CN113095719B - Lake ecosystem health evaluation and restoration method - Google Patents
Lake ecosystem health evaluation and restoration method Download PDFInfo
- Publication number
- CN113095719B CN113095719B CN202110476692.7A CN202110476692A CN113095719B CN 113095719 B CN113095719 B CN 113095719B CN 202110476692 A CN202110476692 A CN 202110476692A CN 113095719 B CN113095719 B CN 113095719B
- Authority
- CN
- China
- Prior art keywords
- lake
- technology
- restoration
- habitat
- index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 373
- 230000036541 health Effects 0.000 title claims abstract description 48
- 238000011156 evaluation Methods 0.000 title claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 178
- 238000013507 mapping Methods 0.000 claims abstract description 24
- 238000005516 engineering process Methods 0.000 claims description 192
- 241000196324 Embryophyta Species 0.000 claims description 71
- 241000894007 species Species 0.000 claims description 46
- 238000007634 remodeling Methods 0.000 claims description 34
- 241000251468 Actinopterygii Species 0.000 claims description 33
- 239000010865 sewage Substances 0.000 claims description 24
- 239000008239 natural water Substances 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 20
- 239000013049 sediment Substances 0.000 claims description 18
- 241001465754 Metazoa Species 0.000 claims description 16
- 244000005700 microbiome Species 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 16
- 241001482616 Neophocaena phocaenoides Species 0.000 claims description 14
- 239000003344 environmental pollutant Substances 0.000 claims description 13
- 231100000719 pollutant Toxicity 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 238000000746 purification Methods 0.000 claims description 11
- 239000002689 soil Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 11
- 241000195493 Cryptophyta Species 0.000 claims description 10
- 238000009395 breeding Methods 0.000 claims description 9
- 230000001488 breeding effect Effects 0.000 claims description 9
- 238000005067 remediation Methods 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 8
- 238000011065 in-situ storage Methods 0.000 claims description 8
- 235000015097 nutrients Nutrition 0.000 claims description 7
- 241000271566 Aves Species 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- 238000009360 aquaculture Methods 0.000 claims description 6
- 244000144974 aquaculture Species 0.000 claims description 6
- 230000007613 environmental effect Effects 0.000 claims description 6
- 238000007667 floating Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000002957 persistent organic pollutant Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 230000008439 repair process Effects 0.000 claims description 6
- 230000006641 stabilisation Effects 0.000 claims description 6
- 238000011105 stabilization Methods 0.000 claims description 6
- 238000003911 water pollution Methods 0.000 claims description 6
- 238000011161 development Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 241000272517 Anseriformes Species 0.000 claims description 4
- 244000025254 Cannabis sativa Species 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 230000004071 biological effect Effects 0.000 claims description 4
- 230000002925 chemical effect Effects 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 230000008030 elimination Effects 0.000 claims description 4
- 238000003379 elimination reaction Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000002068 microbial inoculum Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 230000000704 physical effect Effects 0.000 claims description 4
- 230000035755 proliferation Effects 0.000 claims description 4
- 210000001082 somatic cell Anatomy 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 3
- 238000010170 biological method Methods 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 claims description 3
- 238000006731 degradation reaction Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 claims description 3
- 230000000813 microbial effect Effects 0.000 claims description 3
- 230000005012 migration Effects 0.000 claims description 3
- 238000013508 migration Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 239000002028 Biomass Substances 0.000 claims description 2
- 241000192700 Cyanobacteria Species 0.000 claims description 2
- 241001166264 Neophocaena asiaeorientalis asiaeorientalis Species 0.000 claims description 2
- 230000002411 adverse Effects 0.000 claims description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 2
- 238000003975 animal breeding Methods 0.000 claims description 2
- 239000003153 chemical reaction reagent Substances 0.000 claims description 2
- 229930002868 chlorophyll a Natural products 0.000 claims description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 238000012851 eutrophication Methods 0.000 claims description 2
- 230000002538 fungal effect Effects 0.000 claims description 2
- 239000003673 groundwater Substances 0.000 claims description 2
- 150000002484 inorganic compounds Chemical class 0.000 claims description 2
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- 230000009545 invasion Effects 0.000 claims description 2
- 238000010169 landfilling Methods 0.000 claims description 2
- 230000001617 migratory effect Effects 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims description 2
- 231100000252 nontoxic Toxicity 0.000 claims description 2
- 230000003000 nontoxic effect Effects 0.000 claims description 2
- 239000005416 organic matter Substances 0.000 claims description 2
- 238000003976 plant breeding Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 238000004162 soil erosion Methods 0.000 claims description 2
- 239000002352 surface water Substances 0.000 claims description 2
- 231100000331 toxic Toxicity 0.000 claims description 2
- 230000002588 toxic effect Effects 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 230000002062 proliferating effect Effects 0.000 claims 2
- 239000003643 water by type Substances 0.000 claims 2
- 230000031018 biological processes and functions Effects 0.000 claims 1
- 238000012790 confirmation Methods 0.000 claims 1
- 239000002364 soil amendment Substances 0.000 claims 1
- 238000013459 approach Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000010791 domestic waste Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
- G06F16/2228—Indexing structures
- G06F16/2246—Trees, e.g. B+trees
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
- G06Q50/265—Personal security, identity or safety
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/152—Water filtration
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Tourism & Hospitality (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Health & Medical Sciences (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Computer Security & Cryptography (AREA)
- Quality & Reliability (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Farming Of Fish And Shellfish (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种湖泊生态系统健康评价和修复方法,属于环境保护领域。The invention relates to a method for health evaluation and restoration of a lake ecosystem, and belongs to the field of environmental protection.
背景技术Background technique
我国经济在过去的几十年间得到了的迅速发展,但工、农业的快速发展对自然环境的破坏也日益严重。由于工业有害物质的排放、资源的过度开发、农业化肥及除虫药剂的大量使用,对我国的生态环境造成了严重的破坏和失衡,给人类的生存和发展带来了严重的危害。又由于我国人口负载过重,加上长期以来对土地、森林、水和矿产等资源的不合理开发利用,以及缺乏对生态的必要保护和建设,生活废气物及生活垃圾污染,所以我国当前生态环境形势非常严峻,生态环境问题已成为影响我国国家安全的重大问题。特别是作为早期废水、废物、城市垃圾直排的各种水体是生态环境污染的重灾区,而湖泊的污染又是其中最严重的,因此修复湖泊生态,势在必行。my country's economy has developed rapidly in the past few decades, but the rapid development of industry and agriculture has also increasingly damaged the natural environment. Due to the discharge of industrial harmful substances, the over-exploitation of resources, and the large-scale use of agricultural fertilizers and insecticides, the ecological environment of our country has been seriously damaged and unbalanced, and it has brought serious harm to the survival and development of human beings. In addition, due to the heavy population load in our country, coupled with the unreasonable development and utilization of land, forest, water and mineral resources for a long time, and the lack of necessary protection and construction of the ecology, domestic waste and domestic waste pollution, so my country's current ecological The environmental situation is very severe, and the ecological environment problem has become a major problem affecting my country's national security. In particular, the various water bodies that were directly discharged as waste water, waste and urban waste in the early stage were the hardest hit areas for ecological environment pollution, and the pollution of lakes was the most serious among them. Therefore, it is imperative to restore the lake ecology.
目前,现有的对湖泊生态系统健康的评价尚未形成体系,通常只是根据测得的某些重点指标来对湖泊生态状况进行研判,没有对湖泊生态健康状况进行全面系统地诊断评价,因此很难科学地采用切实可行的正确修复方法,从而对湖泊环境生态污染和恶化的改善甚微。At present, the existing evaluation of lake ecosystem health has not yet formed a system. Usually, the ecological status of lakes is judged according to some key indicators measured, and there is no comprehensive and systematic diagnosis and evaluation of the ecological health of lakes. Therefore, it is difficult to Scientifically adopt practical and correct restoration methods, so as to improve the ecological pollution and deterioration of the lake environment very little.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术的不足,本发明提供了一种湖泊生态系统健康评价和修复方法,使用该湖泊生态系统健康评价和修复方法,可以对湖泊生态系统健康进行综合的科学评价,并对评价结果进行量化,然后根据量化后的评价指数通过数据库间的映射关系迅速选定对应的合理修复方法的组合,有效修复湖泊环境生态,改善湖泊生态系统健康状况。In order to solve the deficiencies of the prior art, the present invention provides a lake ecosystem health evaluation and restoration method. Using the lake ecosystem health evaluation and restoration method, a comprehensive scientific evaluation of the health of the lake ecosystem can be carried out, and the evaluation results can be evaluated. Quantify, and then quickly select the appropriate combination of reasonable restoration methods according to the quantified evaluation index through the mapping relationship between the databases, effectively restore the lake environment and ecology, and improve the health of the lake ecosystem.
为实现上述目的,本发明采用的技术方案是一种湖泊生态系统健康评价和修复方法,包括以下步骤:In order to achieve the above purpose, the technical solution adopted in the present invention is a method for evaluating and restoring the health of lake ecosystems, comprising the following steps:
(1)采集湖泊重要生态特征参数的实时数据,特征参数的数据结构至少包括水质参数IWi、生境参数IHij和生物参数IOij;(1) Collect real-time data of important ecological characteristic parameters of lakes, and the data structure of characteristic parameters includes at least water quality parameter I Wi , habitat parameter I Hij and biological parameter I Oij ;
其中水质参数IWi的数据结构包括8个参数,在实时数据充足的情况下尽可能多地选择下列8个重要生物参数参与评价:IW1、IW2、IW3、IW4、IW5、IW6、IW7和/或IW8。其中IW1为叶绿素a、IW2为水温、IW3为溶解氧DO、IW4为pH值、IW5为总氮TN、IW6为氨氮NH3-N、IW7为总磷TP、IW8为化学需氧量CODMn;The data structure of the water quality parameter I Wi includes 8 parameters. When the real-time data is sufficient, the following 8 important biological parameters are selected as much as possible to participate in the evaluation: I W1 , I W2 , I W3 , I W4 , I W5 , I W6 , I W7 and/or I W8 . Wherein IW1 is chlorophyll a, IW2 is water temperature, IW3 is dissolved oxygen DO, IW4 is pH value, IW5 is total nitrogen TN, IW6 is ammonia nitrogen NH3 -N, IW7 is total phosphorus TP, IW8 is the chemical oxygen demand COD Mn ;
其中生境参数IHij的数据结构必须包括3大类指数:岸带指数IH1、底质指数IH2和水体指数IH3。每大类生境指数包含单一或多个生境参数,在实时数据充足的情况下尽可能多地选择下列重要生物参数参与评价。其中岸带指数IH1包括湖泊流域内城镇化程度IH11、湖泊流域内农业化程度IH12、湖泊流域内森林覆盖度IH13、湖泊流域内草地覆盖度IH14和/或自然岸线比例IH15;底质指数IH2包括底质状况IH21;水体指数IH3包括水生植物覆盖度IH31、湖面水域萎缩率IH32、河湖连通口门畅通率IH33、丰水期水位平均值比值IH34和/或枯水期水位平均值比值IH35;Among them, the data structure of habitat parameter I Hij must include three categories of indices: shore index I H1 , bottom quality index I H2 and water body index I H3 . Each category of habitat index contains single or multiple habitat parameters, and as many of the following important biological parameters as possible are selected to participate in the evaluation under the condition of sufficient real-time data. The shore index I H1 includes the degree of urbanization I H11 in the lake basin, the degree of agriculturalization I H12 in the lake basin, the forest coverage I H13 in the lake basin, the grassland coverage I H14 in the lake basin and/or the proportion of natural shorelines I H15 ; the bottom quality index I H2 includes the bottom quality I H21 ; the water body index I H3 includes the coverage of aquatic plants I H31 , the shrinkage rate of the lake surface waters I H32 , the unobstructed rate of the openings of rivers and lakes I H33 , and the ratio of the average water level in the wet season I H34 and/or the mean ratio of water level in dry season I H35 ;
其中生物参数IOij的数据结构必须包括7大类指数:鸟类指数IO1、江豚指数IO2、鱼类指数IO3、水生植物指数IO4、底栖动物指数IO5、浮游植物指数IO6和/或浮游动物指数IO7。每大类生物指数包含单一或多个生物参数,在实时数据充足的情况下尽可能多地选择下列重要生物参数参与评价。其中鸟类指数IO1包括鸟类物种数变化率IO11和鸟类种群数量变化率IO12;江豚指数IO2包括江豚种群数量变化率IO21;鱼类指数IO3包括天然渔业资源产量变化率IO31、土著种物种数变化率IO32、外来种物种数IO33、洄游性鱼类物种数变化率IO34和/或耐污种物种比例IO35;水生植物指数IO4包括土著种物种数变化率IO41、外来种物种数IO42和/或耐污种物种比例IO43;底栖动物指数IO5包括土著种物种数变化率IO51、外来种物种数IO52和/或耐污种物种比例IO53;浮游植物指数IO6包括土著种属数变化率IO61、外来种属数IO62、耐污种物种比例IO63和/或蓝藻门比例IO64;浮游动物指数IO7包括土著种物种数变化率IO71、外来种属数IO72和/或耐污种物种比例IO73;The data structure of biological parameters I Oij must include 7 categories of indices: bird index I O1 , finless porpoise index I O2 , fish index I O3 , aquatic plant index I O4 , benthic animal index I O5 , phytoplankton index I O6 and/or zooplankton index I O7 . Each type of biological index contains single or multiple biological parameters, and the following important biological parameters are selected as much as possible to participate in the evaluation under the condition of sufficient real-time data. The bird index I O1 includes the change rate of bird species number I O11 and the bird population change rate I O12 ; the finless porpoise index I O2 includes the change rate of the finless porpoise population I O21 ; the fish index I O3 includes the change rate of natural fishery resources production I O31 , rate of change in number of indigenous species I O32 , number of exotic species I O33 , rate of change in number of migratory fish species I O34 and/or proportion of pollution-tolerant species I O35 ; aquatic plant index I O4 includes number of indigenous species The rate of change I O41 , the number of alien species I O42 and/or the proportion of pollution-tolerant species I O43 ; the benthic index I O5 includes the rate of change in the number of indigenous species I O51 , the number of exotic species I O52 and / or the pollution-tolerant species Species ratio 1053 ; phytoplankton
(2)对步骤(1)中获取的所有参数进行数据处理(2) Perform data processing on all parameters obtained in step (1)
(2.1)根据表1中的赋分标准对水质参数IWi中已采集到的实时数据进行赋分得到IWi,i=1,2,……,n对应的赋分值I′Wi,i=1,2,……,n,未采集到的赋分为0,对应的权重取0,然后再利用表1中的权重值,按公式1计算出水质指数IW;(2.1) According to the scoring criteria in Table 1, assign scores to the real-time data collected in the water quality parameter I Wi to obtain I Wi , i=1,2,...,n corresponding to the assigned scores I′ Wi , i = 1, 2, ..., n, the score that has not been collected is 0, the corresponding weight is 0, and then the weight value in Table 1 is used, and the water quality index I W is calculated according to formula 1;
式中:IW为水质指数,Pi是水质参数IWi的权重,1≤Pi≤4,n为自然数,n≤8,In the formula: I W is the water quality index, P i is the weight of the water quality parameter I Wi , 1≤P i ≤4, n is a natural number, n≤8,
表1Table 1
(2.2)根据表2中的赋分标准对生境参数IHij中采集到的实时数据赋分得到对应赋分值I′Hij,未采集到的赋分为0,对应的权重取0,然后再利用根据表2中的权重值,按公式2计算出生境指数IHi,按公式3计算出生境综合指数IH;(2.2) According to the scoring criteria in Table 2, assign scores to the real-time data collected in the habitat parameter I Hij to obtain the corresponding scoring value I′ Hij , the uncollected scoring value is 0, the corresponding weight is 0, and then Utilize according to the weight value in table 2, calculate birthplace index I Hi according to
式中:IHi为生境指数,I'Hij是生境参数IHij的赋分值;Tij是生境参数IHij的权重,1≤Tij≤4;n为自然数,n≤5;where I Hi is the habitat index, I' Hij is the assigned score of the habitat parameter I Hij ; T ij is the weight of the habitat parameter I Hij , 1≤T ij ≤4; n is a natural number, n≤5;
式中:IH为生境综合指数,IHi为生境指数;Ti是为生境指数IHi的权重,1≤Ti≤4;n为自然数,n=3;In the formula: I H is the habitat comprehensive index, I Hi is the habitat index; T i is the weight of the habitat index I Hi , 1≤T i ≤4; n is a natural number, n=3;
表2Table 2
(2.3)根据表3中的赋分标准对生物参数IOij采集到的实时数据赋分得到对应赋分值I′Oij,未采集到的赋分为0,对应的权重取0,然后再利用根据表3中的权重值,按公式4计算出生物指数IOij,按公式5计算出生物综合指数Io;(2.3) According to the scoring criteria in Table 3, assign scores to the real-time data collected by the biological parameter I Oij to obtain the corresponding assigned score I′ Oij , the uncollected score is 0, and the corresponding weight is 0, and then use According to the weight value in table 3, calculate biological index I Oij according to formula 4, calculate biological comprehensive index Io according to formula 5;
式中:IOi为生物指数,I′Oij是生物参数IOij的赋分值;Qij是生物参数IOij的权重,1≤Qij≤4;n为自然数,n≤5;In the formula: I Oi is the biological index, I' Oij is the assigned score of the biological parameter I Oij ; Q ij is the weight of the biological parameter I Oij , 1≤Q ij ≤4; n is a natural number, n≤5;
式中:IO为生物综合指数,IOi是生物指数;Qi是对应生物指数IOi的权重,1≤Qi≤4,n为自然数,n=7;In the formula: I O is the biological comprehensive index, I Oi is the biological index; Qi is the weight of the corresponding biological index I Oi , 1≤Q i ≤4 , n is a natural number, n=7;
表3table 3
公式(1)、公式(2)和公式(4)中所用参数IWi、IHij和IOij的采集满足步骤(1)的要求,对未采集到的数据取0;The collection of parameters I Wi , I Hij and I Oij used in formula (1), formula (2) and formula (4) meet the requirements of step (1), and take 0 for the data that has not been collected;
(3)通过公式6获得湖泊生态系统健康指数EHALL,EHALL为Ecosystem HealthAssessment of Large Lake首字母简称,(3) Obtain the lake ecosystem health index EHALL by formula 6, EHALL is the acronym for Ecosystem HealthAssessment of Large Lake,
EHALL=IWWW+IHWH+IOWO 公式6,EHALL=I W W W +I H W H +I O W O Equation 6,
式中:WW为水质指数权重;WH为生境指数权重;WO为生物指数权重;where W W is the weight of the water quality index; W H is the weight of the habitat index; W O is the weight of the biological index;
WW、WH、WO相加等于1; WW , WH , WO add up to 1;
(4)用所得湖泊生态系统健康指数EHALL、水质指数IW、生境指数IH、生物指数IO,以及所采集到的湖泊生态特征参数实时数据的赋分值建立湖泊生态系统分层排列树形结构数据库,树形结构的顶层数据为湖泊生态系统健康指数EHALL,EHALL下属的中间层数据为水质指数IW、生境指数IH和生物指数IO,IH下属的下层数据为岸带IH1、底质IH2和水体IH3,IO下属的下层数据为鸟类IO1、江豚IO2、鱼类IO3、水生植物IO4、底栖动物IO5、浮游植物IO6和浮游动物IO7,每个下层数据下属至少有一个以上底层数据,底层数据为采集到的湖泊生态特征参数实时数据的赋分值;(4) Use the obtained lake ecosystem health index EHALL, water quality index I W , habitat index I H , biological index I O , and the assigned scores of the collected real-time data of lake ecological characteristic parameters to establish a layered tree of lake ecosystems The top layer of the tree structure is the lake ecosystem health index EHALL, the middle layer data under EHALL is the water quality index I W , the habitat index I H and the biological index I O , and the lower layer data under I H is the shore zone I H1 , substrate I H2 and water body I H3 , the lower data under I O are birds I O1 , finless porpoise I O2 , fish I O3 , aquatic plants I O4 , benthic animals I O5 , phytoplankton I O6 and zooplankton I O7 , each subordinate data subordinate has at least one or more bottom layer data, and the bottom layer data is the assigned value of the collected real-time data of lake ecological characteristic parameters;
(5)建立湖泊生态系统修复方法的分层排列树形结构数据库,树形结构至少包括顶层数据、中间层数据、下层数据和底层数据,顶层数据为湖泊生态系统综合修复法,顶层数据下属的中间层数据包括保育保护法B、自然恢复法Z、辅助修复法F和生态重塑法S,每个中间层数据下属有四个下层数据,其中保育保护法B下属的下层数据包括保育水质修复方法BW、保育生境修复方法BE和保育生物修复方法BA;自然恢复法Z下属的下层数据包括自然水质修复方法ZW、自然生境修复方法ZE和自然生物修复方法ZA;辅助修复法F下属的下层数据包括辅助水质修复方法FW、辅助生境修复方法FE和辅助生物修复方法FA;生态重塑法S下属的下层数据包括生态重塑水质修复方法SW、生态重塑生境修复方法SE和生态重塑生物修复方法SA;每个下层数据下属有两个以上底层数据,底层数据为修复技术方法;(5) Establish a hierarchically arranged tree structure database of lake ecosystem restoration methods. The tree structure includes at least top-level data, middle-level data, lower-level data and bottom-level data. The top-level data is the comprehensive restoration method of lake ecosystems. The middle layer data includes conservation and protection method B, natural restoration method Z, auxiliary restoration method F and ecological reconstruction method S. Each middle layer data has four lower layers of data, of which the lower layer data under the conservation and protection method B includes conservation and water quality restoration. Method B W , conservation habitat restoration method B E and conservation bioremediation method B A ; the subordinate data of natural restoration method Z includes natural water quality restoration method Z W , natural habitat restoration method Z E and natural bioremediation method Z A ; auxiliary restoration The subordinate data under the method F include the auxiliary water quality restoration method FW , the auxiliary habitat restoration method FE and the auxiliary bioremediation method FA ; the lower data under the ecological remodeling method S include the ecological remodeling water quality restoration method SW, the ecological remodeling method Habitat restoration method SE and ecological remodeling bioremediation method SA ; each lower-level data subordinate has more than two bottom-level data, and the bottom-level data are restoration technology methods;
(6)为湖泊生态系统分层排列树形结构数据库的各级数据分别设定对应的阈值范围,将湖泊生态系统分层排列数据库的各级数据与对应的阈值范围进行从顶层开始的逐级比较,当湖泊生态系统分层排列数据库的各层数据与对应的阈值范围匹配时,在湖泊生态系统分层排列树形结构数据库和湖泊生态系统修复方法分级排列数据库之间根据表4、表5、表6和表7建立映射关系,并通过映射关系选定对应的修复技术方法;(6) Set corresponding threshold ranges for the data at all levels of the tree structure database of lake ecosystem hierarchical arrangement, and perform a step-by-step process starting from the top level with the data at all levels of the lake ecosystem hierarchical arrangement database and the corresponding threshold ranges. For comparison, when the data at each layer of the lake ecosystem hierarchical arrangement database matches the corresponding threshold range, between the lake ecosystem hierarchical arrangement tree structure database and the lake ecosystem restoration method hierarchical arrangement database according to Table 4 and Table 5 , Table 6 and Table 7 establish a mapping relationship, and select the corresponding repair technology method through the mapping relationship;
表4阈值范围及映射关系一Table 4 Threshold range and mapping relationship 1
表5阈值范围及映射关系二Table 5 Threshold range and mapping relationship II
表6阈值范围及映射关系三Table 6 Threshold range and mapping relationship III
表7阈值范围及映射关系四Table 7 Threshold range and mapping relationship IV
(7)使用根据映射关系选定的修复技术方法对湖泊进行修复;(7) Use the restoration technology method selected according to the mapping relationship to restore the lake;
(8)用选定的修复技术方法对湖泊进行修复一个周期时间后,再根据步骤(1)采集湖泊生态特征参数的实时数据,重复步骤(2)、(3)、(4)、(5)、(6)和(7),直至获得EHALL≥90。(8) After restoring the lake with the selected restoration technology for a period of time, collect the real-time data of the lake ecological characteristic parameters according to step (1), and repeat steps (2), (3), (4), (5) ), (6) and (7) until EHALL≥90 is obtained.
对上述技术方案的进一步改进是:Further improvements to the above technical solutions are:
所述的湖泊生态系统健康评价和修复方法,步骤(3)中WW为0.2、WH为0.3、WO为0.5。In the described lake ecosystem health assessment and restoration method, in step (3), WW is 0.2, WH is 0.3, and WO is 0.5.
所述的湖泊生态系统健康评价和修复方法,步骤(2)中的权重值以水质指数IW的权重Pi、生境综合指数IH的权重Ti和Tij以及生物综合指数IO的权重Qi和Qij前期最优状态年份的历史数值为参考值设定权重。In the described lake ecosystem health evaluation and restoration method, the weight value in step (2) is the weight P i of the water quality index I W , the weights T i and T ij of the comprehensive habitat index I H , and the weight of the comprehensive biological index I O. The historical values of Qi and Qi ij in the previous optimal state years set the weights for the reference values.
所述的湖泊生态系统健康评价和修复方法,步骤(7)中的各域值范围根据历史基准法、均值比值法、已知目标法或建立目标法来确定,历史基准法是以前期最优状态年份的历史数值为参考值来确定阈值范围;均值比值法是以前期一个时间阶段的历史平均值为参考值来确定阈值范围,且该时间阶段的评价参数处于最优状态;已知目标法是依据前期已知最优数据作为参考值来确定阈值范围;建立目标法是依据对目前湖泊生态系统健康的危害程度作为参考来确定阈值范围。In the described lake ecosystem health assessment and restoration method, the range of each domain value in step (7) is determined according to the historical benchmark method, the mean value ratio method, the known target method or the established target method, and the historical benchmark method is based on the previous optimal method. The historical value of the status year is used as a reference value to determine the threshold range; the mean ratio method uses the historical average value of a previous time period as a reference value to determine the threshold value range, and the evaluation parameters of this time period are in the optimal state; the known target method The threshold range is determined based on the best known data in the previous period as a reference value; the establishment of the target method is based on the current degree of harm to the health of the lake ecosystem as a reference to determine the threshold range.
所述的湖泊生态系统健康评价和修复方法,步骤(6)中湖泊生态系统顶层数据为健康指数EHALL的阈值范围分别为EHALL<Y11、Y11≤EHALL<Y12、Y12≤EHALL<Y13和EHALL≥Y13;湖泊生态系统EHALL下属的中间层数据为水质指数IW的阈值范围分别为IW<Y21、Y21≤IW<Y22、Y22≤IW<Y23和IW≥Y23,生境指数IH的阈值范围分别为IH<Y21、Y21≤IH<Y22、Y22≤IH<Y23和IH≥Y23,生物指数IO的阈值范围分别为IO<Y21、Y21≤IO<Y22、Y22≤IO<Y23和IO≥Y23;水质指数IW下属的底层数据为采集到的湖泊生态特征参数实时数据的赋分值I′Wi,i=1,2,……,8,各赋分值的阈值范围为I′Wi<Y31、Y31≤I′Wi<Y32、Y32≤I′Wi<Y33和I′Wi≥Y33,生境指数IH下属的下层数据为岸带IH1、底质IH2和水体IH3,生物指数IO下属的下层数据为鸟类IO1、江豚IO2、鱼类IO3、水生植物IO4、底栖动物IO5、浮游植物IO6和浮游动物IO7。In the described lake ecosystem health assessment and restoration method, the top-level data of the lake ecosystem in step (6) is the threshold range of the health index EHALL, respectively, EHALL<Y 11 , Y 11 ≤EHALL<Y 12 , Y 12 ≤EHALL<Y 13 and EHALL≥Y 13 ; the intermediate layer data under the lake ecosystem EHALL is the threshold range of the water quality index I W respectively I W <Y 21 , Y 21 ≤I W <Y 22 , Y 22 ≤I W <Y 23 and I W ≥ Y 23 , the threshold ranges of the habitat index I H are I H <Y 21 , Y 21 ≤I H <Y 22 , Y 22 ≤I H <Y 23 and I H ≥ Y 23 , respectively. The threshold ranges are I O <Y 21 , Y 21 ≤ I O <Y 22 , Y 22 ≤ I O <Y 23 and I O ≥ Y 23 ; the bottom data under the water quality index I W are the collected lake ecological characteristic parameters The assigned score I'Wi of real-time data, i=1,2,...,8, the threshold range of each assigned score is I'Wi <Y 31 , Y 31 ≤I' Wi < Y 32 , Y 32 ≤I ′ Wi <Y 33 and I′ Wi ≥ Y 33 , the lower layer data under habitat index I H are shore zone I H1 , substrate I H2 and water body I H3 , and the lower layer data under biological index I O are birds I O1 , Finless porpoise I O2 , fish I O3 , aquatic plant I O4 , benthic I O5 , phytoplankton I O6 and zooplankton I O7 .
所述的湖泊生态系统健康评价和修复方法,步骤(6)中Y11为60,Y12为80,Y13为90;Y21为50,Y22为75,Y23为90;Y31为50,Y32为75,Y33为90。In the described lake ecosystem health assessment and restoration method, in step (6), Y 11 is 60, Y 12 is 80, and Y 13 is 90; Y 21 is 50, Y 22 is 75, and Y 23 is 90; Y 31 is 90; 50, Y32 is 75 , Y33 is 90.
所述的湖泊生态系统健康评价和修复方法,步骤(5)建立的湖泊生态系统修复方法的分层排列树形结构数据库中,下层数据下属的底层数据为修复技术方法,具体是保育水质修复方法BW下属的底层数据至少包括城镇居民生活污水处理技术JW1和水污染源输入控制技术JW2;自然水质修复方法ZW下属的底层数据至少包括水体自净修复技术JW3和动力换水技术JW4;辅助水质修复方法FW下属的底层数据至少包括生态稳定塘技术JW5、投放微生物菌剂技术JW6和生物膜技术JW7;生态重塑水质修复方法SW下属的底层数据至少包括水产养殖技术JW8和底泥疏浚技术JW9;保育生境修复方法BE下属的底层数据至少包括退渔还湖技术JE1、湖岸整治技术JE2和综合生境保育技术JE3;自然生境修复方法ZE下属的底层数据至少包括植物种类选配种植技术JE4、河湖连通恢复技术JE5和植物群落自然修复技术JE6;辅助生境修复方法FE下属的底层数据至少包括潜坝消浪技术JE7、环湖林带种植技术JE8和缓冲带植被修复技术JE9;生态重塑生境修复方法SE下属的底层数据至少包括人工湿地技术JE10、生态浮床技术JE11和底质生境重塑技术JE12;保育生物修复方法BA下属的底层数据至少包括以草控藻修复技术JA1、生物入侵种控制技术JA2和鸟类综合保育技术JA3;自然生物修复方法ZA下属的底层数据至少包括原位生物修复技术JA4、水层食物链控制技术JA5和鸟类群落自然恢复技术JA6;辅助生物修复方法FA下属的底层数据至少包括水生植物修复技术JA7、特殊鱼类投放技术JA8和鸟类饵料资源修复技术JA9;生态重塑生物修复方法SA下属的底层数据至少包括水生动物投放技术JA10、水生植物群落重塑技术JA11和鸟类群落重塑技术JA12。In the described lake ecosystem health assessment and restoration method, in the layered tree structure database of the lake ecosystem restoration method established in step (5), the bottom data subordinate to the lower layer data is the restoration technology method, specifically the conservation water quality restoration method The bottom data under B W include at least urban residents' domestic sewage treatment technology JW 1 and water pollution source input control technology JW 2 ; the bottom data under Z W include at least water body self-purification repair technology JW 3 and dynamic water exchange technology JW 4 ; The bottom data of the auxiliary water quality restoration method FW includes at least the ecological stabilization pond technology JW 5 , the microbial inoculum technology JW 6 and the biofilm technology JW 7 ; the bottom data of the ecological remodeling water quality restoration method SW at least includes aquaculture. Technology JW 8 and bottom mud dredging technology JW 9 ; bottom layer data of conservation habitat restoration method B E at least include returning fishing to lake technology JE 1 , lake shore regulation technology JE 2 and comprehensive habitat conservation technology JE 3 ; natural habitat restoration method Z E The subordinate bottom data at least include plant species selection planting technology JE 4 , river-lake connection restoration technology JE 5 and plant community natural restoration technology JE 6 ; the subordinate bottom data of auxiliary habitat restoration method FE at least includes submerged dam wave elimination technology JE 7 , planting technology JE 8 in forest belt around the lake and JE 9 for vegetation restoration technology in buffer zone; the underlying data of ecological remodeling and habitat restoration method SE at least include constructed wetland technology JE 10 , ecological floating bed technology JE 11 and sediment habitat remodeling technology JE 12 ; The underlying data of conservation bioremediation method B A shall at least include grass-control algae remediation technology JA 1 , biological invasive species control technology JA 2 and bird comprehensive conservation technology JA 3 ; the underlying data of natural bioremediation method Z A shall at least Including in situ bioremediation technology JA 4 , water layer food chain control technology JA 5 and bird community natural restoration technology JA 6 ; the bottom data of auxiliary bioremediation method FA at least include aquatic phytoremediation technology JA 7 , special fish feeding technology JA 8 and bird bait resource restoration technology JA 9 ; Ecological remodeling bioremediation method S The underlying data under S A include at least the aquatic animal placing technology JA 10 , the aquatic plant community remodeling technology JA 11 and the bird community remodeling technology JA 12 .
湖泊生态系统修复方法的分层排列树形结构数据库的底层数据为环境保护领域现有的修复技术方法,,城镇居民生活污水处理技术JW1:城镇居民生活污水由城市排水管网汇集并输送到污水处理厂进行处理;水污染源输入控制技术JW2:对湖泊入湖河道及补水线路沿线存在的污染源实施综合整治;水体自净修复技术JW3:即经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,使水体恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁;动力换水技术JW4:定期补水,加速湖水交换,使湖泊水体“动起来”,提高其自净能力,以提高湖泊的水质,降低湖泊的富营养化程度;生态稳定塘技术JW5:利用天然净化能力对污水进行处理的构筑物的总称,是以塘为主要构筑物,利用自然界的生物群体净化污水的处理设施,稳定塘是以太阳能为初始能量,通过在塘中种植水生植物,进行水产和水禽养殖,形成人工生态系统,在太阳能作为初始能量的推动下,通过稳定塘中多条食物链的物质迁移、转化和能量的逐级传递、转化,将进入塘中污水的有机污染物进行降解和转化,最后去除污染物,而且以水生植物和水产、水禽的形式作为资源回收,净化的污水作为再生资源予以回收再用;投放微生物菌剂技术JW6:利用菌类微生物的活动,使有毒有害污染物转化为无毒或低毒的无机化合物,使水体恢复自净或通过将人工培养和人工改造对污染物降解有明显效果的复合微生物菌剂投加到水体中使其与水体自身带有的微生物共同作用,对有机污染物进行降解,有效去除污染物;生物膜技术JW7:指当比表面积较大的载体上富集着大量微生物时,微生物含有丰富的氮和磷等营养物质,这种载体就能有效地拦截、吸附、降解这些物质,进而对水中的污染物进行分解,转化出多余的氮、磷等营养物质,达到污染水体进行净化的作用;水产养殖技术JW8:利用可供养殖和种植的水域,养殖对象的生态习性和对水域环境条件的要求不同,运用水产养殖技术和设施,水生经济动、植物养殖;底泥疏浚技术JW9:科学制定湖区清淤计划,采取环保生态清淤方法,重点清理局部区域的湖底面层淤泥,提高湖区深度,去除底泥的污染物含量,有效控制由于夏、秋季温度升高后,底泥中有机物分解释放对水体水质产生不良影响;同时对入湖河道实施清淤和河道综合整治,通过生态清淤,消减底泥中总氮总磷,保障河道水系畅通,从而提高入湖河道水质;退渔还湖技术JE1:拆除影响湖泊自然生态景观的养殖设施,使湖泊水面得以恢复;湖岸整治技术JE2:全面清理整治排查出的违法违规岸线利用项目,以打通河湖行洪通道,拓宽水域面积;综合生境保育技术JE3:通过多种手段,保护或建造原有的生境特征,保护生境多样性;植物种类选配种植技术JE4:根据生态系统状况,结合植物的生态规律,优选指定条件的植物种类,并选择合适的环境进行栽植;河湖连通恢复技术JE5:维系、重塑或新建河湖水流连接通道,维持河湖流域水文循环、物质循环和能量循环如开挖和疏浚连接通道、拆除控制闸坝;植物群落自然修复技术JE6:经过生态系统自身的物理、化学与生物的作用,使植物群落恢复到受污染前的状态;潜坝消浪技术JE7:潜没于湖区控制高水位以下,并以湖滨带消浪为主要目的而构筑的建筑物;环湖林带种植技术JE8:恢复和重建后的岸坡植被对水陆生态系统间的物流、能流、信息流和生物流,起到廊道、过滤器和屏障的作用,发挥控制水土流失、保护水岸,增加动植物物种种源,提高生物多样性和生态系统生产力,调节微气候和美化环境诸多功能;缓冲带植被修复技术JE9:在缓冲带上坡处构建堤岸并种植水生植物,最终形成地域空间上有机衔接、生态结构上合理延续、污染迁移上有效缓冲的生态屏障;人工湿地技术JE10:指用人工筑成水池或沟槽,铺设隔水层和充填基质层后种植水生植物,或将受污水体有控制地投配到有大型水生植物和滤食性鱼类的湿地上,使之经常处于饱和状态,再利用基质、植物、微生物的物理、化学、生物三重协同作用,让污水流经耐水植物和土壤以及鱼类的综合作用时得以净化;生态浮床技术JE11:水体生态原位修复技术;传统生态浮床是利用水生植物的修复作用和无土栽培原理,以现代农业为基础,集合生态工程措施而形成的水面无土种植植物技术;底质生境重塑技术JE12:通过选择水质适宜和地下水丰富区域进行底质观测,分析湖泊最佳底质组成,以及最佳底质生境因子组成;然后通过底质复耕和底质铺装重建技术,对底质受破坏区域进行底质生境重建;以草控藻修复技术JA1:选用适宜的水生植物种类,用以控制水体中浮游藻类生物量和营养盐含量,达到净化水质的目的;生物入侵种控制技术JA2:有效控制生物入侵,对入侵物种进行全面清理和填埋,控制其发展;同时,禁止湖区内人工放养和散养入侵种,避免造成生态风险;持续监测已经存在的外来物种,评估其可带来的风险;鸟类综合保育技术JA3:对鸟类群落进行综合性保护;原位生物修复技术JA4:是在不改变土壤、河流位置的情况下,通过添加微生物试剂、营养元素以及土壤改良剂,提高土壤土著微生物或外源微生物对土壤、河流有机污染物的降解,从而使得土壤、河流得到修复;水层食物链控制技术JA5:通过调整水生动物群落结构,调整水生系统的食物网结构,利用生物间的取食关系达到控制藻类和其他浮游植物繁殖的目的,引导该区域湿地生态系统尽快进入良性循环;鸟类群落自然恢复技术JA6:经过生态系统自身的物理、化学与生物的作用,使鸟类群落恢复到受干扰前的状态;水生植物修复技术JA7:恢复与重建水生植被是水体生态环境修复的关键;水生植物是河湖的天然―骨架,是保育和维持生物多样性、延长食物链、培育和壮大复杂食物网的关键,促进生态系统健康和维系系统多种生态和服务功能的基础;特殊鱼类投放技术JA8:通过增殖放流特殊鱼类,对湖泊鱼类群落进行调整和修复;鸟类饵料资源修复技术JA9:增殖饵料鱼类资源,提高沼泽湿地作为鱼类、鸟类栖息地的适宜性,恢复沼泽湿地食物链结构;水生动物投放技术JA10:进行人工增殖放流,为弥补鱼类种群资源补充量的不足,建立更多鱼类人工增殖放流站,捞取在湖泊中繁殖的仔鱼,在培育有大量浮游生物的池塘中饲养2、3月,然后放回湖泊,增加湖泊的渔业资源量,提高湖泊渔业生产性能和生产能力;发展培养长江江豚体细胞技术,建立体细胞库,加强江豚人工繁殖;水生植物群落重塑技术JA11:调整水生植物品种及群落布局,进行水生植物种植或清除,从而改善湖泊水生植物群落结构;鸟类群落重塑技术JA12:调整鸟类品种及群落布局,进行鸟类放养,从而改善鸟类群落结构。Hierarchical arrangement of lake ecosystem restoration methods The underlying data of the tree structure database is the existing restoration technology methods in the field of environmental protection, Urban Residents' Domestic Sewage Treatment Technology JW 1 : Urban residents' domestic sewage is collected by the urban drainage pipe network and transported to Sewage treatment plant for treatment; water pollution source input control technology JW 2 : comprehensively rectify the pollution sources existing along the lake into the lake and along the water supply line ; The concentration of pollutants in the sewage can be reduced, the water body can be restored to the state before the pollution, and decomposed under the action of microorganisms, so that the water body can be restored from unclean to clean; dynamic water exchange technology JW 4 : regular water replenishment to speed up lake water Exchange, make the lake water "move" and improve its self-purification ability, so as to improve the water quality of the lake and reduce the degree of eutrophication of the lake; the ecological stabilization pond technology JW 5 : the general term for the structures that use the natural purification ability to treat sewage. The pond is the main structure, and the natural biological population is used to purify the sewage treatment facility. The stabilization pond uses solar energy as the initial energy. By planting aquatic plants in the pond, aquatic products and waterfowl breeding are carried out to form an artificial ecosystem, and the solar energy is used as the initial energy. Under the impetus of stabilizing the material migration and transformation of multiple food chains in the pond and the step-by-step transfer and transformation of energy, the organic pollutants entering the sewage in the pond are degraded and transformed, and finally the pollutants are removed. , the form of waterfowl is recycled as a resource, and the purified sewage is recycled and reused as a renewable resource; microbial inoculum technology JW 6 : using the activity of fungal microorganisms to convert toxic and harmful pollutants into non-toxic or low-toxic inorganic compounds, Restore the water body to self-purification or add compound microbial inoculants that have obvious effects on the degradation of pollutants by artificial cultivation and artificial modification into the water body to make it work with the microorganisms in the water body to degrade organic pollutants and effectively remove them. Pollutants; biofilm technology JW 7 : When a large number of microorganisms are enriched on a carrier with a large specific surface area, the microorganisms are rich in nutrients such as nitrogen and phosphorus, and this carrier can effectively intercept, adsorb and degrade these substances. , and then decompose the pollutants in the water, convert the excess nitrogen, phosphorus and other nutrients to achieve the effect of purifying the polluted water body; aquaculture technology JW 8 : Using the water area for breeding and planting, the ecological habits of the breeding objects and the Different requirements for water environment conditions, using aquaculture technology and facilities, aquatic economic animal and plant breeding; sediment dredging technology JW 9 : scientifically formulate lake area dredging plans, adopt environmentally friendly ecological dredging methods, and focus on cleaning the lake bottom surface in local areas layer silt, increase the depth of the lake area, remove the pollutant content in the sediment, and effectively control the adverse impact on the water quality due to the decomposition and release of organic matter in the sediment after the temperature rises in summer and autumn; Remediation, through ecological dredging, reducing the total nitrogen and total phosphorus in the sediment, ensuring the smooth flow of the river system, thereby improving the water quality of the river entering the lake; returning fishing to the lake Technology JE 1 : Remove the breeding facilities that affect the natural ecological landscape of the lake, so that the lake water surface can be restored; Lake shore improvement technology JE 2 : Comprehensively clean up and rectify the illegal shoreline utilization projects identified, in order to open up the river and lake flood channels and expand the water area ;Comprehensive Habitat Conservation Technology JE 3 : Protect or build original habitat characteristics and protect habitat diversity through various means; Plant species selection and planting technology JE 4 : According to the status of the ecosystem, combined with the ecological laws of plants, the specified conditions are optimized plant species, and select the appropriate environment for planting; river-lake connection restoration technology JE 5 : maintain, reshape or build river-lake water flow connection channels, maintain the hydrological cycle, material cycle and energy cycle of river and lake basins such as excavation and dredging connections Channels, dismantling control gates and dams; plant community natural restoration technology JE 6 : through the physical, chemical and biological effects of the ecosystem itself, the plant community is restored to the state before pollution; submerged dam wave elimination technology JE 7 : submerged in The lake area is controlled below the high water level, and the main purpose is to eliminate the waves in the lakeside belt; the planting technology of the forest belt around the lake JE 8 : the restoration and reconstruction of the slope vegetation on the logistics, energy flow and information flow between the aquatic and terrestrial ecosystems and biological flow, play the role of corridors, filters and barriers, and play many functions of controlling soil erosion, protecting waterfronts, increasing the provenance of animal and plant species, improving biodiversity and ecosystem productivity, regulating microclimate and beautifying the environment; Buffer zone vegetation restoration technology JE 9 : Build embankments and plant aquatic plants on the upper slope of the buffer zone, and finally form an ecological barrier that is organically connected in geographical space, reasonably continued in ecological structure, and effectively buffered in pollution migration; Constructed wetland technology JE 10 : Refers to artificially build pools or trenches, lay water-insulating layers and fill substrate layers and then plant aquatic plants, or control the dosing of sewage bodies on wetlands with large aquatic plants and filter-feeding fish, so that they are often In a saturated state, the triple synergy of physics, chemistry and biology of substrates, plants and microorganisms is reused, so that sewage can be purified when it flows through the comprehensive action of water-resistant plants, soil and fish; ecological floating bed technology JE 11 : ecological in situ restoration of water bodies Technology; traditional ecological floating bed is a water surface soilless planting plant technology formed by using the restoration effect of aquatic plants and the principle of soilless cultivation, based on modern agriculture, and integrating ecological engineering measures; sediment habitat remodeling technology JE 12 : By selecting water quality Observation of substrates in areas suitable for and rich in groundwater to analyze the composition of the lake’s best substrates and the composition of optimal substrate habitat factors; Habitat reconstruction; algae restoration technology with grass control JA 1 : select suitable aquatic plant species to control planktonic algae biomass and nutrient content in water to achieve the purpose of purifying water quality; biological invasive species control technology JA 2 : effectively control biological Invasion, comprehensive cleaning and landfilling of invasive species to control their development; at the same time, artificial stocking and free-range breeding of invasive species in the lake area are prohibited to avoid ecological risks; continuous monitoring Existing alien species, assessing the risks they may bring; Integrated bird conservation technology JA 3 : comprehensive protection of bird communities; in situ bioremediation technology JA 4 : without changing the location of soil and rivers , by adding microbial reagents, nutrient elements and soil conditioners, to improve the degradation of soil and river organic pollutants by soil indigenous microorganisms or exogenous microorganisms, so that soil and rivers can be rehabilitated; water layer food chain control technology JA 5 : By adjusting aquatic organisms Animal community structure, adjust the food web structure of the aquatic system, use the feeding relationship between organisms to control the reproduction of algae and other phytoplankton, and guide the wetland ecosystem in the region to enter a virtuous cycle as soon as possible; bird community natural restoration technology JA 6 : Through the physical, chemical and biological effects of the ecosystem itself, the bird community can be restored to the state before the disturbance; Aquatic plant restoration technology JA 7 : Restoring and rebuilding aquatic vegetation is the key to the restoration of water ecological environment; The natural skeleton of fish is the key to conserving and maintaining biodiversity, extending the food chain, cultivating and expanding complex food webs, promoting ecosystem health and maintaining the basis of various ecological and service functions of the system; special fish feeding technology JA 8 : through Proliferate and release special fish to adjust and restore lake fish communities; bird bait resource restoration technology JA 9 : multiply bait fish resources, improve the suitability of swamp wetlands as fish and bird habitats, and restore swamp wetland food chain Structure; Aquatic animal release technology JA 10 : artificial proliferation and release, in order to make up for the lack of replenishment of fish population resources, establish more artificial proliferation and release stations for fish, pick up the larvae that breed in the lake, and cultivate a large number of plankton in the lake. Raised in ponds for February and March, and then returned to lakes to increase the amount of fishery resources in the lakes, and improve the production performance and production capacity of lake fisheries; develop the somatic cell technology of Yangtze finless porpoises, establish somatic cell banks, and strengthen artificial reproduction of finless porpoises; aquatic plant communities Reshaping technology JA 11 : Adjust aquatic plant species and community layout, and plant or remove aquatic plants to improve the structure of aquatic plant community in lakes; Bird community reshaping technology JA 12 : Adjust bird species and community layout, and carry out bird stocking , thereby improving bird community structure.
所述的湖泊生态系统健康评价和修复方法,步骤(6)中表4、表5、表6和表7的阈值范围和映射关系具体如下:EHALL<Y11,依次启用生态重塑法S、辅助修复法F、自然恢复法Z和保育保护法B下属的所有修复技术方法;Y11≤EHALL<Y12,则依次启用辅助修复法F、自然恢复法Z和保育保护法B,并进一步对水质指数IW、生境指数IH和生物指数IO的阈值范围进行判断,当IW<Y21,依次启用生态重塑水质修复方法SW、辅助水质修复方法FW、自然水质修复方法ZW和保育水质修复方法BW下属的所有修复技术方法,当IH<Y21,依次启用生态重塑生境修复方法SE、辅助生境修复方法FE、自然生境修复方法ZE和保育生境修复方法BE,当IO<Y21,依次启用生态重塑生物修复方法SA、辅助生物修复方法FA、自然生物修复方法ZA和保育生物修复方法BA;当Y11≤EHALL<Y12且Y21≤IW<Y22,依次启用辅助水质修复方法FW、自然水质修复方法ZW和保育水质修复方法BW,并进一步对I′wi的阈值范围进行判断,当I′W1<Y31或I′W2<Y31启用辅助水质修复方法FW中的JW5,当I′W3<Y31、I′W4<Y31或I′W5<Y31启用辅助水质修复方法FW中的JW6,当I′W6<Y31、I′W7<Y31或I′W8<Y31辅助水质修复方法FW中的JW7,当I′W1<Y31、I′W3<Y31、I′W5<Y31或I′W6<Y31启用自然水质修复方法ZW中的JW3,当I′W2<Y31、I′W4<Y31、I′W7<Y31或I′W8<Y31启用自然水质修复方法ZW中的JW4,当I′W1<Y31、I′W3<Y31、I′W5<Y31或I′W6<Y31启用保育水质修复方法BW中的JW1,当I′W2<Y31、I′W4<Y31、I′W7<Y31或I′W8<Y31启用保育水质修复方法BW中的JW2;当Y11≤EHALL<Y12且Y21≤IH<Y22,依次启用辅助生境修复方法FE、自然生境修复方法ZE和保育生境修复方法BE,并进一步对IHi的阈值范围进行判断,当I′H1<Y31启用辅助生境方法FE中的JE7,当I′H2<Y31启用辅助生境方法FE中的JE8,当I′H3<Y31启用辅助生境方法FE中的JE9,当I′H1<Y31启用自然生境方法ZE中的JE5,当I′H2<Y31启用自然生境方法ZE中的JE4,当I′H3<Y31启用自然生境方法ZE中的JE6,当I′H1<Y31启用保育生境方法BE中的JE3,当I′H2<Y31启用保育生境方法BE中的JE1,当I′H3<Y31启用保育生境方法BE中的JE2;当Y11≤EHALL<Y12且Y21≤IO<Y22,依次启用辅助生物修复方法FA、自然生物修复方法ZA和保育生物修复方法BA,并进一步对IOi的阈值范围进行判断,当I′O1<Y31启用辅助生物方法FA中的JA9,当I′O2<Y31、I′O4<Y31或I′O7<Y31启用辅助生物修复方法FA中的JA7,当I′O3<Y31、I′O5<Y31或I′O6<Y31启用辅助生物修复方法FA中的JA8,当I′O1<Y31自然生物修复方法ZA中的JA6,当I′O3<Y31、I′O5<Y31或I′O7<Y31启用自然生物修复方法ZA中的JA5,当I′O2<Y31、I′O4<Y31或I′O6<Y31启用自然生物修复方法ZA中的JA4,当I′O1<Y31保育生物修复方法BA中的JA3,当I′O4<Y31或I′O6<Y31启用保育生物修复方法BA中的JA1,当I′O2<Y31、I′O3<Y31、I′O5<Y31或I′O7<Y31启用保育生物修复方法BA中的JA2;当Y12≤EHALL<Y13且Y22≤IW<Y23,依次启用自然水质修复方法ZW和保育水质修复方法BW,并进一步对I′wi的阈值范围进行判断,当I′W1<Y32、I′W3<Y32、I′W5<Y32或I′W6<Y32启用自然水质修复方法ZW中的JW3,当I′W2<Y32、I′W4<Y32、I′W7<Y32或I′W8<Y32启用自然水质修复方法ZW中的JW4,当I′W1<Y32、I′W3<Y32、I′W5<Y32或I′W6<Y32启用保育水质修复方法BW中的JW1,当I′W2<Y32、I′W4<Y32、I′W7<Y32或I′W8<Y32启用保育水质修复方法BW中的JW2;当Y12≤EHALL<Y13且Y22≤IH<Y23,依次启用自然生境修复方法ZE和保育生境修复方法BE,并进一步对IHi的阈值范围进行判断,当I′H1<Y32启用自然生境方法ZE中的JE5,当I′H2<Y32启用自然生境方法ZE中的JE4,当I′H3<Y32启用自然生境方法ZE中的JE6,当I′H1<Y32启用保育生境方法BE中的JE3,当I′H2<Y32启用保育生境方法BE中的JE1,当I′H3<Y32启用保育生境方法BE中的JE2;当Y12≤EHALL<Y13且Y22≤IO<Y23,依次启用自然生物修复方法ZA和保育生物修复方法BA,并进一步对IOi的阈值范围进行判断,当I′O1<Y32自然生物修复方法ZA中的JA6,当I′O3<Y32、I′O5<Y32或I′O7<Y32启用自然生物修复方法ZA中的JA5,当I′O2<Y32、I′O4<Y32或I′O6<Y32启用自然生物修复方法ZA中的JA4,当I′O1<Y32保育生物修复方法BA中的JA3,当I′O4<Y32或I′O6<Y32启用保育生物修复方法BA中的JA1,当I′O2<Y32、I′O3<Y32、I′O5<Y32或I′O7<Y32启用保育生物修复方法BA中的JA2;当EHALL≥Y13且IW≥Y23,启用保育水质修复方法BW,并进一步对I′wi的阈值范围进行判断,当I′W1<Y33、I′W3<Y33、I′W5<Y33或I′W6<Y33启用保育水质修复方法BW中的JW1,当I′W2<Y33、I′W4<Y33、I′W7<Y33或I′W8<Y33启用保育水质修复方法BW中的JW2;当EHALL≥Y13且IH≥Y23,启用保育生境修复方法BE,当I′H1<Y33启用保育生境方法BE中的JE3,当I′H2<Y33启用保育生境方法BE中的JE1,当I′H3<Y33启用保育生境方法BE中的JE2;当EHALL≥Y13且IO≥Y23,启用保育生物修复方法BA,并进一步对IOi的阈值范围进行判断,当I′O1<Y33保育生物修复方法BA中的JA3,当I′O4<Y33或I′O6<Y33启用保育生物修复方法BA中的JA1,当I′O2<Y33、I′O3<Y33、I′O5<Y33或I′O7<Y33启用保育生物修复方法BA中的JA2。In the described lake ecosystem health assessment and restoration method, the threshold ranges and mapping relationships in Table 4, Table 5, Table 6 and Table 7 in step (6) are as follows: EHALL<Y 11 , the ecological remodeling method S, All restoration technical methods under the auxiliary restoration method F, natural restoration method Z and conservation and protection method B; if Y 11 ≤ EHALL < Y 12 , the auxiliary restoration method F, natural restoration method Z and conservation and protection method B shall be activated in turn, and further The threshold range of water quality index I W , habitat index I H and biological index I O is judged. When I W < Y 21 , the ecological remodeling water quality restoration method SW , the auxiliary water quality restoration method FW , and the natural water quality restoration method Z are used in turn. W and conservation water quality restoration method B All restoration technology methods under W , when I H < Y 21 , use ecological remodeling habitat restoration method SE , auxiliary habitat restoration method FE , natural habitat restoration method Z E and conservation habitat restoration method in turn. Method B E , when I O <Y 21 , the ecological remodeling bioremediation method SA, the auxiliary bioremediation method FA, the natural bioremediation method Z A and the conservation bioremediation method BA are enabled in turn; when Y 11 ≤ EHALL < Y 12 and Y 21 ≤I W <Y 22 , the auxiliary water quality restoration method F W , the natural water quality restoration method Z W and the conservation water quality restoration method B W are used in turn, and the threshold range of I′wi is further judged. When I′W1 <Y 31 or I′ W2 < Y 31 enable JW 5 in the auxiliary water quality restoration method FW, when I′ W3 < Y 31 , I′ W4 < Y 31 or I′ W5 < Y 31 , enable the auxiliary water quality restoration method FW JW 6 in the auxiliary water quality restoration method FW when I′ W6 <Y 31 , I′ W7 < Y 31 or I′ W8 < Y 31 JW 7 in the auxiliary water quality restoration method FW, when I′ W1 < Y 31 , I′ W3 <Y 31. I'W5 <Y 31 or I'W6 <Y 31 Enable JW 3 in the natural water quality restoration method Z W , when I' W2 < Y 31 , I' W4 < Y 31 , I' W7 < Y 31 or I ′ W8 < Y 31 enables JW 4 in the natural water quality restoration method Z W , when I′ W1 < Y 31 , I′ W3 < Y 31 , I′ W5 < Y 31 or I′ W6 < Y 31 , the conservation water quality restoration method is enabled JW 1 in B W , when I' W2 <Y 31 , I' W4 < Y 31 , I' W7 < Y 31 or I' W8 < Y 31 , the conservation water quality restoration method JW 2 in B W is activated; when Y 11 ≤EHALL<Y 12 and Y 21 ≤I H <Y 22 , the assisted habitat restoration method FE and natural Habitat restoration method Z E and conservation habitat restoration method B E , and further judge the threshold range of I Hi , when I' H1 < Y 31 , enable JE 7 in the auxiliary habitat method FE , and when I' H2 < Y 31 JE 8 in Assisted Habitat Approach FE when I′ H3 < Y 31 enables JE 9 in Assisted Habitat Approach FE when I′ H1 < Y 31 enables JE 5 in Natural Habitat Approach Z E when I′ H2 < Y 31 enables JE 4 in natural habitat method Z E , when I' H3 < Y 31 enables JE 6 in natural habitat method Z E , when I' H1 < Y 31 enables JE 3 in conservation habitat method B E , When I' H2 < Y 31 enables JE 1 in the conservation habitat method B E , when I' H3 < Y 31 enables JE 2 in the conservation habitat method B E ; when Y 11 ≤ EHALL < Y 12 and Y 21 ≤ I O <Y 22 , enable the auxiliary bioremediation method F A , the natural bioremediation method Z A and the conservation bioremediation method B A in turn, and further judge the threshold range of I Oi , when I′ O1 < Y 31 enable the auxiliary biological method F JA 9 in A when I'O2 < Y 31 , I' O4 < Y 31 , or I' O7 < Y 31 enabling the assisted bioremediation method FA JA 7 in A when I' O3 < Y 31 , I' O5 <Y 31 or I′ O6 < Y 31 enables JA 8 in assisted bioremediation method FA, when I′ O1 <Y 31 JA 6 in natural bioremediation method Z A , when I ′ O3 < Y 31 , I′ O5 < Y 31 or I′ O7 < Y 31 enables JA 5 in natural bioremediation method Z A , when I′ O2 < Y 31 , I′ O4 < Y 31 or I′ O6 < Y 31 enables natural bioremediation method Z JA 4 in A , when I'O1 < Y 31 Conservation Bioremediation Method B JA 3 in A , when I' O4 < Y 31 or I' O6 < Y 31 JA 1 in Conservation Bioremediation Method B A , JA 2 in conservation bioremediation method BA is enabled when I ' O2 < Y 31 , I' O3 < Y 31 , I' O5 < Y 31 , or I' O7 < Y 31 ; when Y 12 ≤ EHALL < Y 13 and Y 22 ≤I W <Y 23 , activate the natural water quality restoration method Z W and the conservation water quality restoration method B W in turn, and further judge the threshold range of I′ wi , when I′ W1 <Y 32 , I′ W3 <Y 32 , I'W5 <Y 32 or I'W6 <Y 32 , enable natural water quality restoration JW 3 in method Z W , when I' W2 < Y 32 , I' W4 < Y 32 , I' W7 < Y 32 or I' W8 < Y 32 enable JW 4 in natural water quality restoration method Z W , when I ′ W1 <Y 32 , I′ W3 <Y 32 , I′ W5 <Y 32 or I′ W6 < Y 32 enable JW 1 in the conservation water quality restoration method B W , when I′ W2 <Y 32 , I′ W4 < Y 32 , I′ W7 <Y 32 or I′ W8 < Y 32 enable JW 2 in conservation water quality restoration method B W ; when Y 12 ≤ EHALL < Y 13 and Y 22 ≤ I H < Y 23 , enable natural habitats in sequence Restoration method Z E and conservation habitat restoration method B E , and further judge the threshold range of I Hi , when I' H1 < Y 32 , JE 5 in the natural habitat method Z E is enabled, and when I' H2 < Y 32 , the natural habitat method is enabled. JE 4 in Habitat Method Z E when I′ H3 < Y 32 enables JE 6 in Natural Habitat Method Z E when I′ H1 < Y 32 enables JE 3 in Conservation Habitat Method B E when I′ H2 < Y 32 enables JE 1 in the conservation habitat method BE, when I′ H3 <Y 32 enables JE 2 in the conservation habitat method BE; when Y 12 ≤ EHALL < Y 13 and Y 22 ≤ I O < Y 23 , in turn Enable the natural bioremediation method Z A and the conservation bioremediation method B A , and further judge the threshold range of I Oi , when I′ O1 <Y 32 JA 6 in the natural bioremediation method Z A , when I′ O3 <Y 32 , I′ O5 <Y 32 or I′ O7 < Y 32 enable JA 5 in natural bioremediation method Z A , when I′ O2 < Y 32 , I′ O4 < Y 32 or I′ O6 < Y 32 enable natural JA 4 in bioremediation method Z A when I'O1 < Y 32 JA 3 in conservation bioremediation method B A when I' O4 < Y 32 or I' O6 < Y 32 enabled conservation bioremediation method B A JA 1 , when I'O2 < Y 32 , I' O3 < Y 32 , I' O5 < Y 32 or I' O7 < Y 32 JA 2 in conservation bioremediation method BA is enabled; when EHALL ≥ Y 13 and If I W ≥ Y 23 , the conservation water quality restoration method B W is activated, and the threshold range of I' wi is further judged. When I' W1 <Y 33 , I' W3 <Y 33 , I' W5 <Y 33 or I' W6 < Y 33 Enable conservation and water quality restoration method JW 1 in B W , when I' W2 < Y 33 , I' W4 < Y 33 , I' W7 < Y 33 or I' W8 < Y 33 , JW 2 in conservation water quality restoration method B W is enabled; when EHALL≥Y 13 and I H ≥ Y 23 , enable conservation habitat restoration method BE, when I' H1 < Y 33 enable JE 3 in conservation habitat method B E , when I' H2 < Y 33 enable JE 1 in conservation habitat method B E , when I ' H3 <Y 33 enables JE 2 in conservation habitat method BE; when EHALL≥Y 13 and I O ≥ Y 23 , enables conservation bioremediation method BA , and further judges the threshold range of I Oi , when I′ O1 <Y 33 JA 3 in conservation bioremediation method B A , when I' O4 < Y 33 or I' O6 < Y 33 JA 1 in conservation bioremediation method B A , when I' O2 < Y 33 , I' O3 <Y33, I'O5 < Y33 or I'O7 < Y33 enable JA2 in conservation bioremediation method BA .
所述步骤(8)中的一个周期时间不少于180天,EHALL越大,一个周期时间越长。One cycle time in the step (8) is not less than 180 days, and the larger the EHALL, the longer one cycle time.
由本发明的技术方案可知,本发明提供的湖泊生态系统健康评价和修复方法,通过采集湖泊生态特征参数的实时数据,并对所有参数的实时数据进行赋分等数据处理后对湖泊生态最重要的水质、生境、生物综合指标三方面进行量化,再通过科学计算得到用于评价湖泊生境的水质指数、生境综合指数和生物指数,以及对湖泊生态系统健康综合评价的湖泊生态系统健康指数,再用所得湖泊生态系统健康指数EHALL、水质指数IW、生境指数IH、生物指数IO,以及所采集到的湖泊生态特征参数实时数据的赋分值建立湖泊生态系统分层排列树形结构数据库,同时建立湖泊生态系统修复方法的分层排列树形结构数据库,并为湖泊生态系统分层排列树形结构数据库的各级数据分别设定对应的阈值范围,将湖泊生态系统分层排列数据库的各级数据与对应的阈值范围进行从顶层开始的逐级比较,当湖泊生态系统分层排列数据库的各层数据与对应的阈值范围匹配时,在湖泊生态系统分层排列树形结构数据库和湖泊生态系统修复方法分级排列数据库之间建立映射关系,并通过映射关系选定对应的修复技术方法,到达科学评价湖泊生态系统健康状况,迅速选择有效的修复技术方法,湖泊生态持续改善的效果。It can be seen from the technical solution of the present invention that the lake ecosystem health evaluation and restoration method provided by the present invention is the most important to the lake ecology by collecting real-time data of lake ecological characteristic parameters and performing data processing such as assigning grades to the real-time data of all parameters. The three aspects of water quality, habitat and biological comprehensive indicators are quantified, and then the water quality index, habitat comprehensive index and biological index for evaluating lake habitats, and lake ecosystem health index for comprehensive evaluation of lake ecosystem health are obtained through scientific calculation. The obtained lake ecosystem health index EHALL, water quality index I W , habitat index I H , biological index IO , and the collected real-time data of lake ecological characteristic parameters are assigned to establish a lake ecosystem hierarchically arranged tree structure database. At the same time, a hierarchical tree structure database of lake ecosystem restoration methods is established, and corresponding threshold ranges are set for the data at all levels of the lake ecosystem hierarchical tree structure database. The level-by-level data is compared with the corresponding threshold range from the top level. When the data at each level of the lake ecosystem hierarchical arrangement database matches the corresponding threshold range, the tree structure database and lake ecosystem are arranged hierarchically in the lake ecosystem. A mapping relationship is established between the hierarchical arrangement databases of systematic restoration methods, and the corresponding restoration technology method is selected through the mapping relationship, so as to scientifically evaluate the health status of the lake ecosystem, quickly select an effective restoration technology method, and continuously improve the lake ecology.
附图说明Description of drawings
图1为本发明的湖泊生态系统分层排列树形结构数据库;Fig. 1 is the layered arrangement tree structure database of lake ecosystem of the present invention;
图2为本发明的湖泊生态系统修复方法的分层排列树形结构数据库;Fig. 2 is the hierarchical arrangement tree structure database of the lake ecosystem restoration method of the present invention;
图3为本发明的表4阈值范围及映射关系一;Fig. 3 is table 4 threshold value range and mapping relation one of the present invention;
图4为本发明的表5阈值范围及映射关系二;Fig. 4 is table 5 threshold value scope and mapping relation two of the present invention;
图5为本发明的表6阈值范围及映射关系三;Fig. 5 is table 6 threshold value range and mapping relation three of the present invention;
图6为本发明的表7阈值范围及映射关系四。FIG. 6 is the threshold range and mapping relationship IV in Table 7 of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明做详细说明:Below in conjunction with accompanying drawing and embodiment, the present invention is described in detail:
本实施例是针对鄱阳湖湖泊生态系统健康评价和修复,采集到鄱阳湖水质参数IWi的数据IW1=17.114、IW2=28.225、IW3=7.314、IW4=7.136、IW5=1.348、IW6=0.036、IW7=0.075和IW8=2.359;鄱阳湖生境参数岸带IHij的数据IH11=1.4、IH12=1、IH13=1、IH14=0.9和IH15=1、生境底质参数IH2j的数据IH21为底质丰富,淤泥和细沙比例较为均衡、生境水体参数IH3j的数据IH31=1、IH32=0.67和IH33=1;采集鄱阳湖生物江豚参数IO2j的数据IO21=1、鱼类参数IO3j的数据IO31=1、IO32=0.46、水生植物参数IO4j的数据IO41=0.26、底栖动物参数IO5j的数据IO51=0.93、浮游植物参数IO6j的数据IO61=1、浮游动物参数IO7j的数据IO71=0.28。This example is aimed at the health evaluation and restoration of the lake ecosystem in Poyang Lake. The collected data of the water quality parameters I Wi of Poyang Lake are I W1 =17.114, I W2 =28.225, I W3 =7.314, I W4 =7.136, I W5 =1.348, I W6 = 0.036, I W7 = 0.075 and I W8 = 2.359; the data of the Poyang Lake habitat parameter shore I Hij I H11 = 1.4, I H12 = 1, I H13 = 1, I H14 = 0.9 and I H15 = 1, The data I H21 of the habitat sediment parameters I H2j is rich in sediment, the ratio of silt and fine sand is relatively balanced, and the data I H31 = 1, I H32 = 0.67 and I H33 = 1 of the habitat water parameters I H3j ; the Poyang Lake biological finless porpoise was collected. Parameter I O2j data I O21 = 1, fish parameter I O3j data I O31 = 1, I O32 = 0.46, aquatic plant parameter I O4j data I O41 = 0.26, benthic animal parameter I O5j data I O51 = 0.93, the data I O61 of the phytoplankton parameter I O6j = 1, the data of the zooplankton parameter I O7j I O71 =0.28.
本发明中所采集的实时数据是湖泊生态特征参数中最主要、常用的参数,实际中可以根据所要修复湖泊的实际情况进行增加或选择,实时数据可以是原始数据,也可以是与历史数据或目标数据的比值。The real-time data collected in the present invention is the most important and commonly used parameter among the lake ecological characteristic parameters, and can be added or selected according to the actual situation of the lake to be restored. The ratio of the target data.
a.根据表1对采集到的水质参数IWi实时数据进行赋分得对应赋分值详见表8,以前期鄱阳湖最优状态年份的历史数值为参考值来设定水质指数IW的权重Pi,Pi值详见表8,根据计算出鄱阳湖水质指数IW,其计算式为a. According to Table 1, assign scores to the collected real-time data of water quality parameter I Wi to obtain the corresponding score values as shown in Table 8. The historical values of previous Poyang Lake optimal state years are used as reference values to set the water quality index I W The weights P i , and the values of P i are shown in Table 8. According to The Poyang Lake water quality index I W is calculated, and its formula is:
IW=(3*70+1*60+4*100+1*90+2*30+3*80+1*65+3*100)/18=79.2I W = (3*70+1*60+4*100+1*90+2*30+3*80+1*65+3*100)/18=79.2
鄱阳湖水质指标评价得分为79.2The evaluation score of Poyang Lake water quality index is 79.2
表8Table 8
b.根据表2对采集到的生境指数IH实时数据进行赋分得对应赋分值详见表9,以前期鄱阳湖最优状态年份的历史数值为参考值来设定生境综合指数IH的权重Ti和Tij,Ti和Tij值详见表9,根据和公式计算出鄱阳湖生境指数,其计算式为b. According to Table 2, assign scores to the collected real-time data of Habitat Index I H to get the corresponding scores. See Table 9 for details. The historical value of the previous year of Poyang Lake's optimal state is used as the reference value to set the Habitat Comprehensive Index I H The weights T i and T ij of , the values of T i and T ij are shown in Table 9, according to and formula The Poyang Lake habitat index is calculated, and its formula is:
IH1=(1*10+1*100+1*100+1*70+1*70)/5=70I H1 = (1*10+1*100+1*100+1*70+1*70)/5=70
IH2=(1*100)/1=100I H2 = (1*100)/1=100
IH3=(1*100+1*30+1*100)/3=76.7I H3 = (1*100+1*30+1*100)/3=76.7
IH=(1*70+1*100+1*76.7)/3=82.2I H = (1*70+1*100+1*76.7)/3=82.2
鄱阳湖生境指标评价得分为82.2The evaluation score of Poyang Lake habitat index is 82.2
表9Table 9
c.根据表3对采集到的生物指标IO实时数据进行赋分得对应赋分值详见表10,以前期鄱阳湖最优状态年份的历史数值为参考值来设定生物综合指数IO的权重Qi和Qij,详见表10,根据公式和公式计算出鄱阳湖生物指标IO,其计算式为c. According to Table 3, assign scores to the collected real-time data of biological indicators 10 and obtain corresponding scores. See Table 10 for details. The historical value of the previous optimal state of Poyang Lake is the reference value to set the biological comprehensive index 10 . The weights Q i and Q ij of , see Table 10 for details, according to the formula and formula The Poyang Lake biological index IO is calculated, and its calculation formula is:
IO2=(1*100)/1=100I O2 = (1*100)/1=100
IO3=(1*100+1*30)/2=65I O3 = (1*100+1*30)/2=65
IO4=(1*10)/1=10I O4 = (1*10)/1=10
IO5=(1*100)/1=100I O5 = (1*100)/1=100
IO6=(1*100)/1=100I O6 = (1*100)/1=100
IO7=(1*10)/1=10I O7 = (1*10)/1=10
IO=(3*100+3*65+1*10+1*100+1*100+1*10)/10=71.5I O = (3*100+3*65+1*10+1*100+1*100+1*10)/10=71.5
表10Table 10
根据公式EHALL=IWWW+IHWH+IOWO计算鄱阳湖生态健康指数,其中WW=0.2,WH=0.3,WO=0.5,其计算式为According to the formula EHALL=I W W W +I H W H +I O W O , the ecological health index of Poyang Lake is calculated, wherein W W =0.2, W H =0.3, W O =0.5, and its calculation formula is
EHALL=0.2*79.2+0.3*82.2+0.5*71.5=76.3EHALL=0.2*79.2+0.3*82.2+0.5*71.5=76.3
得到鄱阳湖的湖泊生态健康指数EHALL为76.3。The lake ecological health index EHALL of Poyang Lake is 76.3.
如图1所示,将上述获得的鄱阳湖湖泊生态系统健康指数EHALL、水质指数IW、生态环境指数IH、生物指数IO,以及所采集到的湖泊生态特征参数实时数据的赋分值建立鄱阳湖生态系统分层排列树形结构数据库,树形结构的顶层数据为湖泊生态系统健康指数EHALL,EHALL下属的中间层数据为水质指数IW、生态环境指数IH和生物指数IO,IH下属的下层数据为岸带IH1、底质IH2和水体IH3,IO下属的下层数据为江豚IO2、鱼类IO3、水生植物IO4、底栖动物IO5、浮游植物IO6和浮游动物IO7,每个下层数据下属至少有一个以上底层数据,底层数据为采集到的湖泊生态特征参数实时数据的赋分值。As shown in Figure 1, the above obtained Poyang Lake lake ecosystem health index EHALL , water quality index IW, ecological environment index IH , biological index IO , and the collected real-time data of lake ecological characteristic parameters are assigned scores A tree structure database of Poyang Lake ecosystems is established in layers. The top data of the tree structure is the lake ecosystem health index EHALL, and the middle layer data under EHALL is the water quality index I W , the ecological environment index I H and the biological index I O . The lower layer data under I H are shore zone I H1 , substrate I H2 and water body I H3 , and the lower layer data under I O are finless porpoise I O2 , fish I O3 , aquatic plant I O4 , benthic animal I O5 , phytoplankton For I O6 and zooplankton I O7 , each subordinate data subordinate has at least one bottom data, and the bottom data is the assigned value of the collected real-time data of lake ecological characteristic parameters.
如图2所示,建立湖泊生态系统修复方法的分层排列树形结构数据库,树形结构至少包括顶层数据、中间层数据、下层数据和底层数据,顶层数据为湖泊生态系统综合修复法,顶层数据下属的中间层数据包括保育保护法B、自然恢复法Z、辅助修复法F和生态重塑法S,每个中间层数据下属有四个下层数据,其中保育保护法B下属的下层数据包括保育水质修复方法BW、保育生态环境修复方法BE和保育生物修复方法BA;自然恢复法Z下属的下层数据包括自然水质修复方法ZW、自然生态环境修复方法ZE和自然生物修复方法ZA;辅助修复法F下属的下层数据包括辅助水质修复方法FW、辅助生态环境修复方法FE和辅助生物修复方法FA;生态重塑法S下属的下层数据包括生态重塑水质修复方法SW、生态重塑生态环境修复方法SE和生态重塑生物修复方法SA;每个下层数据下属有两个以上底层数据,底层数据为修复技术方法。As shown in Figure 2, a hierarchical tree structure database of lake ecosystem restoration methods is established. The tree structure includes at least top-level data, middle-level data, lower-level data and bottom-level data. The top-level data is the comprehensive restoration method of lake ecosystems, and the top-level data is The middle-level data under the data includes conservation and protection method B, natural restoration method Z, auxiliary restoration method F and ecological reconstruction method S. Each middle-level data subordinate has four lower-level data, of which the lower-level data under the conservation and protection method B includes: Conservation water quality restoration method B W , conservation ecological environment restoration method B E and conservation bioremediation method B A ; the subordinate data of natural restoration method Z includes natural water quality restoration method Z W , natural ecological environment restoration method Z E and natural bioremediation method Z A ; the subordinate data of the auxiliary restoration method F includes the auxiliary water quality restoration method FW , the auxiliary ecological environment restoration method FE and the auxiliary bioremediation method FA ; the lower data of the ecological restoration method S includes the ecological restoration water quality restoration method SW , ecological remodeling ecological environment restoration method SE and ecological remodeling bioremediation method SA ; each lower-level data subordinate has more than two underlying data, and the underlying data is the restoration technology method.
根据建立目标法给鄱阳湖生态系统分层排列树形结构数据库的各级数据分别设定对应的阈值范围,Y11为60,Y12为80,Y13为90;Y21为50,Y22为75,Y23为90;Y31为50,Y32为75,Y33为90。According to the established target method, the corresponding threshold ranges are respectively set for the data at all levels of the Poyang Lake ecosystem hierarchically arranged tree structure database, Y 11 is 60, Y 12 is 80, Y 13 is 90; Y 21 is 50, Y 22 is 75, Y 23 is 90; Y 31 is 50, Y 32 is 75, and Y 33 is 90.
根据图3、图4、图5和图6所示的阈值范围和映射关系,将湖泊生态系统分层排列数据库的各级数据与对应的阈值范围进行从顶层开始的逐级比较,当湖泊生态系统分层排列数据库的各层数据与对应的阈值范围匹配时,在湖泊生态系统分层排列树形结构数据库和湖泊生态系统修复方法分级排列数据库之间建立映射关系,并通过映射关系选定对应的修复技术方法;According to the threshold range and mapping relationship shown in Figure 3, Figure 4, Figure 5 and Figure 6, compare the data at all levels of the lake ecosystem hierarchical arrangement database with the corresponding threshold range from the top level. When the data of each layer of the system hierarchical arrangement database matches the corresponding threshold range, a mapping relationship is established between the lake ecosystem hierarchical arrangement tree structure database and the lake ecosystem restoration method hierarchical arrangement database, and the corresponding database is selected through the mapping relationship. repair techniques;
鄱阳湖的湖泊生态健康指数为76.3,范围在60≤EHALL<80,则依次启用辅助修复法F、自然恢复法Z和保育保护法B,并进一步对水质指数IW、生境指数IH和生物指数IO的阈值范围进行判断,鄱阳湖水质指数IW为79.2,60≤EHALL<80且75≤IW<90,依次启用自然水质修复方法ZW和保育水质修复方法BW;并进一步对I′wi的阈值范围进行判断,I′W1=70、I′W3=100、I′W5=30或I′W6=80,启用自然水质修复方法ZW中的水体自净修复技术JW3,I′W2=60、I′W4=90、I′W7=65或I′W8=100启用自然水质修复方法ZW中的动力换水技术JW4,I′W1=70、I′W3=100、I′W5=30或I′W6=80启用保育水质修复方法BW中的城镇居民生活污水处理技术JW1,I′W2=60、I′W4=90、I′W7=65或I′W8=100,启用保育水质修复方法BW中的水污染源输入控制技术JW2。The lake ecological health index of Poyang Lake is 76.3, and the range is 60≤EHALL<80. The auxiliary restoration method F, the natural restoration method Z and the conservation protection method B are used in turn, and the water quality index I W , habitat index I H and biological Judging the threshold range of the index I O , the Poyang Lake water quality index I W is 79.2, 60≤EHALL<80 and 75≤I W <90, and the natural water quality restoration method Z W and the conservation water quality restoration method B W are used in turn; The threshold range of I' wi is determined, I' W1 = 70, I' W3 = 100, I' W5 = 30 or I' W6 = 80, and the water body self-purification restoration technology JW 3 in the natural water quality restoration method Z W is enabled, I ' W2 =60, I'W4 =90, I'W7 =65 or I'W8 =100 to enable the dynamic water exchange technology JW 4 in the natural water quality restoration method Z W , I'W1 =70, I'W3 =100, I' W5 = 30 or I' W6 = 80 Activate the conservation water quality restoration method B W Domestic sewage treatment technology for urban residents JW 1 , I' W2 = 60, I' W4 = 90, I' W7 = 65 or I' W8 =100, enable the water pollution source input control technology JW 2 in the conservation water quality restoration method BW .
鄱阳湖生境指数IH为82.2,60≤EHALL<80且75≤IH<90,依次启用自然生境修复方法ZE和保育生境修复方法BE;并进一步对IHi的阈值范围进行判断,I′H1=10启用自然生境方法ZE中的河湖连通恢复技术JE5;I′H2=100启用自然生境方法ZE中的植物种类选配种植技术JE4;I′H31=100、I′H32=30、I′H33=100启用自然生境方法ZE中的植物群落自然修复技术JE6;I′H11=10、I′H12=100、I′H13=100、I′H14=70、I′H15=70启用保育生境方法BE中的综合生境保育技术JE3;I′H2=100启用保育生境方法BE中的退渔还湖技术JE1;I′H31=100、I′H32=30、I′H33=100启用保育生境方法BE中的湖岸整治技术JE2。The habitat index I H of Poyang Lake is 82.2, 60≤EHALL<80 and 75≤I H <90, the natural habitat restoration method Z E and conservation habitat restoration method B E are used in turn; and the threshold range of I Hi is further judged, I ' H1 = 10 enable the restoration of river-lake connectivity technology JE 5 in the natural habitat method Z E ; I' H2 = 100 enable the plant species selection planting technology JE 4 in the natural habitat method Z E ; I' H31 = 100, I' H32 = 30, I' H33 = 100 Enabling Natural Habitat Method Z E Natural Restoration Technology JE 6 ; I' H11 = 10, I' H12 = 100, I' H13 = 100, I' H14 = 70, I ' H15 = 70 enable the comprehensive habitat conservation technology JE 3 in the conservation habitat method B E ; I' H2 = 100 enable the returning fishing to lake technology JE 1 in the conservation habitat method B E ; I' H31 = 100, I' H32 = 30. I′ H33 = 100 to activate the lake shore remediation technology JE 2 in the habitat conservation method BE.
鄱阳湖生物指数IO为71.5,60≤EHALL<80且50≤IO<75,依次启用辅助生物修复方法FA、自然生物修复方法ZA和保育生物修复方法BA,并进一步对IOi的阈值范围进行判断,I′O1=0启用辅助生物方法FA中的鸟类饵料资源修复技术JA9;;I′O2=100、I′O4=10或I′O7=10启用辅助生物修复方法FA中的水生植物群落自然修复技术JA7;I′O3=100、I′O5=100或I′O6=100启用辅助生物修复方法FA中的特殊鱼类投放技术JA8;I′O1=0自然生物修复方法ZA中的鸟类群落自然恢复技术JA6;I′O3=100、I′O5=100或I′O7=10启用自然生物修复方法ZA中的水层食物链控制技术JA5;I′O2=100、I′O4=10或I′O6=100启用自然生物修复方法ZA中的原位生物修复技术JA4;I′O1=0保育生物修复方法BA中的鸟类综合保育技术JA3;I′O4=101或I′O6=100启用保育生物修复方法BA中的以草控藻修复技术JA1;I′O2=100、I′O3=30、I′O5=100或I′O7=100启用保育生物修复方法BA中的生物入侵种控制技术JA2。The Poyang Lake biological index IO is 71.5, 60≤EHALL<80 and 50≤IO <75. The auxiliary bioremediation method FA, the natural bioremediation method Z A , and the conservation bioremediation method BA are used in turn, and the I Oi Judging from the threshold range, I' O1 = 0 enables the bird bait resource restoration technology JA 9 in the auxiliary biological method FA; I' O2 = 100, I' O4 = 10 or I' O7 = 10 enables the auxiliary bio-remediation Aquatic Plant Community Natural Restoration Technology JA 7 in Method FA; I ' O3 = 100, I' O5 = 100 or I' O6 = 100 Enable Assisted Bioremediation Special Fish Stocking Technology JA 8 in Method FA; I' O1 =0 Natural Bioremediation Method Z A Natural Restoration Technique JA 6 ; I'O3 =100, I'O5 =100 or I'O7 =10 Enable Natural Bioremediation Method Z A Aquatic Food Chain Control Technique JA5 ; I'O2 =100, I'O4 =10 or I'O6 =100 In situ bioremediation technique JA4 in natural bioremediation method Z A enabled; I'O1 =0 in conservation bioremediation method B A Integrated bird conservation technology JA 3 ; I' O4 = 10 1 or I' O6 = 100 Enable conservation and bioremediation method B A Restoration technology with grass-controlled algae JA 1 ; I' O2 = 100, I' O3 = 30 , I'O5 =100 or I'O7 = 100 enable the biological invasive species control technology JA 2 in the conservation bioremediation method BA.
综上,针对鄱阳湖的实际生态系统健康状况选定的组合修复技术方法为:针对水质方面采用城镇居民生活污水处理技术JW1、水污染源输入控制技术JW2、水体自净修复技术JW3和动力换水技术JW4;针对生境方面采用退渔还湖技术JE1、湖岸整治技术JE2、综合生境保育技术JE3、植物种类选配种植技术JE4、河湖连通恢复技术JE5、植物群落自然修复技术JE6;针对生物方面采用以草控藻修复技术JA1、生物入侵种控制技术JA2、鸟类综合保育技术JA3、原位生物修复技术JA4、水层食物链控制技术JA5、鸟类群落自然恢复技术JA6、水生植物群落自然修复技术JA7、特殊鱼类投放技术JA8和鸟类饵料资源修复技术JA9。To sum up, the combined restoration technology method selected according to the actual ecosystem health of Poyang Lake is as follows: for water quality, the urban residents' domestic sewage treatment technology JW 1 , the water pollution source input control technology JW 2 , the water body self-purification restoration technology JW 3 and the power Water exchange technology JW 4 ; in terms of habitat, the technology of returning fishing to lakes JE 1 , lake shore regulation technology JE 2 , comprehensive habitat conservation technology JE 3 , plant species selection and planting technology JE 4 , river-lake restoration technology JE 5 , plant community Natural restoration technology JE 6 ; for biological aspects, the use of grass control algae restoration technology JA 1 , biological invasive species control technology JA 2 , bird comprehensive conservation technology JA 3 , in situ bioremediation technology JA 4 , water layer food chain control technology JA 5 , bird community natural restoration technology JA 6 , aquatic plant community natural restoration technology JA 7 , special fish feeding technology JA 8 and bird bait resource restoration technology JA 9 .
采用上述选定的组合修复技术方法对鄱阳湖进行修复,一个周期时间,即360天后,再按照步骤(1)采集湖泊生态特征参数的实时数据,重复步骤(2)、(3)、(4)、(5)、(6)和(7),根据再次选定修复技术方法对鄱阳湖进行进一步修复,持续修复直至获得EHALL≥90。The Poyang Lake was rehabilitated using the above-selected combined remediation techniques. One cycle time, that is, after 360 days, the real-time data of the lake's ecological characteristic parameters were collected according to step (1), and steps (2), (3), and (4) were repeated. ), (5), (6) and (7), the Poyang Lake was further restored according to the re-selected restoration technology method, and the restoration was continued until the EHALL≥90 was obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110476692.7A CN113095719B (en) | 2021-04-29 | 2021-04-29 | Lake ecosystem health evaluation and restoration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110476692.7A CN113095719B (en) | 2021-04-29 | 2021-04-29 | Lake ecosystem health evaluation and restoration method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113095719A CN113095719A (en) | 2021-07-09 |
CN113095719B true CN113095719B (en) | 2022-05-06 |
Family
ID=76680726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110476692.7A Active CN113095719B (en) | 2021-04-29 | 2021-04-29 | Lake ecosystem health evaluation and restoration method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113095719B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113722670B (en) * | 2021-08-23 | 2024-07-02 | 中国水利水电科学研究院 | Water quality purification function assessment method based on submerged plant coverage and biomass |
CN115290852A (en) * | 2022-07-29 | 2022-11-04 | 杭州电子科技大学 | Quantitative evaluation method for health of non-grain tea-planting soil |
CN115691670B (en) * | 2022-08-16 | 2023-06-30 | 广东省科学院微生物研究所(广东省微生物分析检测中心) | River ecosystem health evaluation method based on microbial community specific response |
CN117446979B (en) * | 2023-11-20 | 2024-07-12 | 深圳市心花路放文化发展有限公司 | Ecological maintenance method and system based on urban landscape water comprehensive restoration system |
CN118194153B (en) * | 2024-05-17 | 2024-07-19 | 中国环境科学研究院 | Identification method of lakeside zone ecological restoration area under influence of climate change |
CN118396247B (en) * | 2024-06-28 | 2024-09-06 | 山东省国土空间生态修复中心(山东省地质灾害防治技术指导中心、山东省土地储备中心) | Ecological environment data processing method and system for ecological restoration |
CN118710128A (en) * | 2024-07-08 | 2024-09-27 | 珠江水资源保护科学研究所 | A method for compensating river water ecology under the influence of water projects |
CN118710083B (en) * | 2024-08-09 | 2024-11-05 | 大连必忠建筑工程有限公司 | A method for ecological assessment of water environment in a river basin |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107092659A (en) * | 2017-03-28 | 2017-08-25 | 成都优易数据有限公司 | A kind of general tree structure storing and resolving method |
CN111369106A (en) * | 2020-02-17 | 2020-07-03 | 北京师范大学 | Health evaluation method suitable for lake benthic ecosystem |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102034214A (en) * | 2010-12-20 | 2011-04-27 | 上海勘测设计研究院 | Health evaluation method for eutrophic lakes |
CN106647881A (en) * | 2015-11-03 | 2017-05-10 | 璧典凯 | Water environment real-time ecological restoration system |
CN106934491A (en) * | 2017-02-23 | 2017-07-07 | 北京农业信息技术研究中心 | A kind of soil restoring technology screening technique and device |
CN109242282A (en) * | 2018-08-24 | 2019-01-18 | 华北水利水电大学 | A kind of River Health Assessment method suitable for fully-loaded stream |
CN109886608A (en) * | 2019-03-28 | 2019-06-14 | 交通运输部水运科学研究所 | A Mechanism-Based Evaluation Method for Ecological Environmental Impact and Countermeasures of Waterway Engineering |
CN112651591B (en) * | 2020-11-10 | 2023-10-17 | 广东粤海水务股份有限公司 | Urban landscape lake water ecological system health evaluation and diagnosis method |
CN112561328A (en) * | 2020-12-16 | 2021-03-26 | 神华北电胜利能源有限公司 | Mining area refuse dump ecological restoration effect evaluation method, storage medium and system |
-
2021
- 2021-04-29 CN CN202110476692.7A patent/CN113095719B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107092659A (en) * | 2017-03-28 | 2017-08-25 | 成都优易数据有限公司 | A kind of general tree structure storing and resolving method |
CN111369106A (en) * | 2020-02-17 | 2020-07-03 | 北京师范大学 | Health evaluation method suitable for lake benthic ecosystem |
Also Published As
Publication number | Publication date |
---|---|
CN113095719A (en) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113095719B (en) | Lake ecosystem health evaluation and restoration method | |
Jiang et al. | Construction of water-soil-plant system for rainfall vertical connection in the concept of sponge city: A review | |
CN109118101A (en) | A kind of River Health Assessment method suitable for Shelter in South China Cities river | |
CN109242282A (en) | A kind of River Health Assessment method suitable for fully-loaded stream | |
CN106186343A (en) | A kind of comprehensive processing method to urban river | |
CN102225823B (en) | Ecological protection method for rural surface water source through recycle and effective reduction of nitrogen and phosphor | |
CN103745121A (en) | Water quality model based low-pollution water ecological purification effect evaluation method | |
CN103466899B (en) | Blocking and controlling system for non-point source pollution in middle water network zone and construction method thereof | |
CN106836114A (en) | Administering method for eliminating rural area type black and odorous water | |
HK1212668A1 (en) | An algal blooming ecological control system based on micro-terrain reconstruction, an ecological method for controlling algal blooming and application | |
CN106007191A (en) | Black odorous river course ecological treatment system and treatment method thereof | |
CN100575612C (en) | Restoration of natural wetlands in the lakeside belt and its multi-level anti-pollution control technology | |
CN111115835B (en) | A system, method and design method for natural river sewage prevention and control | |
CN203021358U (en) | Inland river bank vegetation buffer purification zone | |
CN107117713A (en) | A kind of method of the riverside zone artificial swamp of purified treatment cadmium pollution irrigation water | |
CN103449607A (en) | Non-point source pollution abatement method for plain river network regions | |
CN207175703U (en) | A kind of natural revetment purifying water body structure | |
CN206328277U (en) | Ecological canal system for improving receiving water body controlling area-source pollution | |
CN104370370A (en) | Riverway sewage purification treatment method | |
Wang et al. | Ecological restoration of polluted plain rivers within the Haihe River Basin in China | |
CN106904748B (en) | An ecological ditch for controlling agricultural non-point pollution sources and its construction method | |
Zhang et al. | Measures, methods and cases of river ecological restoration | |
CN105130090A (en) | River ditch sewage ecological strengthening self cleaning method | |
Mostafa et al. | A strategy for Lakes ecological restoration by integrated constructed wetlands, Case study: lake Qaroun, Egypt | |
CN112624341A (en) | Construction method of ecological comprehensive treatment and restoration system for urban micro water body water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |