应功能层;以及所述光响应功能层表面的铁电极化调控层。。
本发明人工突触的实现基于铁电极化的多级调控与有机光电半导体的光电响应。利用滴涂法获得高质量面内极化铁电薄膜构建平面多层结构。与依赖导电细丝与离子掺杂的其他忆阻器人工突触相比具有操作电压低、保持特性好、制备工艺简便可控等优势。本发明可模拟重要的突触功能,对光刺激响应快,能耗低,可用于构建神经形态计算、图像识别、机器视觉、卷积神经网络等领域。
附图说明
附图1所示是本发明一具体实施方式的实施步骤示意图。
附图2A至附图2D所示是本发明一具体实施方式的工艺示意图。
图3为对本发明实施例制得的人工突触器件进行正向连续电压扫描的电流响应曲线。
图4为对本发明实施例制得的人工突触器件进行负向连续电压扫描的电流响应曲线。
图5为对本发明实施例制得的人工突触器件施加连续电压脉冲的电流响应。
图6为对本发明实施例制得的人工突触器件施加不同极化电压的光电流响应。
图7为对本发明实施例制得的人工突触器件施加不同脉冲光功率刺激的电流特性。
图8为对本发明实施例制得的人工突触器件施加不同脉冲光宽度刺激的电流特性。
具体实施方式
下面结合附图对本发明提供的光电人工突触的制备方法以及光电人工突触的具体实施方式做详细说明。
附图1所示是本具体实施方式的实施步骤示意图,包括:步骤S10,提供一衬底;步骤S11,在所述衬底上制作具有沟道功能区的图形电极;步骤S12,在所述衬底表面制作覆盖所述图形电极的有机半导体光响应功能层;步骤S13,在所述光响应功能层表面制备铁电极化调控层;步骤S14,退火后获得人工突触。
附图2A所示,参考步骤S10,提供一衬底20。所述的衬底20选自于硅、氧化硅、玻璃、氧化铟锡玻璃、PI、PET、以及PDMS中的一种。
附图2B所示,参考步骤S11,在所述衬底20上制作具有沟道功能区的图形电极21。所述的电极21为金属电极,制备工艺选自于真空电阻热蒸发沉积、电子束沉积、以及磁控溅射中的任意一种;图形化方法选自于光刻、激光直写、以及电子束曝光中的任意一种,厚度范围是20nm-200nm,并优选为100nm左右。所述的图案化电极形状可选择平行电极、叉指电极、对电极等,保持沟道功能区宽度一致,沟道宽度常选择5微米以下。
附图2C所示,参考步骤S12,在所述衬底20表面制作覆盖所述图形电极21的有机半导体光响应功能层22。所述的有机半导体主要为具有光电响应能力的有机小分子或有机聚合物半导体材料,可通过物理气相沉积或液相法制备薄膜,同时选择具有较高载流子浓度的材料。
附图2D所示,参考步骤S13,在所述光响应功能层表面制备铁电极化调控层;以及步骤S14,退火后获得人工突触。所述的铁电极化调控层主要为可用低张力滴涂法制备高质量薄膜的分子铁电或聚合物铁电材料,可溶解在低粘度、低表面张力的试剂中,制备的薄膜具有面内极化。
上述步骤实施完毕后,即获得一种光电人工突触,包括:衬底20;所述衬底20表面的具有沟道功能区的图形电极21;所述衬底20表面的覆盖所述图形电极21的有机半导体光响应功能层22;所述光响应功能层22表面的铁电极化调控层23。所述的人工突触器件可模拟突触可塑性,包括但不限于用于神经形态计算、机器视觉、图像识别等领域。
以下给出本发明一实施例。
本实施例以有机小分子光电材料β型酞菁铜(以CuPc表示)为光响应功能层,结构式如下:
本实施例以有机分子铁电材料二异丙基溴化铵(以DIPAB表示)为铁电调控层,结构式如下:
制备人工突触的具体步骤如下:
(1)首先利用深紫外光刻与真空热蒸发沉积在洁净的玻璃衬底上制备叉指电极,金电极厚度为100nm。将制备好的电极分别浸没在丙酮、异丙醇、去离子水中弱超声1分钟,用氮气枪吹去多余液体,并在热板上烘干备用。
(2)取30mg质量的CuPc粉末置于玻璃蒸发源,用真空热蒸发沉积法在电极衬底上制备一层CuPc薄膜,厚度为20nm,速率为0.1埃/s。
(3)配置30mg/ml浓度的DIPAB甲醇溶液,使用低张力滴涂法制备DIPAB铁电薄膜,在温度为80℃的热板上预热衬底5分钟,向样品上快速滴下30微升DIPAB溶液,待成膜后再在100℃下烘干退火半小时。
对本实施例制得的基于铁电与有机半导体的光电人工突触进行了模拟突触测试。对器件施加0V-10V的电压扫描,扫描速度为50V/s,所测的电流响应如图3所示。同样的,施加反向电压进行扫描,所测得的电流响应如图4所示。随着电压的来回扫描,电流出现明显的迟滞,证明在电荷流经后器件电导增加。经过多次连续扫描,电流强度逐渐增大,这与生物突触的记忆特性一致。对器件施加连续电压脉冲获得特性如图5所示,可观察到电流随电脉冲连续上升与下降,与刺激下突触权重增强与抑制的特性一致。依靠铁电极化保持获得的自驱动光响应如图6所示,可见铁电剩余极化可驱动该光电人工突触,并且光响应强度可受电脉冲刺激调控。同时该光学突触可对生物突触的短时可塑性(STP)与长时可塑性(LTP)进行模拟。对器件施加0.1V持续偏压,用633nm脉冲激光进行刺激,分别改变脉冲光的功率(图7)与脉冲宽度(图8),该器件展现出随着光功率与脉冲宽度的增加,电流响应由STP向LTP转化的特性。测试结果符合生物突触的特征,适合用于神经形态计算、图像识别等应用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种光电人工突触的制备方法,其特征在于,包括如下步骤:
提供一衬底;
在所述衬底上制作具有沟道功能区的图形电极;
在所述衬底表面制作覆盖所述图形电极的有机半导体光响应功能层,所述光响应功能层的材料为β型酞菁铜;
在所述光响应功能层表面采用二异丙基溴化铵的甲醇溶液在温度为80℃的热板上预热并采用低张力滴涂法制备铁电极化调控层,所述铁电极化调控层的材料为二异丙基溴化铵;
退火后获得人工突触。
2.根据权利要求1所述的方法,其特征在于,所述的衬底选自于硅、氧化硅、玻璃、氧化铟锡、PI、PET、以及PDMS中的一种。
3.根据权利要求1所述的方法,其特征在于,所述的电极为金属电极,制备工艺选自于真空电阻热蒸发沉积、电子束沉积、以及磁控溅射中的任意一种;图形化方法选自于光刻、激光直写、以及电子束曝光中的任意一种。
4.根据权利要求3所述的方法,其特征在于,所述金属电极的厚度范围是20nm-200nm。
5.根据权利要求1或2所述的方法,其特征在于,所述图形电极的图形选自于平行电极、叉指电极中的一种或其组合,电极间距5微米以下。
6.一种光电人工突触,其特征在于,包括:
衬底;
所述衬底表面的具有沟道功能区的图形电极;
所述衬底表面的覆盖所述图形电极的有机半导体光响应功能层,所述光响应功能层的材料为β型酞菁铜;以及
所述光响应功能层表面的采用低张力滴涂法制备的铁电极化调控层,所述铁电极化调控层的材料为二异丙基溴化铵,采用二异丙基溴化铵的甲醇溶液在温度为80℃的热板上预热并采用低张力滴涂法制备。
CN202110440689.XA 2021-04-23 2021-04-23 光电人工突触的制备方法以及光电人工突触 Active CN113161494B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110440689.XA CN113161494B (zh) 2021-04-23 2021-04-23 光电人工突触的制备方法以及光电人工突触
PCT/CN2021/111179 WO2022222308A1 (zh) 2021-04-23 2021-08-06 光电人工突触的制备方法以及光电人工突触

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110440689.XA CN113161494B (zh) 2021-04-23 2021-04-23 光电人工突触的制备方法以及光电人工突触

Publications (2)

Publication Number Publication Date
CN113161494A CN113161494A (zh) 2021-07-23
CN113161494B true CN113161494B (zh) 2023-12-26

Family

ID=76870087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110440689.XA Active CN113161494B (zh) 2021-04-23 2021-04-23 光电人工突触的制备方法以及光电人工突触

Country Status (2)

Country Link
CN (1) CN113161494B (zh)
WO (1) WO2022222308A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161494B (zh) * 2021-04-23 2023-12-26 光华临港工程应用技术研发(上海)有限公司 光电人工突触的制备方法以及光电人工突触
CN113659076A (zh) * 2021-07-27 2021-11-16 光华临港工程应用技术研发(上海)有限公司 畴壁存储器的制备方法以及畴壁存储器
CN113644224B (zh) * 2021-08-09 2024-06-14 光华临港工程应用技术研发(上海)有限公司 有机发光二极管的制备方法以及有机发光二极管

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228532A (ja) * 1993-01-29 1994-08-16 Mitsui Toatsu Chem Inc フタロシアニン化合物及びそれを用いた光記録媒体
KR20120068598A (ko) * 2010-12-17 2012-06-27 한국전자통신연구원 멤리스터 장치 및 그 제조 방법
CN103740327A (zh) * 2013-12-10 2014-04-23 南京理工大学 一种分子铁电薄膜及其溶液浸泡生长方法
CN111081875A (zh) * 2019-12-11 2020-04-28 华东师范大学 一种铁电极化调控的人工突触器件及其制备方法
CN112397392A (zh) * 2020-11-16 2021-02-23 西交利物浦大学 仿生突触晶体管及其制备方法
CN112436092A (zh) * 2020-11-27 2021-03-02 华东师范大学 一种双端光电人工突触器件及其制备方法和应用
CN112542515A (zh) * 2020-12-14 2021-03-23 中国科学院微电子研究所 一种光电调控神经突触晶体管及其制备方法
WO2021053682A1 (en) * 2019-09-22 2021-03-25 Technion Research & Development Foundation Limited Superconductor composites and devices comprising same
CN112687792A (zh) * 2020-12-18 2021-04-20 华东师范大学 一种光刺激两端人工突触器件及制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019232302A1 (en) * 2018-06-01 2019-12-05 Massachusetts Institute Of Technology Optoelectronic memristor devices
US11312904B2 (en) * 2019-08-06 2022-04-26 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particle and production methods thereof
CN113161494B (zh) * 2021-04-23 2023-12-26 光华临港工程应用技术研发(上海)有限公司 光电人工突触的制备方法以及光电人工突触

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228532A (ja) * 1993-01-29 1994-08-16 Mitsui Toatsu Chem Inc フタロシアニン化合物及びそれを用いた光記録媒体
KR20120068598A (ko) * 2010-12-17 2012-06-27 한국전자통신연구원 멤리스터 장치 및 그 제조 방법
CN103740327A (zh) * 2013-12-10 2014-04-23 南京理工大学 一种分子铁电薄膜及其溶液浸泡生长方法
WO2021053682A1 (en) * 2019-09-22 2021-03-25 Technion Research & Development Foundation Limited Superconductor composites and devices comprising same
CN111081875A (zh) * 2019-12-11 2020-04-28 华东师范大学 一种铁电极化调控的人工突触器件及其制备方法
CN112397392A (zh) * 2020-11-16 2021-02-23 西交利物浦大学 仿生突触晶体管及其制备方法
CN112436092A (zh) * 2020-11-27 2021-03-02 华东师范大学 一种双端光电人工突触器件及其制备方法和应用
CN112542515A (zh) * 2020-12-14 2021-03-23 中国科学院微电子研究所 一种光电调控神经突触晶体管及其制备方法
CN112687792A (zh) * 2020-12-18 2021-04-20 华东师范大学 一种光刺激两端人工突触器件及制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Physical vapor deposited organic ferroelectric diisopropylammonium bromide film and its self-powered photodetector characteristics;Shanmuga Priya K等;《RSC Adv.》;20200707;第10卷;全文 *
柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件;陆骐峰等;《材料导报》;20200328;第34卷(第01期);全文 *

Also Published As

Publication number Publication date
CN113161494A (zh) 2021-07-23
WO2022222308A1 (zh) 2022-10-27

Similar Documents

Publication Publication Date Title
CN113161494B (zh) 光电人工突触的制备方法以及光电人工突触
Cui et al. Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision
Wang et al. Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system
Qian et al. Lead‐free perovskite MASnBr3‐based memristor for quaternary information storage
Ge et al. Bidirectional photoresponse in perovskite‐ZnO heterostructure for fully optical‐controlled artificial synapse
Dang et al. One‐Phototransistor–One‐Memristor Array with High‐Linearity Light‐Tunable Weight for Optic Neuromorphic Computing
Cai et al. Molecular ferroelectric/semiconductor interfacial memristors for artificial synapses
Zawal et al. Light‐Induced Synaptic Effects Controlled by Incorporation of Charge‐Trapping Layer into Hybrid Perovskite Memristor
Sung et al. Biosynaptic devices based on chicken egg albumen: graphene quantum dot nanocomposites
CN112436092B (zh) 一种双端光电人工突触器件及其制备方法和应用
Ma et al. Printed memtransistor utilizing a hybrid perovskite/organic heterojunction channel
Zhang et al. A perovskite-based artificial photonic synapse with visible light modulation and ultralow current for neuromorphic computing
CN111081875A (zh) 一种铁电极化调控的人工突触器件及其制备方法
CN112864164B (zh) 三端人工光学突触及其制备方法
Hadiyal et al. Bio-inspired artificial synapse for neuromorphic computing based on NiO nanoparticle thin film
Yang et al. Optoelectronic bio-synaptic plasticity on neotype kesterite memristor with switching ratio> 104
Silva et al. Perspective: Zinc‐Tin Oxide Based Memristors for Sustainable and Flexible In‐Memory Computing Edge Devices
CN118019358A (zh) 基于单光敏层材料的宽光谱光电突触晶体管及其制备方法和用途
Huang et al. Lead-free, highly-stable methyl ammonium bismuth halide perovskite memristors for mimicking biological synapses
Ji et al. Optoelectronic artificial synapses based on copper (II) phthalocyanine with modulated neuroplasticity
Dayal et al. Correlation between oxygen vacancies and neuromorphic properties of pulsed laser-deposited bismuth iron oxide artificial synapses
CN110957423B (zh) 聚磷酸铵忆阻器及其制备方法与在制备人工突触模拟器件中的应用
Jarschel et al. Single-electron tunneling pbs/inp heterostructure nanoplatelets for synaptic operations
Zabolotnii Optimization of Low-Temperature Solution-Processed Antimony Tin Oxide Thin-Film Field-Effect Transistor Fabrication Procedure for Neuromorphic Applications
Li et al. A nanosecond-scale CuI synaptic memristor prepared by a solution-based process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant