CN113108440B - 空调器的控制方法及空调器 - Google Patents

空调器的控制方法及空调器 Download PDF

Info

Publication number
CN113108440B
CN113108440B CN202110449923.5A CN202110449923A CN113108440B CN 113108440 B CN113108440 B CN 113108440B CN 202110449923 A CN202110449923 A CN 202110449923A CN 113108440 B CN113108440 B CN 113108440B
Authority
CN
China
Prior art keywords
parameters
user
air conditioner
parameter
somatosensory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110449923.5A
Other languages
English (en)
Other versions
CN113108440A (zh
Inventor
张润雨
孙艳斌
贾香慧
杨文钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Qingdao Haier Air Conditioning Electric Co Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Qingdao Haier Air Conditioning Electric Co Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd, Qingdao Haier Air Conditioning Electric Co Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN202110449923.5A priority Critical patent/CN113108440B/zh
Publication of CN113108440A publication Critical patent/CN113108440A/zh
Priority to PCT/CN2022/076979 priority patent/WO2022227813A1/zh
Application granted granted Critical
Publication of CN113108440B publication Critical patent/CN113108440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及一种空调器的控制方法及采用该控制方法的空调器。该控制方法控制空调器在手动控制模式和无感控制模式之间切换,并且包括:在手动控制模式下,记录每一次的用户设置参数并检测对应的环境参数和用户体感参数,将用户设置参数与对应的环境参数和用户体感参数输入记忆模型,以便通过记忆模型建立用户设置参数与环境参数和用户体感参数之间的关系函数;以及在无感控制模式下,检测当前的环境参数和用户体感参数,将当前的环境参数和用户体感参数输入关系函数以获得用于自主调节所述空调器的无感控制参数。通过该控制方法,实现空调器在无感控制模式下的智能化控制,使客户始终处于舒适状态,不被空气环境所打扰。

Description

空调器的控制方法及空调器
技术领域
本发明涉及空调系统,具体地涉及空调器的控制方法及空调器。
背景技术
空调器,包括但不限于一体式空调和分体式空调等,通常包括压缩机、室外换热器(在制冷模式下充当冷凝器)、节流机构(例如膨胀阀)、和一个或多个室内换热器。压缩机、室外换热器、和节流机构一起可形成室外机或室外单元;室内换热器可形成室内机或室内单元。空调可只具有制冷功能,也可具有制冷和制热功能,或者还可具有其它特别的功能。为了使空调器的输出满足用户的需求,空调器都设有可调节的用户设置参数,例如出风频率、导板角度、换热器温度、出风湿度、运行时间等。目前主流空调器都设有控制面板和/或遥控器,以方便用户对相关设置参数进行调节。然而,当前很多空调器都需要用户在主观意识到环境的不适后,再停下手中正在做的事,去手动调节温度、湿度、风向等参数。因此,空调器的智能化程度不足。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有空调器无法根据环境和用户体感的变化自主调节的技术问题,本发明提供一种空调器的控制方法,所述控制方法控制所述空调器在手动控制模式和无感控制模式之间切换,并且包括:
在所述手动控制模式下,记录每一次的用户设置参数并检测对应的环境参数和用户体感参数,将用户设置参数与对应的环境参数和用户体感参数输入记忆模型,以便通过记忆模型建立用户设置参数与环境参数和用户体感参数之间的关系函数;以及
在所述无感控制模式下,检测当前的环境参数和用户体感参数,将当前的所述环境参数和用户体感参数输入所述关系函数以获得用于自主调节所述空调器的无感控制参数。
在本发明空调器的控制方法中,允许空调器在手动控制模式和无感控制模式之间切换,以满足用户想要手动控制空调器的需求和希望空调器能够进行自主控制的无感控制需求。这里所述的“无感”是指根据环境和用户体感的变化,空调器能够智能地自主调节空调器的设置参数,以保证空调环境始终符合用户的需求,因此用户不会感觉到环境的变化,也不会产生任何不适感。为了智能地调节空调器的设置参数,该控制方法在空调器的手动控制模式下通过记忆模型不断进行学习。具体地,记录每一次的用户设置参数并检测对应的环境参数和用户体感参数,将用户设置参数与对应的环境参数和用户体感参数输入记忆模型,记忆模型建立并持续更新用户设置参数与环境参数和用户体感参数之间的关系函数。然后,在无感控制模式中,检测当前的环境参数和用户体感参数,将当前的环境参数和用户体感参数输入关系函数以获得用于调节空调器的无感控制参数。因此,在无感模式下,空调器基于在手动控制中学习获得的关系函数和当前检测到的环境参数及用户体感参数,就可以获得用于自主控制空调器的设置参数,进而实现空调器的智能化控制,使客户始终处于舒适状态,不被空气环境所打扰。
在上述空调器的控制方法的优选技术方案中,在所述无感控制模式下,当用户设置参数被手动调整时,将调整后的用户设置参数与对应的环境参数和用户体感参数输入所述记忆模型以更新所述关系函数。在空调器的使用过程中,采集和储存用户每一次的设置参数及对应的环境参数和用户体感参数,然后输入记忆模型以通过记忆模型更新对应的回归曲线。用户使用空调器的时间越长(意味着用户手动调节设置参数的次数越多),记忆模型的计算越精确。
在上述空调器的控制方法的优选技术方案中,所述空调器可连接到物联网,并且所述记忆模型储存在所述物联网的终端上且对应单独的用户账户。在家电行业智慧互联的大背景下,通过在物联网上为单个用户建立单独的用户账户,并且将对应该单个用户的记忆模型储存在物联网的“终端”上。当该单个用户在使用同一系列的空调器时,通过登入账户,就能使本地空调器获得用户专属的记忆模型,从而能够无感控制本地空调器。整个记忆模型因此也属于用户私人订制。
在上述空调器的控制方法的优选技术方案中,所述记忆模型基于每一次用户设置参数的更新而更新所述关系函数。记忆模型随时根据用户的喜好而更新。随着用户身体状况的改变,可能会改变设置习惯。本发明的记忆模型会自动更新,以贴合用户新偏好。
在上述空调器的控制方法的优选技术方案中,所述环境参数包括温度、湿度、时间、和空气清洁度中的至少一个。
在上述空调器的控制方法的优先技术方案中,所述用户体感参数包括体温、脉搏、呼吸频率、位置中的至少一个。
在上述空调器的控制方法的优先技术方案中,所述用户体感参数通过移动终端测得。
在上述空调器的控制方法的优先技术方案中,所述用户体感参数通过红外识别设备测得。
在上述空调器的控制方法的优先技术方案中,所述用户体感参数和所述环境参数被连续地检测或者被定期地检测。连续监测用户体感参数和环境参数,可保证当这些参数波动比较大时,能够及时主动地调整空调器的设置参数。相反,当环境参数波动比较小时,可定期地检测环境参数和用户体感参数。
为了解决上述技术问题,本发明还公开了一种空调器,所述空调器设有电脑控制板,并且通过电脑控制板实施上面所述的任一种控制方法,以便在手动控制模式和无感控制模式之间进行切换。该空调器能够满足用户的无感调节需求。
附图说明
下面参照附图来描述本发明的优选实施方式,附图中:
图1是本发明空调器的实施例的系统示意图;
图2是本发明空调器的控制方法的流程图;
图3是本发明空调器在手动控制模式下的控制方法的实施例的流程图;
图4是本发明空调器在无感控制模式下的控制方法的实施例的流程图。
附图标记列表:
1、空调器;11、压缩机;12、四通阀;13、室外换热器;14、膨胀阀;15、液管截止阀;16、室内换热器;17、气管截止阀;18、气液分离器;111、排气管;112、吸气管。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
为了解决现有空调器缺少自主控制的技术问题,本发明本发明提供一种空调器的控制方法,该控制方法控制空调器在手动控制模式和无感控制模式之间切换,并且包括:
在手动控制模式下,记录每一次的用户设置参数并检测对应的环境参数和用户体感参数,将用户设置参数与对应的环境参数和用户体感参数输入记忆模型,以便通过记忆模型建立用户设置参数与环境参数和用户体感参数之间的关系函数(步骤S1);以及
在无感控制模式下,检测当前的环境参数和用户体感参数,将当前的环境参数和用户体感参数输入关系函数以获得用于自主调节空调器的无感控制参数(步骤S2)。
在本文中提及的操作步骤除非有明确的说明,在操作顺序上没有先后的要求,例如有些操作步骤可以同时实施。
图1是本发明空调器的实施例的系统示意图。本发明的空调器1包括但不限于一体式空调或分体式空调,至少具有制冷功能或制冷和制热功能。如图1所示,在一种或多种实施例中,空调器1包括压缩机11、四通阀12、室外换热器13、膨胀阀14、液管截止阀15、室内换热器16、气管截止阀17、和气液分离器18。这些部件通过冷媒管线相互连接一起形成可允许冷媒(例如R134a)在其中循环流动的制冷回路。压缩机11、四通阀12、室外换热器13、膨胀阀14、液管截止阀15和气管截止阀17组合在一起可被称为室外单元或室外机,而室内换热器16通常被置于室内单元或室内机中。室外换热器13和室内换热器16通常各自都配有风机(图中未示出)。当空调器1工作的时候,风机也工作以迫使空气分别从室外换热器13和室内换热器16上流过。四通阀12具有四个端口:D端口,C端口,S端口,和E端口。压缩机11的排气口通过排气管111连接到四通阀12的D接口,而压缩机11的吸气口通过吸气管112连接到气液分离器18的出口;室外换热器13的一个接口管连接到四通阀12的C端口,而室外换热器13的另一个接口管连接到膨胀阀14;四通阀12的S端口连接到气液分离器18的进口;四通阀12的E端口经由气管截至阀17连通室内换热器16的气管;膨胀阀14经由液管截至阀15连通室内换热器16的液管。
当空调器1在制冷模式下运行时,压缩机11将气体冷媒从低温低压压缩到高温高压;该高温高压的气体冷媒从压缩机11的排气口排出到排气管111中,然后从D端口进入四通阀12。在制冷模式下,D端口与C端口连通,并且S端口与E端口连通。因此高温高压的气体冷媒从C端口离开四通阀12并流入室外换热器13。室外换热器13在制冷模式下充当冷凝器,因此高温高压的冷媒在室外换热器13中被冷却成高温高压的液体冷媒。高温高压的液体冷媒然后通过膨胀阀14(例如热力膨胀阀或电子膨胀阀)被节流成低温低压的液体冷媒。低温低压的液体冷媒经由液管截止阀15流入室内换热器16。室内换热器16在制冷模式下充当蒸发器。因此,低温低压的液体冷媒在室内换热器16中被蒸发成低温低压的气体冷媒。低温低压的气体冷媒经由E端口流入四通阀12,然后从S端口离开四通阀12并进入气液分离器18。经过气液分离后,低温低压的冷媒经吸气管112被压缩机11吸入和压缩,以便开始新的循环。在制热模式下,冷媒在空调器1内的流向与制冷时的流向完全相反。因此,在制热模式下,四通阀12的D端口与E端口形成连通,而C端口与S端口形成连通。从压缩机11排出的高温高压的气体冷媒经由四通阀12先流入充当冷凝器的室内换热器16,以便给室内空气加热;经过冷凝的高温高压的液体冷媒通过膨胀阀14节流后再流入充当蒸发器的室外换热器13;蒸发形成的低温低压的气体冷媒从C端口进入四通阀12,再从S端口离开并进入气液分离器18。经过气液分离后,低温低压的冷媒经吸气管112被压缩机11吸入和压缩,以便开始新的循环。
本发明空调器1具有手动控制模式和无感控制模式。在“手动控制模式”下,用户需要根据环境和自己的体感手动设置用于控制空调器运行的设置参数。相反,在无感控制模式下,该空调器1可基于用户的体感参数和环境参数自主确定空调器的设置参数,并且基于该设置参数控制空调器的运行。下面具体介绍本发明的空调器的控制方法。
为了实施本发明的控制方法,本发明的上述空调器1还包括具有计算功能的电脑控制板(图中未示出)。该电脑控制板可以是安装在空调器1上的电脑控制面板,也可以是远程的控制器。
图2是本发明空调器的控制方法的流程图。本发明空调器的控制方法可控制空调器在手动控制模式和无感控制模式之间进行切换。如图2所示,步骤S1代表的是手动控制模式下的控制方法。具体地,在手动控制模式下,该控制方法记录每一次的用户设置参数并检测对应的环境参数和用户体感参数,将用户设置参数与对应的环境参数和用户体感参数输入记忆模型,以便通过记忆模型建立用户设置参数与环境参数和用户体感参数之间的关系函数。
图3是本发明空调器在手动控制模式下的控制方法的实施例的流程图。当用户用遥控器控制空调器时,空调器就进入手动控制模式(步骤S11)。在手动控制模式下,用户通过空调器的控制面板或遥控器手动设置空调器的出风温度、湿度、风向等设置参数,即空调器接收用户设置的用户设置参数(步骤S12)。控制方法然后前进到步骤S13,空调器的储存装置(例如包括空调器的控制面板上的存储器)就会自动记录这些设置参数。在步骤S13中,空调器还要记录环境参数和用户体感参数。空调器的检测装置,例如各种温度、压力、时间传感器,检测对应上述设置参数的环境参数,例如室外温度、室内温度、湿度、时间等,同时将检测到的环境参数发送到空调器的储存装置以便记录这些环境参数。用户的体感参数,例如体温、心率、位置等,则可以通过手环、手机遥控器等移动终端检测并传输到空调器的储存装置以便记录对应的用户体感参数。替代地,用户体感参数可用红外识别设备进行检测。
如图3所示,在步骤S14中,上述记录的用户设置参数、对应的环境参数和用户体感参数被自动输入到记忆模型中,并且基于用户设置参数与对应的环境参数和用户体感参数,记忆模型建立用户设置参数与环境参数、用户体感参数之间的关系函数。在一种或多种实施例中,记忆模型采用线性回归学习方法。替代地,记忆模型也可采用其它合适的回归学习方法。下面举例说明线性回归学习方法。用户体感参数表示为T(X),X为体温,脉搏,呼吸频率,或位置等;环境参数表示为H(Y),Y为温度,湿度,或空气洁净度等;空调器的设置参数K与环境参数H(Y)和用户体感参数T(X)之间的关系函数表示为K(T,H),K可以是出风频率,导板角度,或换热器温度等。假设:
用户第一次使用空调器时手动设置的参数为K1,对应的环境参数为H1,对应的用户体感参数为T1;
第二次使用空调时手动设置的参数为K2,对应的环境参数为H2,对应的用户体感参数为T2;
…;
第n次使用空调时手动设置的参数为Kn,对应的环境参数为Hn,对应的用户体感参数为Tn。
将上述每组参数都代入到K(T,H)中,就可以得到简单的关系函数K(T,H)。数量n越大,得到的关系函数K(T,H)就越准确,因为每一次用户使用手动控制模式,记忆模块都会重新分析用户设置参数与用户体感参数和环境参数之间的关系并记录。换句话说,就是用户自主设置的次数越多,空调器的记忆模型推测用户使用习惯的能力越高。另外,在空调器使用方面,不同的用户具有不同的喜好,通过记忆模型建立的关系函数进而也不同,因此整个记忆模型都属于用户私人订制。另外,随着同一用户身体状况的改变,用户可能会改变设置习惯,这时记忆模型也会自动更新,以贴合用户的新偏好。
当用户在工作或睡觉或其它不想打搅的情形下,可将空调器调到无感控制模式。如图2所示,步骤S2代表的是无感控制模式下的控制方法,即检测当前的环境参数和用户体感参数,将当前的环境参数和用户体感参数输入关系函数以获得用于自主调节空调器的无感控制参数。
图4是本发明空调器在无感控制模式下的控制方法的实施例的流程图。如图4所示,在步骤S21中,在用户的选择下,空调器进入无感控制模式。然后,控制方法前进到步骤S22。在步骤S22中,空调器检测当前的环境参数并接收由移动终端传输来的用户体感参数。例如,空调器通过传感器检测环境参数H(Y),包括温度、湿度、时间、和空气清洁度。用户的手环或手机终端检测用户体感参数T(X),包括体温、脉搏、呼吸频率、位置,并且将这些参数传输到空调器上。在一种或多种实施例中,用户体感参数和环境参数被连续地检测。连续监测用户体感参数和环境参数,可保证当这些参数波动比较大时,能够及时主动地调整空调器的设置参数。替代地,定期地检测环境参数和用户体感参数,例如每隔5分钟或10分钟检测一次环境参数和用户体感参数。然后,控制方法前进到步骤S23。在步骤S23中,将当前测得的用户体感参数和环境参数代入关系函数K(T,H),就能得到无感控制参数K,例如出风频率、导板角度、和换热器温度。空调器基于这些无感控制参数就能自动控制空调器。这样就能实现空调器的智能化控制,使客户始终处于舒适状态,不被空气环境所打扰。
在一种或多种实施例中,在无感控制模式中,发生用户手动设置空调器的设置参数的情况。在这种情况下,记忆模型就会及时根据调整后的用户设置参数与对应的环境参数和用户体感参数更新关系函数K(T,H),以使得到的关系函数K(T,H)就越准确。
在一种或多种实施例中,空调器连接到物联网上,并且空调器的用户在物联网上建有单独的账户。对应该空调器及同一系列空调器的记忆模型储存在物联网的终端上。当该用户在使用同一系列的空调器时,通过登入其单独的账户,就能使本地空调器获得用户专属的记忆模型,从而能够无感控制本地空调器。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

1.一种空调器的控制方法,其特征在于,所述控制方法控制所述空调器在手动控制模式和无感控制模式之间切换,并且包括:
在所述手动控制模式下,记录每一次的用户设置参数并采集对应的环境参数和用户体感参数,将用户设置参数与对应的环境参数和用户体感参数输入记忆模型,以便通过所述记忆模型建立用户设置参数与环境参数和用户体感参数之间的关系函数;以及
在所述无感控制模式下,检测当前的环境参数和用户体感参数,将当前的所述环境参数和用户体感参数输入所述关系函数以获得用于自主调节所述空调器的无感控制参数。
2.根据权利要求1所述的空调器的控制方法,其特征在于,在所述无感控制模式下,当用户设置参数被手动调整时,将调整后的用户设置参数与对应的环境参数和用户体感参数输入所述记忆模型以更新所述关系函数。
3.根据权利要求1所述的空调器的控制方法,其特征在于,所述空调器可连接到物联网,并且所述记忆模型储存在所述物联网的终端上且对应单独的用户账户。
4.根据权利要求1-3任一项所述的空调器的控制方法,其特征在于,所述记忆模型基于每一次用户设置参数的更新而更新所述关系函数。
5.根据权利要求1-3任一项所述的空调器的控制方法,其特征在于,所述环境参数包括温度、湿度、时间、和空气清洁度中的至少一个。
6.根据权利要求1-3任一项所述的空调器的控制方法,其特征在于,所述用户体感参数包括体温、脉搏、呼吸频率、位置中的至少一个。
7.根据权利要求6所述的空调器的控制方法,其特征在于,所述用户体感参数通过移动终端测得。
8.根据权利要求6所述的空调器的控制方法,其特征在于,所述用户体感参数通过红外识别设备测得。
9.根据权利要求1-3任一项所述的空调器的控制方法,其特征在于,所述用户体感参数和所述环境参数被连续地检测或者被定期地检测。
10.一种空调器,其特征在于,所述空调器设有电脑控制板,并且通过电脑控制板实施根据权利要求1-9任一项所述的控制方法,以便在手动控制模式和无感控制模式之间进行切换。
CN202110449923.5A 2021-04-25 2021-04-25 空调器的控制方法及空调器 Active CN113108440B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110449923.5A CN113108440B (zh) 2021-04-25 2021-04-25 空调器的控制方法及空调器
PCT/CN2022/076979 WO2022227813A1 (zh) 2021-04-25 2022-02-21 空调器的控制方法及空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110449923.5A CN113108440B (zh) 2021-04-25 2021-04-25 空调器的控制方法及空调器

Publications (2)

Publication Number Publication Date
CN113108440A CN113108440A (zh) 2021-07-13
CN113108440B true CN113108440B (zh) 2022-09-02

Family

ID=76720067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110449923.5A Active CN113108440B (zh) 2021-04-25 2021-04-25 空调器的控制方法及空调器

Country Status (2)

Country Link
CN (1) CN113108440B (zh)
WO (1) WO2022227813A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108440B (zh) * 2021-04-25 2022-09-02 青岛海尔空调器有限总公司 空调器的控制方法及空调器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347429B2 (ja) * 2014-12-08 2018-06-27 義雄 不破 屋内と屋外の温度差および湿度差に基づく制御機能を有する換気扇
CN105333580A (zh) * 2015-11-30 2016-02-17 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN106369739A (zh) * 2016-08-23 2017-02-01 海信(山东)空调有限公司 一种空调控制方法及空调控制器和空调系统
CN108361927A (zh) * 2018-02-08 2018-08-03 广东美的暖通设备有限公司 一种基于机器学习的空调器控制方法、装置以及空调器
CN111288604B (zh) * 2018-12-07 2021-08-20 宁波方太厨具有限公司 一种空调的温度自动调节方法及系统
CN109631255A (zh) * 2018-12-10 2019-04-16 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN109780697B (zh) * 2019-03-01 2021-03-19 奥克斯空调股份有限公司 一种空调控制方法、装置和空调器
CN110805995A (zh) * 2019-11-27 2020-02-18 广东美的制冷设备有限公司 空气调节设备的控制方法、装置、控制器和存储介质
CN113108440B (zh) * 2021-04-25 2022-09-02 青岛海尔空调器有限总公司 空调器的控制方法及空调器

Also Published As

Publication number Publication date
CN113108440A (zh) 2021-07-13
WO2022227813A1 (zh) 2022-11-03

Similar Documents

Publication Publication Date Title
CN104110799B (zh) 空调器电子膨胀阀的综合控制方法及电路
CN106352484B (zh) 一拖多空调及其制冷控制方法
CN111023401B (zh) 空调器的除湿控制方法及空调器
JP4957342B2 (ja) 空気調和システム及び空調管理装置
WO2019034123A1 (zh) 一种智能空调器控制方法及智能空调器
CN107575994B (zh) 用于控制空调的方法及装置、空调
CN107525245B (zh) 用于控制空调的方法及装置、空调
CN105910221A (zh) 空调器以及空调器的控制方法和装置
WO2018191703A1 (en) Thermostat with preemptive heating, cooling, and ventilation in response to elevated occupancy detection via proxy
CN104566836B (zh) 空调器及其自动控制方法、装置
CN107525217B (zh) 一种空调器控制方法、控制装置及空调器
CN113574323B (zh) 空调系统
JP3694274B2 (ja) 空気調和機の運転制御装置及びその方法
KR20130058909A (ko) 공기 조화기 및 그 제어방법
CN107621050B (zh) 用于控制空调的方法及装置、空调
CN107421078B (zh) 用于控制空调的方法及装置、空调
CN107588503B (zh) 用于控制空调的方法及装置、空调
CN111442462A (zh) 一种温控设备控制方法、装置和温控系统
CN108119987A (zh) 一种室内温度调节控制方法
CN113108440B (zh) 空调器的控制方法及空调器
EP3677850B1 (en) Control method and apparatus for self-cleaning of air conditioner, and air conditioner
JP2006177658A (ja) 空気調和機
CN112923440B (zh) 新风空调系统及其在夏季夜间的控制方法
CN106322634A (zh) 一种空调新风机的节能控制装置及其控制方法
CN113418283B (zh) 用于空调器的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant