CN113130709B - 基于局部纳米针孔接触的硅太阳能电池及其制备方法 - Google Patents

基于局部纳米针孔接触的硅太阳能电池及其制备方法 Download PDF

Info

Publication number
CN113130709B
CN113130709B CN202110425036.4A CN202110425036A CN113130709B CN 113130709 B CN113130709 B CN 113130709B CN 202110425036 A CN202110425036 A CN 202110425036A CN 113130709 B CN113130709 B CN 113130709B
Authority
CN
China
Prior art keywords
silicon
silicon wafer
nano
pinhole
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110425036.4A
Other languages
English (en)
Other versions
CN113130709A (zh
Inventor
黄仕华
李林华
康桥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuzhou Jietai New Energy Technology Co ltd
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN202110425036.4A priority Critical patent/CN113130709B/zh
Publication of CN113130709A publication Critical patent/CN113130709A/zh
Application granted granted Critical
Publication of CN113130709B publication Critical patent/CN113130709B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于局部纳米针孔接触的硅太阳能电池及其制备方法,设计纳米针孔参数,制备纳米压印模板,用干法刻蚀将纳米针孔图形转移到硅片上,对硅片前表面进行制绒,获得表面金字塔结构;硅片前表面磷扩散,硅片前表面生长氮化硅作为钝化层和抗反层,硅片背表面生长氧化铝/氮化硅叠层薄膜,将模板覆盖在旋涂有压印胶的叠层薄膜上,干法刻蚀氧化铝/氮化硅叠层薄膜得,到纳米针孔图形,背面铝电极以及前面银电极生长。通过上述步骤,可得到基于局部纳米针孔接触的新型硅太阳能电池。本发明的方法及所制备的电池,使得针孔钝化层除了具有优良的钝化效果,同时还具有类似于TOPCon电池通过氧化硅的纳米针孔传导电流的功能。

Description

基于局部纳米针孔接触的硅太阳能电池及其制备方法
技术领域
本发明属于晶体硅太阳能电池领域,涉及局部纳米针孔接触的硅太阳能电池技术。
背景技术
晶体硅太阳能电池是光伏器件的主流,占据95%的市场份额,提升硅太阳能电池转化效率可进一步降低光伏的度电成本,加快光伏平价上网进程。晶体硅太阳能电池效率的提高是从传统铝背场电池的20.3%过渡到钝化发射极及背面接触(PERC)电池的25.0%,然后再过渡到多晶硅/氧化硅钝化接触电池的26.1%、本征非晶硅钝化硅异质结(HIT)电池的26.7%。这些改进是通过降低或几乎完全消除与金属电极直接接触的硅表面部分来实现的,减少电极与硅之间的载流子复合损失,从而提升电池的效率。
晶体硅太阳能电池的高性能是通过低接触电阻率的钝化接触实现的,同时保持优良的表面钝化。在p型PERC电池中,首先利用氧化铝/氮化硅介电层对整个硅片背面实现良好的表面钝化,然后用激光在硅片背面进行打孔或开槽(尺寸一般为10~100μm),将部分介电层烧蚀从而露出硅基体,金属电极通过这些孔或槽实现与硅基体的局部电学接触。如果把局部接触尺寸,也就是PERC电池中激光打孔尺寸或隧穿氧化硅钝化接触(TOPCon)电池中氧化硅中针孔尺寸,简称为针孔尺寸,从微米量级减少到纳米量级,介电层的钝化接触性能有望显著提高。假设金属与硅片的局部接触面积与整个介电层钝化硅片的面积之比为接触因子f,则硅片背面由于表面复合损耗引起的总饱和电流密度J0可以表示为:
J0,总=f×J0,针孔+(1-f)×J0,介电层 (1)
另一方面,局部接触电阻率ρ(Ω.cm2)来源于与面积无关的针孔接触电阻率ρ针孔以及针孔与硅片接触形成的扩展电阻率spreading resistivity)ρ扩散两部分。如果针孔半径r远小于硅片厚度,扩展电阻为ρw/4r,其中ρw为硅片体电阻率。一般而言,针孔接触电阻要比扩展电阻小得多,因此,局部接触电阻率ρ可以表示为:
Figure BDA0003029000550000021
从公式(2)可看出,对于相同的ρ,当针孔尺寸从PERC电池中的~10μm减小到多晶硅/氧化硅钝化接触的针孔中的~10nm时,接触因子f可降低近三个数量级。由于介电层引起的复合损失要比针孔引起的要小得多,J0,针孔远大于J0,介电层,从公式(1)可知,接触因子f越小,J0,总就越低。根据前面的分析得知,TOPCon电池中的氧化硅厚度大于2nm时,氧化硅层发生破裂产生针孔缺陷,而这些纳米尺寸量级的针孔是可以进行足够的电流传导,并且产生J0的也非常低。
我们可以把含有针孔的多晶硅/氧化硅钝化接触看成另一类PERC接触,即“nano-PERC”接触,只不过在氧化硅钝化层中显示的是纳米尺寸开孔,而不是经典的PERC电池中微米尺寸的开孔。TOPCon电池中的氧化硅针孔是在电极浆料高温烧结过程中由于氧化硅破裂形成的,针孔的密度及尺寸大小与氧化硅厚度、烧结温度、烧结时间有关,因此人们很难精确地控制氧化硅中的针孔尺寸及针孔密度,从而很难进一步调控TOPCon电池的性能。如果采用低温在氧化硅中能产生纳米量级针孔,并且能精确调控针孔尺寸及密度,获得理想的局部纳米针孔接触,那么氧化硅的厚度不一定像TOPCon电池中的1.2~2.5nm,而是可以达到十几或几十纳米,那么由于高温导致的TOPCon电池中多晶硅的掺杂原子扩散至氧化硅层和硅片中,导致氧化硅的化学计量比及晶格完整性等发生变化、以及在硅片形成一个重掺杂区等问题就可以有效地避免。
纳米压印技术首先通过接触式压印完成图形的转移,相当于光学曝光技术中的曝光和显影工艺过程,然后利用刻蚀传递工艺将结构转移到其他任何材料上。纳米压印技术将现代微电子加工工艺融合于印刷技术中,克服了光学曝光技术中光衍射现象造成的分辨率极限问题,展示了超高分辨率、高效率、低成本、适合工业化生产的独特优势。因此,纳米压印技术被称为微纳加工领域中第三代最有前景的光刻技术之一,很可能成为未来微纳电子与光电子产业的基础技术。
发明内容
为了降低金属电极与单晶硅之间的载流子复合损失,减少其接触电阻,提高晶体硅太阳能电池的效率,本发明在PERC以及TOPCon电池的结构基础上,采用纳米压印技术,制备一种基于局部纳米针孔接触的新型硅太阳能电池。
为此,本发明采用的技术方案是这样的:
基于局部纳米针孔接触的硅太阳能电池的制备方法,包括以下步骤:
1)设计纳米针孔参数,针孔尺寸为20~50nm,针孔分布密度(钝化层中针孔总面积与整个钝化层面积之比)为10-4~10-6
2)制备纳米压印模板,在涂有光刻胶的硅片上使用电子束写出所设计的纳米针孔图形,随后用干法刻蚀将图形转移到硅片上,得到压印所需要的硬模板;然后,采用纳米压印技术通过一次硬压印过程将硬模板图形转移到聚合物软模板材料上,在软模板上得到与硬模板图形互补的图案;
3)硅片前表面制绒,对于金刚线切割的p型单晶硅片,采用浓度为15~20wt%的氢氧化钠溶液在80~85℃温度下水浴处理30min,去除表面损伤层;其次,采用体积比为3:3:1的硝酸、氢氟酸、冰醋酸混合溶液在室温下腐蚀2min,对硅片表面进行化学抛光;然后利用等离子体增强化学气相沉积在硅片的背面,生长厚度为200nm的氮化硅薄膜,阻挡后续工艺中的磷扩散;再采用浓度为1~2wt%的氢氧化钠、8~12vol%异丙醇的溶液体系,在80~85℃下水浴条件下处理10~20min,对硅片前表面进行制绒,获得表面金字塔结构;
4)硅片前表面磷扩散,采用固态磷源陶瓷片作为磷扩散源,所述固态磷源为75wt%偏磷酸+25wt%焦磷酸硅;扩散炉的温度设置为1000-1050℃,扩散时间为5~15min,炉内通入氮气作为保护气体;待扩散完成以后,利用氢氟酸去除硅片表面残留的磷硅玻璃,同时也去除了硅片背面的氮化硅保护层;最后,采用等离子体干法刻蚀,去除硅片边缘的硼扩散层,防止边缘形成短路;
5)硅片前表面生长氮化硅作为钝化层和抗反层:利用PECVD方法沉积氮化硅薄膜,以电子级氨气和硅烷分别为氮源和硅源,氨气和硅烷的流量比为1:2~6,生长温度为200~300℃,薄膜厚度为80~100nm;
6)硅片背表面生长氧化铝/氮化硅叠层薄膜:首先利用原子层沉积法生长氧化铝薄膜,采用三甲基铝作为铝源,水作为氧源,通过控制反应周期来调节氧化铝薄膜的厚度,典型的厚度为5~20nm;生长结束以后,在氧气和氮气混合气氛下退火10~15min,退火温度为400~500℃;其次,利用PECVD方法在氧化铝薄膜之上生长厚度为80~100nm的氮化硅薄膜,以电子级氨气和硅烷分别为氮源和硅源,氨气和硅烷的流量比为1:2~6,生长温度为200~300℃;
7)纳米图形转移:将步骤2)所得的软模板覆盖在旋涂有压印胶的叠层薄膜上,之后进行一次紫外软压印过程,脱模并使用等离子去胶机去掉图形底部的残胶,以光刻胶为掩膜,干法刻蚀氧化铝/氮化硅叠层薄膜,得到纳米针孔图形,最后采用等离子去胶机去掉余下的光刻胶;
8)背面铝电极以及前面银电极生长。
通过上述步骤,可得到基于局部纳米针孔接触的新型硅太阳能电池。
本发明的方法及所制备的电池,使得针孔钝化层除了具有优良的钝化效果,同时还具有类似于TOPCon电池通过氧化硅的纳米针孔传导电流的功能,为进一步提升钝化接触电池的效率提供可借鉴的方案,推动局部纳米针孔接触在其他光伏技术和电子技术的发展与应用,具有重要的科学研究价值和产业应用前景。
附图说明
以下结合附图和本发明的实施方式来作进一步详细说明
图1为本发明的电池结构示意图;
图2为本发明的工艺流程图。
具体实施方式
参见附图。本实施例所述的新型硅太阳能电池,结构如图1所示,包括p型单晶硅片1,p型单晶硅片前表面进行制绒,获得表面金字塔结构,然后在硅片前表面磷扩散,形成掺磷发射极2,硅片前表面生长氮化硅3作为钝化层和抗反层;硅片背面有纳米量级针孔4,硅片背表面生长氧化铝/氮化硅叠层薄膜5,硅片背面为铝电极6,前表面为银电极7。
采用纳米压印技术制备尺寸及密度可控的纳米量级针孔,然后制备基于局部纳米针孔接触的晶体硅太阳能电池,具体工艺流程如图2所示。
1)纳米针孔参数的设计。利用Sentaurus、Quokka、AFORS-HET等光伏器件仿真软件,对局部纳米针孔接触的性能进行理论模拟分析,获得合适的针孔尺寸为20~50nm,针孔分布密度(钝化层中针孔总面积与整个钝化层面积之比)为10-4~10-6
2)纳米压印中模板的制备。硬模板采用电子束光刻和干法刻蚀制备,即在涂有光刻胶的硅片上使用电子束写出所设计的纳米针孔图形,随后用干法刻蚀将图形转移到硅片上,得到压印所需要的硬模板。然后,采用纳米压印技术通过一次硬压印过程将硬模板图形转移到聚合物软模板材料上,在软模板上得到与硬模板图形互补的图案。
3)硅片前表面制绒。首先,对于金刚线切割的p型单晶硅片(电阻率为1~3Ω.cm,少子寿命大于1ms),采用浓度为15~20wt%的氢氧化钠溶液在80~85℃温度下水浴处理30min,去除表面损伤层;其次,采用硝酸、氢氟酸、冰醋酸混合溶液(体积比为3:3:1)在室温下腐蚀2min,对硅片表面进行化学抛光;第三,利用等离子体增强化学气相沉积(PECVD)在硅片的背面,生长厚度为200nm的氮化硅薄膜,阻挡后续工艺中的磷扩散;第四,采用浓度为1~2wt%的氢氧化钠、8~12vol%异丙醇的溶液体系,在80~85℃下水浴条件下处理10~20min,对硅片前表面进行制绒,获得表面金字塔结构。
4)硅片前表面磷扩散。采用固态磷源(75wt%偏磷酸+25wt%焦磷酸硅)陶瓷片作为磷扩散源。扩散炉的温度设置为1000-1050℃,扩散时间为5~15min,炉内通入氮气作为保护气体。待扩散完成以后,利用氢氟酸去除硅片表面残留的磷硅玻璃,同时也去除了硅片背面的氮化硅保护层。最后,采用等离子体干法刻蚀,去除硅片边缘的硼扩散层,防止边缘形成短路。
5)硅片前表面生长氮化硅作为钝化层和抗反层。利用PECVD方法沉积氮化硅薄膜,以电子级氨气和硅烷分别为氮源和硅源,氨气和硅烷的流量比为1:2~6,生长温度为200~300℃,薄膜厚度为80~100nm。
6)硅片背表面生长氧化铝/氮化硅叠层薄膜。首先利用原子层沉积(ALD)法生长氧化铝薄膜,采用三甲基铝(TMA)作为铝源,水(H2O)作为氧源,通过控制反应周期来调节氧化铝薄膜的厚度,典型的厚度为5~20nm。生长结束以后,在氧气和氮气混合气氛下退火10~15min,退火温度为400~500℃。其次,利用PECVD方法在氧化铝薄膜之上生长厚度为80~100nm的氮化硅薄膜,以电子级氨气和硅烷分别为氮源和硅源,氨气和硅烷的流量比为1:2~6,生长温度为200~300℃。
7)纳米压印中模板的制备。硬模板采用电子束光刻和干法刻蚀制备,即在涂有光刻胶的硅片上使用电子束写出步骤1)所设计的图形,随后用干法刻蚀将图形转移到硅片上,得到压印所需要的硬模板。然后,采用纳米压印技术通过一次硬压印过程将硬模板图形转移到聚合物软模板材料上,在软模板上得到与硬模板图形互补的图案。
8)纳米图形的转移。主要包括涂胶、压印、脱模、残胶去除、刻蚀氧化铝/氮化硅叠层薄膜等过程,具体流程如图2所示。在叠层薄膜上旋涂紫外压印胶并烘烤,然后进行紫外软压印过程,即将软模板覆盖在旋涂有压印胶的叠层薄膜上,之后进行一次紫外软压印过程,脱模并使用等离子去胶机去掉图形底部的残胶,以光刻胶为掩膜,干法刻蚀氧化铝/氮化硅叠层薄膜,得到纳米针孔图形,最后采用等离子去胶机去掉余下的光刻胶。
9)背面铝电极以及前面银电极生长。首先采用热蒸镀法在硅片背面生长厚度为100~200nm的金属铝薄膜,腔体的真空度优于1×10-4Pa,为了使得纳米针孔中能均匀沉积铝,铝薄膜的沉积速率要尽可能低,比如0.1nm/s。其次,硅片的前后表面利用磁控溅射法生长厚度为500nm的银电极,利用栅线掩膜板,形成银栅线电极。第三,为了使硅片前表面的金属银与硅片的n型区形成良好的欧姆接触,以及硅片背面的铝通过针孔扩散在硅片背面形成铝背场效应,减少少数载流子在界面处的复合,电池需要在750~850℃温度和氮气氛围下进行退火处理,时间为5~10min。

Claims (2)

1.基于局部纳米针孔接触的硅太阳能电池的制备方法,其特征在于:包括以下步骤:
1)设计纳米针孔参数,针孔尺寸为20~50nm,针孔分布密度为10-4~10-6
2)制备纳米压印模板,在涂有光刻胶的硅片上使用电子束写出所设计的纳米针孔图形,随后用干法刻蚀将图形转移到硅片上,得到压印所需要的硬模板;然后,采用纳米压印技术通过一次硬压印过程将硬模板图形转移到聚合物软模板材料上,在软模板上得到与硬模板图形互补的图案;
3)硅片前表面制绒,对于金刚线切割的p型单晶硅片,采用浓度为15~20wt%的氢氧化钠溶液在80~85℃温度下水浴处理30min,去除表面损伤层;其次,采用体积比为3:3:1的硝酸、氢氟酸、冰醋酸混合溶液在室温下腐蚀2min,对硅片表面进行化学抛光;然后利用等离子体增强化学气相沉积在硅片的背面,生长厚度为200nm的氮化硅薄膜,阻挡后续工艺中的磷扩散;再采用浓度为1~2wt%的氢氧化钠、8~12vol%异丙醇的溶液体系,在80~85℃下水浴条件下处理10~20min,对硅片前表面进行制绒,获得表面金字塔结构;
4)硅片前表面磷扩散,采用固态磷源陶瓷片作为磷扩散源,所述固态磷源为75wt%偏磷酸+25wt%焦磷酸硅;扩散炉的温度设置为1000-1050℃,扩散时间为5~15min,炉内通入氮气作为保护气体;待扩散完成以后,利用氢氟酸去除硅片表面残留的磷硅玻璃,同时也去除了硅片背面的氮化硅保护层;最后,采用等离子体干法刻蚀,去除硅片边缘的硼扩散层,防止边缘形成短路;
5)硅片前表面生长氮化硅作为钝化层和抗反层:利用PECVD方法沉积氮化硅薄膜,以电子级氨气和硅烷分别为氮源和硅源,氨气和硅烷的流量比为1:2~6,生长温度为200~300℃,薄膜厚度为80~100nm;
6)硅片背表面生长氧化铝/氮化硅叠层薄膜:首先利用原子层沉积法生长氧化铝薄膜,采用三甲基铝作为铝源,水作为氧源,通过控制反应周期来调节氧化铝薄膜的厚度,典型的厚度为5~20nm;生长结束以后,在氧气和氮气混合气氛下退火10~15min,退火温度为400~500℃;其次,利用PECVD方法在氧化铝薄膜之上生长厚度为80~100nm的氮化硅薄膜,以电子级氨气和硅烷分别为氮源和硅源,氨气和硅烷的流量比为1:2~6,生长温度为200~300℃;
7)纳米图形转移:将步骤2)所得的软模板覆盖在旋涂有压印胶的叠层薄膜上,之后进行一次紫外软压印过程,脱模并使用等离子去胶机去掉图形底部的残胶,以光刻胶为掩膜,干法刻蚀氧化铝/氮化硅叠层薄膜,得到纳米针孔图形,最后采用等离子去胶机去掉余下的光刻胶;
8)背面铝电极以及前面银电极生长。
2.采用权利要求1所述基于局部纳米针孔接触的硅太阳能电池的制备方法制备而成的基于局部纳米针孔接触的硅太阳能电池。
CN202110425036.4A 2021-04-20 2021-04-20 基于局部纳米针孔接触的硅太阳能电池及其制备方法 Active CN113130709B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110425036.4A CN113130709B (zh) 2021-04-20 2021-04-20 基于局部纳米针孔接触的硅太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110425036.4A CN113130709B (zh) 2021-04-20 2021-04-20 基于局部纳米针孔接触的硅太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN113130709A CN113130709A (zh) 2021-07-16
CN113130709B true CN113130709B (zh) 2022-08-23

Family

ID=76777998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110425036.4A Active CN113130709B (zh) 2021-04-20 2021-04-20 基于局部纳米针孔接触的硅太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN113130709B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843180B (zh) * 2022-05-03 2023-03-31 江苏晟驰微电子有限公司 一种用于整流管制造的化学腐蚀去结设备及其工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201024071A (en) * 2008-12-12 2010-07-01 Massachusetts Inst Technology Wedge imprint patterning of irregular surface
CN102709335A (zh) * 2012-05-08 2012-10-03 常州天合光能有限公司 一种利用SiN薄膜针孔形成局部掺杂或金属化的方法
CN103943701A (zh) * 2013-01-22 2014-07-23 茂迪股份有限公司 太阳能电池、其制造方法及其模组
CN104078532A (zh) * 2013-03-29 2014-10-01 香港科技大学 有序三维纳米结构阵列的卷对卷制造方法及其材料和产品
CN104465885A (zh) * 2014-12-23 2015-03-25 常州天合光能有限公司 全背电极太阳能电池形成局域金属化的生产方法
CN106252425A (zh) * 2016-08-26 2016-12-21 泰州中来光电科技有限公司 一种全背接触光伏电池的金属化方法及电池、组件和系统
CN107579133A (zh) * 2017-09-12 2018-01-12 复旦大学 一种背接触式黑硅电池及其制备方法
CN111370499A (zh) * 2018-12-10 2020-07-03 苏州阿特斯阳光电力科技有限公司 Perc电池钝化膜开模图形、perc太阳能电池以及perc太阳能组件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY159405A (en) * 2009-05-29 2016-12-30 Solexel Inc Three-dimensional thin-film semiconductor substrate with through-holes and methods of manufacturing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201024071A (en) * 2008-12-12 2010-07-01 Massachusetts Inst Technology Wedge imprint patterning of irregular surface
CN102709335A (zh) * 2012-05-08 2012-10-03 常州天合光能有限公司 一种利用SiN薄膜针孔形成局部掺杂或金属化的方法
CN103943701A (zh) * 2013-01-22 2014-07-23 茂迪股份有限公司 太阳能电池、其制造方法及其模组
CN104078532A (zh) * 2013-03-29 2014-10-01 香港科技大学 有序三维纳米结构阵列的卷对卷制造方法及其材料和产品
CN104465885A (zh) * 2014-12-23 2015-03-25 常州天合光能有限公司 全背电极太阳能电池形成局域金属化的生产方法
CN106252425A (zh) * 2016-08-26 2016-12-21 泰州中来光电科技有限公司 一种全背接触光伏电池的金属化方法及电池、组件和系统
CN107579133A (zh) * 2017-09-12 2018-01-12 复旦大学 一种背接触式黑硅电池及其制备方法
CN111370499A (zh) * 2018-12-10 2020-07-03 苏州阿特斯阳光电力科技有限公司 Perc电池钝化膜开模图形、perc太阳能电池以及perc太阳能组件

Also Published As

Publication number Publication date
CN113130709A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN101548395B (zh) 具有改进的表面钝化的晶体硅太阳能电池的制造方法
CN106992229A (zh) 一种perc电池背面钝化工艺
CN102160192B (zh) 使用直接图案化的无针孔掩膜层制作太阳能电池的方法
CN104396024A (zh) 具有含宽带隙半导体材料的发射极区域的太阳能电池
CN110581198A (zh) 一种局域接触钝化太阳电池及其制备方法
KR20160090287A (ko) 나노구조의 실리콘계 태양 전지 및 나노구조의 실리콘계 태양 전지의 제조 방법
CN109087965B (zh) 一种背面钝化的晶体硅太阳能电池及其制备方法
CN103700576B (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN113130709B (zh) 基于局部纳米针孔接触的硅太阳能电池及其制备方法
CN106409653B (zh) 硅纳米线阵列的制备方法
CN103646994A (zh) 一种太阳电池正面电极的制备方法
WO2023123814A1 (zh) 一种ibc太阳能电池及其制备方法
Zhang et al. Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE
CN115332366A (zh) 一种背钝化接触异质结太阳电池及其制备方法
CN110518075B (zh) 一种黑硅钝化膜、其制备方法及应用
CN108713255A (zh) 太阳能电池元件
CN105870253A (zh) 一种WS2/Si异质结太阳能电池制备方法
Kim et al. Enhanced absorption and short circuit current density of selective emitter solar cell using double textured structure
KR101368808B1 (ko) 탄소나노튜브층을 포함하는 결정질 실리콘 태양전지 및 그제조방법
CN110391319B (zh) 一种抗pid效应的高效黑硅电池片的制备方法
CN105097452A (zh) 一种具有微米、亚微米和纳米多级结构的碳化硅薄膜的制备方法
CN110634995B (zh) 一种低光衰钝化接触太阳能电池的制备方法
CN110416336B (zh) 新型纳米结构薄膜太阳能电池及其制备方法
CN110739366B (zh) 一种修复perc太阳能电池背膜激光开槽损伤的方法
Srivastava et al. Silicon nanowire arrays based “black silicon” solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231213

Address after: No. 18, Wenshan Road, Chahe Town, Lai'an County, Chuzhou City, Anhui Province 239200

Patentee after: Chuzhou Jietai New Energy Technology Co.,Ltd.

Address before: 321004 No. 688 Yingbin Road, Zhejiang, Jinhua

Patentee before: ZHEJIANG NORMAL University

TR01 Transfer of patent right