CN113095538A - 面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法 - Google Patents
面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法 Download PDFInfo
- Publication number
- CN113095538A CN113095538A CN202010515327.8A CN202010515327A CN113095538A CN 113095538 A CN113095538 A CN 113095538A CN 202010515327 A CN202010515327 A CN 202010515327A CN 113095538 A CN113095538 A CN 113095538A
- Authority
- CN
- China
- Prior art keywords
- unit
- steam
- heat
- optimal solution
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 102
- 241000272201 Columbiformes Species 0.000 claims abstract description 77
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 32
- 230000000739 chaotic effect Effects 0.000 claims abstract description 26
- 238000005457 optimization Methods 0.000 claims abstract description 23
- 238000012549 training Methods 0.000 claims abstract description 21
- 230000007246 mechanism Effects 0.000 claims abstract description 16
- 238000004088 simulation Methods 0.000 claims abstract description 8
- 230000008878 coupling Effects 0.000 claims abstract description 7
- 238000010168 coupling process Methods 0.000 claims abstract description 7
- 238000005859 coupling reaction Methods 0.000 claims abstract description 7
- 244000144992 flock Species 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 96
- 239000013598 vector Substances 0.000 claims description 57
- 230000008569 process Effects 0.000 claims description 52
- 238000005338 heat storage Methods 0.000 claims description 45
- 238000005516 engineering process Methods 0.000 claims description 42
- 238000013507 mapping Methods 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 20
- 238000004458 analytical method Methods 0.000 claims description 16
- 239000003245 coal Substances 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 15
- 238000012795 verification Methods 0.000 claims description 15
- 230000009466 transformation Effects 0.000 claims description 14
- 238000013461 design Methods 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 12
- 238000010298 pulverizing process Methods 0.000 claims description 12
- 238000010977 unit operation Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000004134 energy conservation Methods 0.000 claims description 7
- 238000012546 transfer Methods 0.000 claims description 7
- 238000012937 correction Methods 0.000 claims description 6
- 230000005428 wave function Effects 0.000 claims description 6
- 238000013459 approach Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000007664 blowing Methods 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 238000012804 iterative process Methods 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000013021 overheating Methods 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 230000005587 bubbling Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000010248 power generation Methods 0.000 description 7
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010946 mechanistic model Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- General Business, Economics & Management (AREA)
- Artificial Intelligence (AREA)
- Marketing (AREA)
- General Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Development Economics (AREA)
- Quality & Reliability (AREA)
- Primary Health Care (AREA)
- Operations Research (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Entrepreneurship & Innovation (AREA)
- Medical Informatics (AREA)
- Game Theory and Decision Science (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Feedback Control In General (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法。首先通过机理建模确定不同热电解耦情况下机组的宽负荷运行模型结构;然后采用改进型T‑S模糊辨识确定模型的未知参数。在模糊辨识中引入混沌双量子鸽群优化算法实现训练数据的自动聚类,再通过带遗忘因子的指数加权最小二乘法进行参数辨识;最后,依托仿真平台验证该建模方法的快速性、所得模型的精确性和通用性。本发明充分考虑了热电联产机组热电耦合情况差异对动态特性的影响,更贴近灵活性需求下机组的实际特性。此外,融合了机理建模和数据驱动建模的优势,在宽负荷工况下始终保持理想精度,为实现大规模新能源接入下的电网深度、快速调峰奠定基础。
Description
技术领域
本发明涉及火电机组灵活性运行建模技术领域,更具体地,涉及一种面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法。
背景技术
在全球能源环境危机的影响下,国家迈入能源战略转型新时期,新能源发电成为电力行业节约能源、降低排放、实现可持续发展的关键。近年来,随着风、光等波动性新能源并网规模的不断增大,电网安全、稳定运行所面临的挑战日益显著,需要火电机组逐步从“主体型电源”向“调节型电源转变”,通过灵活性运行实现深度、快速调峰,平抑新能源大规模接入带来的电网波动。因此,如何提高火电机组的灵活性运行能力成为当前发电领域亟待解决的问题。
热电联产是一项可有效提高火电机组能源利用效率的技术,将机、炉及供热系统进行有机融合,通过余热利用实现燃料能量的最大转化。因此热电联产机组在我国发电领域的占比逐渐增加。然而,相比于仅用于供电的纯凝机组,热电联产机组一般遵循“以热定电”的运行模式,该模式下存在的热电耦合使其动态特性更为复杂,机组在额定供热条件下的功率可调范围仅为纯凝机组的一半,调峰能力不足,给灵活性运行带来极大阻碍。需要通过热电解耦技术实现该类机组发电和供热过程的相对独立,深入挖掘调峰潜力,提高机组的灵活性运行水平,为更大规模的新能源消纳提供保障。目前,热电解耦技术大多基于热泵、电锅炉、储热罐、低压缸改造等,不同解耦技术的应用将导致热电联产机组动态特性的变化,进而影响机组灵活性运行控制策略的设计。此外,现有热电联产机组动态特性建模研究大多考虑50%额定负荷及以上运行工况,忽略了低负荷和极低负荷运行工况,基于所得模型设计的控制策略无法满足电网深度调峰的需求。因此,建立不同热电解耦情况下的机组宽负荷运行动态特性模型对提高其灵活性运行能力意义重大。
机理建模和数据驱动建模是两种常见的建模方法。其中机理建模通过质量守恒、能量守恒和动力学方程等反映待建模系统内部的动态特性,建模的每一步都遵循一定的物理意义,使建模过程有理有据;数据驱动建模可对工业系统实际运行数据进行深入挖掘,原理简单,便于实现,且辨识精度较高。虽然上述两种建模方法都表现出各自的显著优势,却依然存在难以克服的缺陷:机理建模分析过程复杂,且模型参数的经验取值一般难以满足建模精度要求;数据驱动建模则经常出现训练数据覆盖工况较少导致的模型失效问题。机理建模和数据驱动建模的有机结合使建模过程更为合理高效,所得模型能实时、精确地反映机组动态特性。数据驱动的T-S模糊辨识通过IF-THEN规则将数据聚类与参数辨识相结合,描述变量间的非线性与不确定性,进而有效处理多变量系统非线性、强耦合等复杂特性。此外,该方法具有较强的适应性和较大的改进空间,在工业领域,如热力系统建模等方面均获得了广泛的关注。因此,将该方法引入热电联产机组宽负荷运行动态特性建模之中,对提高建模过程快速性、精确性具有战略意义,同时为机组灵活性运行控制优化设计奠定基础,对实现电网深度、快速调峰具有极大的促进作用。
发明内容
本发明旨在提供一种热电联产机组宽负荷运行动态特性建模方法,为机组灵活性运行控制优化设计奠定基础,进而提升大规模新能源接入下热电联产机组的灵活性运行能力,满足电网深度、快速调峰需求。该方法充分考虑了不同热电解耦情况下热电联产机组的动态特性差异,结合机理建模和数据驱动的改进型 T-S模糊辨识算法快速建立机组的宽负荷运行动态特性模型,所得模型在机组宽负荷运行工况,尤其是低负荷工况下始终保持理想精度。
本发明所提出的面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法,由以下6个步骤组成:
S1:待辨识热电联产机组热电解耦情况的判断;
S2:不同热电解耦情况下机组运行机理分析及模型结构确定;
S3:机组宽负荷工况下运行数据的实时采集与T-S模糊模型增量结构的引入;
S4:基于混沌双量子鸽群算法的训练数据自动聚类及聚类中心和半径的获取;
S5:基于带遗忘因子的指数加权最小二乘算法的子模型参数辨识及模型全局输出计算;
S6:依托仿真平台进行所提建模方法的可行性验证及性能分析。
传统热电联产机组主要由锅炉、汽轮机、回热系统及各辅机组成。给水经加热后在锅炉中蒸发形成蒸汽并流向蒸汽轮机,推动汽机做功,在这个过程中从汽机抽出部分蒸汽进入回热系统加热给水和冷凝水。抽取中压缸排气作为热网加热器所需的加热蒸汽,热蒸汽经冷凝后回到除氧器,中压缸中剩余的排汽则进入低压缸,在冷凝器中进行冷凝并通过凝结水泵送到回热系统。热网水在热网加热器中吸热并向热用户供热,最终又通过水泵将热网水送回热网加热器。热泵、电锅炉、储热罐、低压缸改造等常见热电解耦技术往往通过结构改造和附加储能设备等方式实现机组运行过程中的余热利用,最大化燃料能量利用率。为表述方便,本发明仅以上述四种热电解耦技术为例,其余技术同理。上述技术中,通过热泵可将热量从一个低温热源传递到高温储热器为机组提供一定的热负荷;采用电锅炉技术可利用机组所发电能加热热网水,实现电能到热能的直接转化;储热罐可通过充放热达到热负荷的供需平衡以缓解热电耦合问题;低压缸改造采用光轴运行技术、零出力技术等消除了冷却低压缸的冷凝汽最小流量的限制,可有效提高机组的输出功率。上述过程均涉及复杂的能量转换,且不同热电解耦技术的选择将造成机组动态特性的差异。基于此,步骤S1可具体化为:
S1.1:判别待辨识热电联产机组运维记录确认该机组是否进行过热电解耦改造,若机组已进行热电解耦改造,则进一步明确其所用的具体改造技术。
S1.2:根据待辨识机组热电解耦情况进行分类并编号,若该机组无热电解耦,记为P1,若有热电解耦,则按照热泵、电锅炉、储热罐、低压缸改造等技术依次记为P2、P3、P4、P5。
基于S1所得待辨识热电联产机组的热电解耦情况,通过质量守恒、能量守恒及动力学方程分别对各情况下的机组进行机理分析,得到相应的模型结构,则步骤S2可具体化为:
S2.1:若机组无热电解耦,即P1情况下,从制粉系统、锅炉燃烧及热传递、汽轮机做功和供热系统四部分出发对热电联产机组进行建模。
S2.1.1:制粉系统模型。以中速磨正压直吹式制粉系统为例,可得以下质量守恒关系:
其中,rb为给煤量,μB为给煤指令,TM为制粉系统惯性时间,τ为系统迟延。
S2.1.2:锅炉燃烧及热传递模型。以直流锅炉为例,同时考虑汽水分离器出口焓值、主蒸汽压力和过热器出口蒸汽温度,得到如下质量守恒关系:
其中,pm、hm和Dm分别为汽水分离器出口蒸汽压力、比焓和流量,Dec和hec分别为省煤器入口蒸汽流量和给水比焓,Qw为汽水分离器出口前段燃烧过程的有效放热量,Ddsw1和Ddsw2分别为一级、二级减温水流量,ρsst和ρmst分别为屏式过热器出口蒸汽和主蒸汽平均密度,Dsst为屏式过热器出口蒸汽流量,Dmst为主蒸汽流量,Vs1和Vs2为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段的容积,d1、c1、c2、c3均为可变参数。
相应的能量守恒关系为:
其中,Qs1和Qs2分别为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段的工质有效放热量,ha1和ha2分别为为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段内的蒸汽平均比焓,ρa1和ρa2分别为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段内的蒸汽平均密度,d2、c4、 c5、c6均为可变参数。
S2.1.3:汽轮机做功模型。描述了汽机输入工质和输出负荷间的关系,部分输入工质转化为电能,另外一部分转化为供热所需热能,其中能量转换关系可表示为:
其中,α为高-中压缸做功比,TT为汽机动态时间,CT为汽机做功系数, P为功率输出,pT为主蒸汽压力,CIP为中压缸做功系数,pH为热源抽汽压力,μT和μH分别为高压缸进汽调节阀开度和热源阀门开度。
S2.1.4:供热系统模型。反映了供热站输入输出能量间的如下转换关系:
其中,CH为热交换器的储热系数,mcir为热网的循环水质量流量,Cp为定压比热,Tin和Tout分别为供热站的入口水温和出口水温。
S2.2:若机组有热电解耦,则分别以P2、P3、P4和P5几种情况为例进行讨论。
S2.2.1:在P2情况下,即机组通过热泵进行热电解耦时,以压缩式热泵为例,该热泵工作时消耗的电能Whp为:
其中,Qh为热负荷,COP为热泵制热系数,ε为热力完善度,Tc和Te分别为热泵的冷凝温度和蒸发温度。
若借助电机驱动热泵,则热泵消耗的电能Php为:
Php=Whp/(ηm1ηm2) (7)
其中,ηm1和ηm2分别为压缩机的电机效率和机械效率。
S2.2.2:在P3情况下,即机组通过电锅炉进行热电解耦时,电锅炉消耗的电功率Web为:
Web=Qh/ηeb (8)
其中,ηeb为电锅炉能效。
S2.2.3:在P4情况下,即机组通过储热罐进行热电解耦时,通过质量守恒可得储热罐内水位模型为:
其中,Chst为储热罐容量系数,Hlevel为储热罐水位,Din和Dout分别为储热罐进水和出水流量,储热过程中,Din为热水进水流量,Dout为冷水出水流量;放热过程中,Din为冷水进水流量,Dout为热水出水流量。
储热罐斜温层位置模型为:
式中,Hlayer为斜温层位置,Dcold为冷水进水流量。
储热罐出水量与其储、放热间的关系为:
NS=Dhstcp(Th-Tl) (11)
式中,NS代表储热罐的储、放热功率,Dhst代表出水流量,cp为水的比热容,Th和Tl分别为储热罐上部热水和下部冷水温度。
S2.2.4:在P5情况下,即机组通过低压缸改造进行热电解耦时,以低压缸零出力技术和光轴运行技术为例进行分析。
S2.2.4.1:低压缸零出力技术。在机组供热期间,完全切断低压缸进汽,用中压缸排汽进行供热;在非供热期间,恢复低压缸进汽量,使其能正常发电,该技术也属于热电联产范畴,故其供热煤耗率和机组改造前保持一致,通过增加供热量,每年可节约的标煤量约为:
ΔB=ΔQalcb (12)
其中,ΔQ为机组供热量的增量,alc为供热标准煤耗率,b为供热时间。
S2.2.4.2:低压缸光轴运行技术。在此技术下,汽机低压缸处于切除状态,通过基于以下Friuli Siegel公式的变工况模型来表示汽机高压缸和中压缸动态特性:
其中,D1和D10分别代表级组输入侧实际蒸汽流量和设计工况下蒸汽流量,p1和p2分别代表级组输入输出侧蒸汽压力,p10和p20分别代表级组设计工况下输入输出侧蒸汽压力,T1和T10分别代表级组输入侧实际蒸汽温度和设计工况下蒸汽温度。
S2所得不同热电解耦情况下的机组模型结构中待辨识参数包含TM、d1、d2、c1、c2、c3、c4、c5、c6、TT、α和ε,基于此,步骤S3可具体化为:
S3.1:依托SCADA系统,以T为采样周期得到待建模热电联产机组自当前时刻起的N组实时运行数据:[x(1),x(2),…,x(N)],其中x(t)(t=1,2,…,N)代表由t时刻系统所有输入输出变量组成的广义向量,可表示为如下形式:
x(t)=[u1(t),u2(t),…,ul(t),y1(t),y2(t),…,ym(t)](t=1,2,…N) (14)
其中,u1(t),u2(t),…,ul(t)为l个输入变量,y1(t),y2(t),…,ym(t)为m个输出变量,输入、输出变量个数l和m可根据机组不同热电解耦情况进行自适应选取。
采样数据应尽可能多地覆盖机组不同运行工况,尤其不可忽略低负荷工况以确保所建模型能精确反映机组宽负荷运行工况下动态特性。
S3.2:在复杂系统中,相较于变量数据本身,其增量数据值间具有更强的线性关系。基于上述对T-S模糊模型的描述,其增量结构可表示为:
Ri:If x(t)∈(ci,ri),Then yvi(t)=θiv(t)(i=1,2,…,n;t=1,2,…,N) (15)
其中,n和N分别为聚类个数和训练数据对数目,x(t)代表时刻t的广义输入向量,ci和ri分别代表聚类i的中心和半径,θi为待辨识子模型i中所有未知参数组成的参数向量,yvi为子模型i的输出向量,v(t)为x(t)中各数据向量相对于其标称值的增量,表达式如下:
S3.3:用S2中所得不同热电解耦情况下的机组模型结构替换T-S模糊模型的后件部分,即式(15)中yvi(t)=θiv(t)部分,得到适应于灵活性运行的热电联产机组T-S模糊模型结构。
在确定不同热电解耦情况下机组的T-S模糊模型结构后,基于采样所得机组运行数据,开展数据驱动的改进型T-S模糊辨识。首先在步骤S4中通过混沌双量子鸽群优化(CBQPIO)算法进行训练数据的自动聚类。鸽群优化(PIO)算法的提出源于鸽子的归巢行为,鸽群中的个体通过地图和指南针算子导航及地标算子导航两个步骤对巢穴进行定位。然而标准PIO算法收敛速度不够理想,且易陷入局部最优,因此本发明所提出的CBQPIO简化了标准PIO的寻优过程,并引入量子规则中的波函数完成鸽群中个体位置的更新,结合双种群思想改善了寻优过程中种群的多样性,通过对最优解进行混沌映射,有效提升了算法的收敛速度和寻优精度,避免算法过早陷入局部最优解。在基于CBQPIO的数据聚类过程中,将一个聚类子空间视为一个鸽群,相应的最优聚类中心则为鸽群各自的巢穴所在地。具体实现过程如下:
S4.1:初始化聚类个数n=1。
S4.2:令训练数据集的第一个数据向量为当前聚类中心cn,通过式(17) 计算各输入数据对x(t)与cn间的相似度S(t):
其中,γ为相似系数,且γ∈(0,1],S(t)∈(0,1),且随着S(t)的增大,数据对间相似度升高。
S4.3:设置决策常数λ和阈值δ,若S(t)>λ,则x(t)属于以cn为中心的聚类,记该聚类中总的数据对个数为Nn,若Nn>δ,接受该聚类,转向S4.4,否则将cn所代表的数据对移到数据序列末端,返回S4.2。
S4.4:通过CBQPIO得到当前聚类的最优聚类中心。
S4.4.1:设双种群的鸽群规模均为M,即每个单量子鸽群中包含的个体数均为M。用式(18)所示Logistic混沌序列代替原有随机数的方式来初始化个体。第一个种群的混沌序列范围为[0,1];第二个种群的混沌序列范围为[-1,0]。
Zj(i+1)=4Zj(i)[1-Zj(i)](i=1,2,…,M;j=1,2) (18)
其中,Z1(1)和Z2(1)分别为(0,1)和(-1,0)之间的随机数。
在归巢的初始阶段,鸽巢位置未知,故假设当前最优候选解(当前聚类中心cn)为鸽巢位置,基于所得Logistic混沌序列,根据式(19)分别初始化两个种群的位置:
S4.4.2:将以上两个种群进行合并,再通过随机分组方式分成种群数相等的两个种群。然后通过式(21)所示适应度函数分别计算两个鸽群中每个个体的适应度,并将两个鸽群的最优解进行比较,选取其中适应度值最小者作为当前全局最优解
CBQPIO将上述两个基于不同混沌序列产生的单种群进行合并,再随机分为种群规模均为M的两个新种群,两个新种群分别执行以下步骤的寻优过程,使新种群的个体遍历[-1,1]的解空间,最后再将两个种群的局部最优解进行贪婪选择得到全局最优解,很大程度上提高了种群的多样性及寻优精度。
S4.4.5:将该局部最优解映射到Logistic混沌序列上,再映射回原变量中。若映射产生粒子的适应度小于当前局部最优解的适应度,则用映射产生位置向量替换原有局部最优解,否则,局部最优解保持不变。最后,将两个种群的局部最优值进行比较,保留下适应度值较小的作为本次迭代的局部最优解。
S4.4.6:判断上述寻优过程是否满足终止条件,即达到最大迭代次数,若满足,则结束地图和指南针算子导航阶段,将最终所得局部最优解作为当前全局最优解cn*,并记录其对应的适应度函数值,继续进行下一步,否则,返回S4.4.3。
S4.4.7:地标算子导航阶段。设地标算子的最大迭代次数为K2,每一次位置更新后通过冒泡排序将个体适应度值从小到大排列,舍弃对地标不熟悉而不再具有分辨路径能力的鸽子,优先选择适应度较小的个体,所保留个体的数目如下:
其中,k为地标算子当前迭代步,且k∈[K1+1,K1+K2],Mk均为正整数,且其初值为M。
保留的鸽子个体将朝着式(25)所示的鸽群中心位置飞行,并将其视为鸽巢位置的最大可能(即地标),然后通过式(26)更新鸽群中所有个体的位置信息:
式中,χ为学习因子,α2和α3为(0,1)之间的随机数。
本步骤引入学习因子对鸽子个体的位置更新公式进行修正以提高算法的收敛速度,并通过精英保留策略改善种群性能。
S4.4.9:分别计算两个种群经过位置更新后的个体的适应度函数值,两个种群中每个个体与各自当前全局最优解进行贪婪选择,若新个体的适应度值小于当前全局最优解的适应度值,则用该位置向量替换原有全局最优解,否则,全局最优解保持不变。
S4.4.10:将该全局最优解映射到Logistic混沌序列上,再映射回原变量中。若映射产生粒子的适应度小于当前全局最优解的适应度,则用映射产生位置向量替换原有全局最优解,否则,全局最优解保持不变。最后,将两个种群的全局最优值进行比较,保留下适应度值较小的粒子作为本次迭代的全局最优解。
S4.6:基于所得聚类结果,计算各聚类的聚类半径。
S4.6.1:初始化聚类半径ri=0(i=1,2,…,n),通过式(29)寻找距离各数据向量最近的聚类中心:
S4.6.2:通过式(30)对rs进行更新:
S4.6.3:重复S4.6.1和S4.6.2,直至获得全部聚类半径ri(i=1,2,…,n)。
聚类过程结束并得到相应聚类中心和半径后,将在S5中通过带遗忘因子的指数加权最小二乘算法进行各子模型参数的辨识,具体步骤如下:
其中,Pi(t)为参数估计方差矩阵,β为遗忘因子,且β∈(0,1],ζi(t)为修正因子,其初值ζ0∈(0,1),q为指数加权因子,且q=e-t/r,r为正整数,且r∈(0,100]。
S5.2:令t=t+1,返回S5.1,直到遍历所有训练数据,得到结论部分各子模型参数。
S5.3:基于T-S模糊增量结构和所得各子模型参数,通过式(33)计算模型的全局输出:
S5.4.1:通过式(35)得到距离该数据向量最近的聚类中心:
S5.4.2:将式(36)所示聚类s对应的子模型输出直接作为全局输出:
基于上述面向灵活性运行的热电联产机组建模方法,在步骤S6中依托仿真平台进行所提建模方法的可行性验证及性能分析,具体过程如下:
S6.1:选取待辨识热电联产机组宽负荷工况下的N组实时运行数据,通过上述建模方法进行模型辨识,记录建模时间ts,并通过式(37)计算模型输出与机组实际输出间的平均绝对误差MAE和均方根误差RMSE:
S6.2:选取另外L组不同运行工况,尤其是低负荷工况下的机组运行数据对所建模型的通用性进行验证,并计算验证过程模型输出与验证数据间的平均绝对误差MAE和均方根误差RMSE。
S6.3:统计机组建模时间,建模过程及验证过程的MAE和RMSE,结合机组灵活性运行对机组建模速度和精度的要求对所提建模方法进行性能分析。
本发明有益效果:
本发明立足于大规模新能源并网下,火电机组从“主体型电源”向“调节型电源转变”过程中对灵活性运行能力的需求,从建模的角度出发,提高机组低负荷工况在内的宽负荷运行工况下的模型精度,为机组的深度、快速调峰奠定基础。
本发明建模过程中充分考虑了热电联产机组在不同的热电解耦情况下的动态特性差异,并将其反映在机理模型结构的变化上,使所得建模结果更贴近机组实际动态特性,精确度更高。
本发明通过机理建模和数据驱动建模的结合实现了二者的优势互补,使建模过程更为有理有据,同时实现了模型参数的实时更新。数值仿真和性能分析结果表明该方法可以有效缩短建模时间,减小模型输出与机组实际输出间的平均绝对误差和均方根误差,从很大程度上提高了建模过程的快速性和精确性。
本发明将混沌双量子鸽群算法引入了数据驱动的T-S模糊建模中,并借助决策常数和阈值实现了训练数据集的自动聚类,不仅消除了聚类过程易受人为干扰的主观性,提高T-S模糊辨识算法的通用性,也为群智能优化算法在复杂系统建模中更为广泛的应用提供了参考。
附图说明
图1为本发明所用热电联产机组在不同热电解耦情况下的结构原理图。
图2为本发明所提面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法的流程图。
具体实施方式
下面参照附图对本发明的具体实施方式做进一步描述。
请参阅图1,图1为本发明所用热电联产机组在不同热电解耦情况下的结构原理。无热电解耦技术加入情况下的传统热电联产机组主要由锅炉、汽轮机、回热系统及各辅机组成。给水经加热后在锅炉中蒸发形成蒸汽并流向蒸汽轮机,推动汽机做功,在这个过程中从汽机抽出部分蒸汽进入回热系统加热给水和冷凝水。抽取中压缸排气作为热网加热器所需的加热蒸汽,热蒸汽经冷凝后回到除氧器,中压缸中剩余的排汽则进入低压缸,在冷凝器中进行冷凝并通过凝结水泵送到回热系统。热网水在热网加热器中吸热并向热用户供热,最终又通过水泵将热网水送回热网加热器。
继续参阅图1,图1中展示了热泵、电锅炉、储热罐、低压缸改造几种热电解耦技术的结构改造和附加储能设备为机组带来的结构改变。其中热泵技术利用机组所发电能驱动压缩机,并通过蒸发器、热泵冷凝器和节流阀的配合将热量从一个低温热源传递到高温储热器为机组提供一定的热负荷;电锅炉技术利用机组所发电能加热热网水,实现电能到热能的直接转化;储热罐技术通过储热罐的充放热达到热负荷的供需平衡以缓解热电耦合问题;低压缸改造采用光轴运行技术、零出力技术等消除了冷却低压缸的冷凝汽最小流量的限制,可有效提高机组的输出功率。
请参阅图2,图2为本发明所提面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法的流程图,本实施例基于大连庄河电厂600MW机组,方法步骤包括:
S1:待辨识热电联产机组热电解耦情况的判断;
S2:不同热电解耦情况下机组运行机理分析及模型结构确定;
S3:机组宽负荷工况下运行数据的实时采集与T-S模糊模型增量结构的引入;
S4:基于混沌双量子鸽群算法的训练数据自动聚类及聚类中心和半径的获取;
S5:基于带遗忘因子的指数加权最小二乘算法的子模型参数辨识及模型全局输出计算;
S6:依托仿真平台进行所提建模方法的可行性验证及性能分析。
步骤S1可具体化为:
S1.1:判别待辨识热电联产机组运维记录确认该机组是否进行过热电解耦改造,若机组已进行热电解耦改造,则进一步明确其所用的具体改造技术。
S1.2:根据待辨识机组热电解耦情况进行分类并编号,若该机组无热电解耦,记为P1,若有热电解耦,则按照热泵、电锅炉、储热罐、低压缸改造等技术依次记为P2、P3、P4、P5。
基于S1所得待辨识热电联产机组的热电解耦情况,通过质量守恒、能量守恒及动力学方程分别对各情况下的机组进行机理分析,得到相应的模型结构,则步骤S2可具体化为:
S2.1:若机组无热电解耦,即P1情况下,从制粉系统、锅炉燃烧及热传递、汽轮机做功和供热系统四部分出发对热电联产机组进行建模。
S2.1.1:制粉系统模型。以中速磨正压直吹式制粉系统为例,可得以下质量守恒关系:
其中,rb为给煤量,μB为给煤指令,TM为制粉系统惯性时间,τ为系统迟延。
S2.1.2:锅炉燃烧及热传递模型。以直流锅炉为例,同时考虑汽水分离器出口焓值、主蒸汽压力和过热器出口蒸汽温度,得到如下质量守恒关系:
其中,pm、hm和Dm分别为汽水分离器出口蒸汽压力、比焓和流量,Dec和hec分别为省煤器入口蒸汽流量和给水比焓,Qw为汽水分离器出口前段燃烧过程的有效放热量,Ddsw1和Ddsw2分别为一级、二级减温水流量,ρsst和ρmst分别为屏式过热器出口蒸汽和主蒸汽平均密度,Dsst为屏式过热器出口蒸汽流量,Dmst为主蒸汽流量,Vs1和Vs2为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段的容积,d1、c1、c2、c3均为可变参数。
相应的能量守恒关系为:
其中,Qs1和Qs2分别为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段的工质有效放热量,ha1和ha2分别为为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段内的蒸汽平均比焓,ρa1和ρa2分别为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段内的蒸汽平均密度,d2、c4、 c5、c6均为可变参数。
S2.1.3:汽轮机做功模型。描述了汽机输入工质和输出负荷间的关系,部分输入工质转化为电能,另外一部分转化为供热所需热能,其中能量转换关系可表示为:
其中,α为高-中压缸做功比,TT为汽机动态时间,CT为汽机做功系数, P为功率输出,pT为主蒸汽压力,CIP为中压缸做功系数,pH为热源抽汽压力,μT和μH分别为高压缸进汽调节阀开度和热源阀门开度。
S2.1.4:供热系统模型。反映了供热站输入输出能量间的如下转换关系:
其中,CH为热交换器的储热系数,mcir为热网的循环水质量流量,Cp为定压比热,Tin和Tout分别为供热站的入口水温和出口水温。
S2.2:若机组有热电解耦,则分别以P2、P3、P4和P5几种情况为例进行讨论。将不同热电解耦技术造成的机组动态特性差异与机组未进行热电解耦的动态特性模型相结合,得到不同热电解耦技术下的机组动态特性机理模型。
S2.2.1:在P2情况下,即机组通过热泵进行热电解耦时,以压缩式热泵为例,该热泵工作时消耗的电能Whp为:
其中,Qh为热负荷,COP为热泵制热系数,ε为热力完善度,Tc和Te分别为热泵的冷凝温度和蒸发温度。
若借助电机驱动热泵,则热泵消耗的电能Php为:
Php=Whp/(ηm1ηm2) (7)
其中,ηm1和ηm2分别为压缩机的电机效率和机械效率。
S2.2.2:在P3情况下,即机组通过电锅炉进行热电解耦时,电锅炉消耗的电功率Web为:
Web=Qh/ηeb (8)
其中,ηeb为电锅炉能效。
S2.2.3:在P4情况下,即机组通过储热罐进行热电解耦时,通过质量守恒可得储热罐内水位模型为:
其中,Chst为储热罐容量系数,Hlevel为储热罐水位,Din和Dout分别为储热罐进水和出水流量,储热过程中,Din为热水进水流量,Dout为冷水出水流量;放热过程中,Din为冷水进水流量,Dout为热水出水流量。
储热罐斜温层位置模型为:
式中,Hlayer为斜温层位置,Dcold为冷水进水流量。
储热罐出水量与其储、放热间的关系为:
NS=Dhstcp(Th-Tl) (11)
式中,NS代表储热罐的储、放热功率,Dhst代表出水流量,cp为水的比热容,Th和Tl分别为储热罐上部热水和下部冷水温度。
S2.2.4:在P5情况下,即机组通过低压缸改造进行热电解耦时,以低压缸零出力技术和光轴运行技术为例进行分析。
S2.2.4.1:低压缸零出力技术。在机组供热期间,完全切断低压缸进汽,用中压缸排汽进行供热;在非供热期间,恢复低压缸进汽量,使其能正常发电,该技术也属于热电联产范畴,故其供热煤耗率和机组改造前保持一致,通过增加供热量,每年可节约的标煤量约为:
ΔB=ΔQalcb (12)
其中,ΔQ为机组供热量的增量,alc为供热标准煤耗率,b为供热时间。
S2.2.4.2:低压缸光轴运行技术。在此技术下,汽机低压缸处于切除状态,通过基于以下Friuli Siegel公式的变工况模型来表示汽机高压缸和中压缸动态特性:
其中,D1和D10分别代表级组输入侧实际蒸汽流量和设计工况下蒸汽流量,p1和p2分别代表级组输入输出侧蒸汽压力,p10和p20分别代表级组设计工况下输入输出侧蒸汽压力,T1和T10分别代表级组输入侧实际蒸汽温度和设计工况下蒸汽温度。
S2所得不同热电解耦情况下的机组模型结构中待辨识参数包含TM、d1、 d2、c1、c2、c3、c4、c5、c6、TT、α和ε,基于此,步骤S3可具体化为:
S3.1:本算例基于大连庄河电厂600MW机组,依托SCADA系统,以 0.3s为采样周期得到待建模热电联产机组自当前时刻起的N(本算例中N=4000) 组实时运行数据:[x(1),x(2),…,x(N)],其中x(t)(t=1,2,…,N)代表由t时刻系统所有输入输出变量组成的广义向量,可表示为如下形式:
x(t)=[u1(t),u2(t),…,ul(t),y1(t),y2(t),…,ym(t)](t=1,2,…N) (14)
其中,u1(t),u2(t),…,ul(t)为机组给煤量、给水流量、主汽阀门开度和供热调门开度在内的l个输入变量,y1(t),y2(t),…,ym(t)为机组输出功率、主蒸汽压力、中间点温度和供热负荷在内的m个输出变量。
采样数据应尽可能多地覆盖机组不同运行工况,尤其不可忽略低负荷工况以确保所建模型能精确反映机组宽负荷运行工况下动态特性。
S3.2:考虑到复杂系统增量数据值间更强的线性关系,T-S模糊模型的增量结构可表示为:
Ri:If x(t)∈(ci,ri),Then yvi(t)=θiv(t)(i=1,2,…,n;t=1,2,…,N) (15)
其中,n和N分别为聚类个数和训练数据对数目,x(t)代表时刻t的广义输入向量,ci和ri分别代表聚类i的中心和半径,θi为待辨识子模型i中所有未知参数组成的参数向量,yvi为子模型i的输出向量,v(t)为x(t)中各数据向量相对于其标称值的增量,表达式如下:
S3.3:用S2中所得不同热电解耦情况下的机组模型结构替换T-S模糊模型的后件部分,即式(15)中yvi(t)=θiv(t)部分,得到适应于灵活性运行的热电联产机组T-S模糊模型结构。
在确定不同热电解耦情况下机组的T-S模糊模型结构后,基于采样所得机组运行数据,开展数据驱动的改进型T-S模糊辨识。首先在步骤S4中通过混沌双量子鸽群优化(CBQPIO)算法进行训练数据的自动聚类。CBQPIO简化了标准PIO的寻优过程,并引入量子规则中的波函数完成鸽群中个体位置的更新,结合双种群思想改善了寻优过程中种群的多样性,通过对最优解进行混沌映射,有效提升了算法的收敛速度和寻优精度,避免算法过早陷入局部最优解。在基于 CBQPIO的数据聚类过程中,将一个聚类子空间视为一个鸽群,相应的最优聚类中心则为鸽群各自的巢穴所在地。具体实现过程如下:
S4.1:初始化聚类个数n=1。
S4.2:令训练数据集的第一个数据向量为当前聚类中心cn,通过式(17) 计算各输入数据对x(t)与cn间的相似度S(t):
其中,γ为相似系数,且γ∈(0,1],S(t)∈(0,1),且随着S(t)的增大,数据对间相似度升高。
S4.3:设置决策常数λ和阈值δ,若S(t)>λ,则x(t)属于以cn为中心的聚类,记该聚类中总的数据对个数为Nn,若Nn>δ,接受该聚类,转向S4.4,否则将cn所代表的数据对移到数据序列末端,返回S4.2。
S4.4:通过CBQPIO得到当前聚类的最优聚类中心。
S4.4.1:设双种群的鸽群规模均为M,即每个单量子鸽群中包含的个体数均为M。用式(18)所示Logistic混沌序列代替原有随机数的方式来初始化个体。第一个种群的混沌序列范围为[0,1];第二个种群的混沌序列范围为[-1,0]。
Zj(i+1)=4Zj(i)[1-Zj(i)](i=1,2,…,M;j=1,2) (18)
其中,Z1(1)和Z2(1)分别为(0,1)和(-1,0)之间的随机数。
在归巢的初始阶段,鸽巢位置未知,故假设当前最优候选解(当前聚类中心cn)为鸽巢位置,基于所得Logistic混沌序列,根据式(19)分别初始化两个种群的位置:
S4.4.2:将以上两个种群进行合并,再通过随机分组方式分成种群数相等的两个种群。然后通过式(21)所示适应度函数分别计算两个鸽群中每个个体的适应度,并将两个鸽群的最优解进行比较,选取其中适应度值最小者作为当前全局最优解
CBQPIO将上述两个基于不同混沌序列产生的单种群进行合并,再随机分为种群规模均为M的两个新种群,两个新种群分别执行以下步骤的寻优过程,使新种群的个体遍历[-1,1]的解空间,最后再将两个种群的局部最优解进行贪婪选择得到全局最优解,很大程度上提高了种群的多样性及寻优精度。
S4.4.5:将该局部最优解映射到Logistic混沌序列上,再映射回原变量中。若映射产生粒子的适应度小于当前局部最优解的适应度,则用映射产生位置向量替换原有局部最优解,否则,局部最优解保持不变。最后,将两个种群的局部最优值进行比较,保留下适应度值较小的作为本次迭代的局部最优解。
S4.4.6:判断上述寻优过程是否满足终止条件,即达到最大迭代次数,若满足,则结束地图和指南针算子导航阶段,将最终所得局部最优解作为当前全局最优解并记录其对应的适应度函数值,继续进行下一步,否则,返回S4.4.3。
S4.4.7:地标算子导航阶段。设地标算子的最大迭代次数为K2,每一次位置更新后通过冒泡排序将个体适应度值从小到大排列,舍弃对地标不熟悉而不再具有分辨路径能力的鸽子,优先选择适应度较小的个体,所保留个体的数目如下:
其中,k为地标算子当前迭代步,且k∈[K1+1,K1+K2],Mk均为正整数,且其初值为M。
保留的鸽子个体将朝着式(25)所示的鸽群中心位置飞行,并将其视为鸽巢位置的最大可能(即地标),然后通过式(26)更新鸽群中所有个体的位置信息:
式中,χ为学习因子,α2和α3为(0,1)之间的随机数。
本步骤引入学习因子对鸽子个体的位置更新公式进行修正以提高算法的收敛速度,并通过精英保留策略改善种群性能。
S4.4.9:分别计算两个种群经过位置更新后的个体的适应度函数值,两个种群中每个个体与各自当前全局最优解进行贪婪选择,若新个体的适应度值小于当前全局最优解的适应度值,则用该位置向量替换原有全局最优解,否则,全局最优解保持不变。
S4.4.10:将该全局最优解映射到Logistic混沌序列上,再映射回原变量中。若映射产生粒子的适应度小于当前全局最优解的适应度,则用映射产生位置向量替换原有全局最优解,否则,全局最优解保持不变。最后,将两个种群的全局最优值进行比较,保留下适应度值较小的粒子作为本次迭代的全局最优解。
S4.6:基于所得聚类结果,计算各聚类的聚类半径。
S4.6.1:初始化聚类半径ri=0(i=1,2,…,n),通过式(29)寻找距离各数据向量最近的聚类中心:
S4.6.2:通过式(30)对rs进行更新:
S4.6.3:重复S4.6.1和S4.6.2,直至获得全部聚类半径ri(i=1,2,…,n)。
聚类过程结束并得到相应聚类中心和半径后,将在S5中通过带遗忘因子的指数加权最小二乘算法进行各子模型参数的辨识,具体步骤如下:
其中,Pi(t)为参数估计方差矩阵,β为遗忘因子,且β∈(0,1],ζi(t)为修正因子,其初值ζ0∈(0,1),q为指数加权因子,且q=e-t/r,r为正整数,且r∈(0,100]。
S5.2:令t=t+1,返回S5.1,直到遍历所有训练数据,得到结论部分各子模型参数。
S5.3:基于T-S模糊增量结构和所得各子模型参数,通过式(33)计算模型的全局输出:
S5.4.1:通过式(35)得到距离该数据向量最近的聚类中心:
S5.4.2:将式(36)所示聚类s对应的子模型输出直接作为全局输出:
基于上述面向灵活性运行的热电联产机组建模方法,在步骤S6中依托仿真平台进行所提建模方法的可行性验证及性能分析,本算例中数据驱动建模过程的参数设置为:
表1基于CQPIO聚类的数据驱动T-S模糊辨识算法参数设置
具体过程如下:
S6.1:选取待辨识热电联产机组宽负荷工况下的N组实时运行数据,通过上述建模方法进行模型辨识,记录建模时间ts,并通过式(37)计算模型输出与机组实际输出间的平均绝对误差MAE和均方根误差RMSE:
S6.2:选取另外L(本算例中L取800)组不同运行工况,尤其是低负荷工况下的机组运行数据对所建模型的通用性进行验证,并计算验证过程模型输出与验证数据间的平均绝对误差MAE和均方根误差RMSE。
S6.3:统计机组建模过程建模时间,建模过程及验证过程模型输出和机组实际数据间的MAE和RMSE,统计分析结果表明,本发明所提出的面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法在本算例中表现出显著的快速性,所建模型可在2%的误差范围内高精度逼近机组实际动态特性。
Claims (7)
1.面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法,其特征在于:包括以下步骤:
S1:待辨识热电联产机组热电解耦情况的判断;
S2:不同热电解耦情况下机组运行机理分析及模型结构确定;
S3:机组宽负荷工况下运行数据的实时采集与T-S模糊模型增量结构的引入;
S4:基于混沌双量子鸽群算法的训练数据自动聚类及聚类中心和半径的获取;
S5:基于带遗忘因子的指数加权最小二乘算法的子模型参数辨识及模型全局输出计算;
S6:依托仿真平台进行所提建模方法的可行性验证及性能分析。
2.根据权利要求1所述的面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法,其特征在于:步骤S1所述的热电联产机组热电解耦情况的判断包括:
S1.1:判别待辨识热电联产机组运维记录确认该机组是否进行过热电解耦改造,若机组已进行热电解耦改造,则进一步明确其所用的具体改造技术。
S1.2:根据待辨识机组热电解耦情况进行分类并编号,若该机组无热电解耦,记为P1,若有热电解耦,则按照热泵、电锅炉、储热罐、低压缸改造等技术依次记为P2、P3、P4、P5。
3.根据权利要求1所述的面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法,其特征在于:基于所得待辨识热电联产机组的热电解耦情况,所述步骤S2中通过质量守恒、能量守恒及动力学方程分别对各情况下的机组进行机理分析,得到相应的模型结构,包括:
S2.1:若机组无热电解耦,即P1情况下,从制粉系统、锅炉燃烧及热传递、汽轮机做功和供热系统四部分出发对热电联产机组进行建模。
S2.1.1:制粉系统模型。以中速磨正压直吹式制粉系统为例,可得以下质量守恒关系:
其中,rb为给煤量,μB为给煤指令,TM为制粉系统惯性时间,τ为系统迟延。
S2.1.2:锅炉燃烧及热传递模型。以直流锅炉为例,同时考虑汽水分离器出口焓值、主蒸汽压力和过热器出口蒸汽温度,得到如下质量守恒关系:
其中,pm、hm和Dm分别为汽水分离器出口蒸汽压力、比焓和流量,Dec和hec分别为省煤器入口蒸汽流量和给水比焓,Qw为汽水分离器出口前段燃烧过程的有效放热量,Ddsw1和Ddsw2分别为一级、二级减温水流量,ρsst和ρmst分别为屏式过热器出口蒸汽和主蒸汽平均密度,Dsst为屏式过热器出口蒸汽流量,Dmst为主蒸汽流量,Vs1和Vs2为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段的容积,d1、c1、c2、c3均为可变参数。
相应的能量守恒关系为:
其中,Qs1和Qs2分别为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段的工质有效放热量,ha1和ha2分别为为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段内的蒸汽平均比焓,ρa1和ρa2分别为汽水分离器出口至屏式过热器段及屏式过热器至高温过热器段内的蒸汽平均密度,d2、c4、c5、c6均为可变参数。
S2.1.3:汽轮机做功模型。描述了汽机输入工质和输出负荷间的关系,部分输入工质转化为电能,另外一部分转化为供热所需热能,其中能量转换关系可表示为:
其中,α为高-中压缸做功比,TT为汽机动态时间,CT为汽机做功系数,P为功率输出,pT为主蒸汽压力,CIP为中压缸做功系数,pH为热源抽汽压力,μT和μH分别为高压缸进汽调节阀开度和热源阀门开度。
S2.1.4:供热系统模型。反映了供热站输入输出能量间的如下转换关系:
其中,CH为热交换器的储热系数,mcir为热网的循环水质量流量,Cp为定压比热,Tin和Tout分别为供热站的入口水温和出口水温。
S2.2:若机组有热电解耦,则分别以P2、P3、P4和P5几种情况为例进行讨论。
S2.2.1:在P2情况下,即机组通过热泵进行热电解耦时,以压缩式热泵为例,该热泵工作时消耗的电能Whp为:
其中,Qh为热负荷,COP为热泵制热系数,ε为热力完善度,Tc和Te分别为热泵的冷凝温度和蒸发温度。
若借助电机驱动热泵,则热泵消耗的电能Php为:
Php=Whp/(ηm1ηm2) (7)
其中,ηm1和ηm2分别为压缩机的电机效率和机械效率。
S2.2.2:在P3情况下,即机组通过电锅炉进行热电解耦时,电锅炉消耗的电功率Web为:
Web=Qh/ηeb (8)
其中,ηeb为电锅炉能效。
S2.2.3:在P4情况下,即机组通过储热罐进行热电解耦时,通过质量守恒可得储热罐内水位模型为:
其中,Chst为储热罐容量系数,Hlevel为储热罐水位,Din和Dout分别为储热罐进水和出水流量,储热过程中,Din为热水进水流量,Dout为冷水出水流量;放热过程中,Din为冷水进水流量,Dout为热水出水流量。
储热罐斜温层位置模型为:
式中,Hlayer为斜温层位置,Dcold为冷水进水流量。
储热罐出水量与其储、放热间的关系为:
NS=Dhstcp(Th-Tl) (11)
式中,NS代表储热罐的储、放热功率,Dhst代表出水流量,cp为水的比热容,Th和Tl分别为储热罐上部热水和下部冷水温度。
S2.2.4:在P5情况下,即机组通过低压缸改造进行热电解耦时,以低压缸零出力技术和光轴运行技术为例进行分析。
S2.2.4.1:低压缸零出力技术。在机组供热期间,完全切断低压缸进汽,用中压缸排汽进行供热;在非供热期间,恢复低压缸进汽量,使其能正常发电,该技术也属于热电联产范畴,故其供热煤耗率和机组改造前保持一致,通过增加供热量,每年可节约的标煤量约为:
ΔB=ΔQalcb (12)
其中,ΔQ为机组供热量的增量,alc为供热标准煤耗率,b为供热时间。
S2.2.4.2:低压缸光轴运行技术。在此技术下,汽机低压缸处于切除状态,通过基于以下Friuli Siegel公式的变工况模型来表示汽机高压缸和中压缸动态特性:
其中,D1和D10分别代表级组输入侧实际蒸汽流量和设计工况下蒸汽流量,p1和p2分别代表级组输入输出侧蒸汽压力,p10和p20分别代表级组设计工况下输入输出侧蒸汽压力,T1和T10分别代表级组输入侧实际蒸汽温度和设计工况下蒸汽温度。
至此,可得不同热电解耦情况下的机组模型结构中待辨识参数包含TM、d1、d2、c1、c2、c3、c4、c5、c6、TT、α和ε。
4.根据权利要求1所述的面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法,其特征在于:所述步骤S3中机组宽负荷工况下运行数据的实时采集与T-S模糊模型增量结构的引入包括:
S3.1:依托SCADA系统,以T为采样周期得到待建模热电联产机组自当前时刻起的N组实时运行数据:[x(1),x(2),…,x(N)],其中x(t)(t=1,2,…,N)代表由t时刻系统所有输入输出变量组成的广义向量,可表示为如下形式:
x(t)=[u1(t),u2(t),…,ul(t),y1(t),y2(t),…,ym(t)](t=1,2,…N) (14)
其中,u1(t),u2(t),…,ul(t)为l个输入变量,y1(t),y2(t),…,ym(t)为m个输出变量,输入、输出变量个数l和m可根据机组不同热电解耦情况进行自适应选取。
采样数据应尽可能多地覆盖机组不同运行工况,尤其不可忽略低负荷工况以确保所建模型能精确反映机组宽负荷运行工况下动态特性。
S3.2:在复杂系统中,相较于变量数据本身,其增量数据值间具有更强的线性关系。基于上述对T-S模糊模型的描述,其增量结构可表示为:
Ri:If x(t)∈(ci,ri),Then yvi(t)=θiv(t)(i=1,2,…,n;t=1,2,,N) (15)
其中,n和N分别为聚类个数和训练数据对数目,x(t)代表时刻t的广义输入向量,ci和ri分别代表聚类i的中心和半径,θi为待辨识子模型i中所有未知参数组成的参数向量,yvi为子模型i的输出向量,v(t)为x(t)中各数据向量相对于其标称值的增量,表达式如下:
S3.3:用S2中所得不同热电解耦情况下的机组模型结构替换T-S模糊模型的后件部分,即式(15)中yvi(t)=θiv(t)部分,得到适应于灵活性运行的热电联产机组T-S模糊模型结构。
5.根据权利要求1所述的面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法,其特征在于:所述步骤S4中通过混沌双量子鸽群优化(CBQPIO)算法进行训练数据的自动聚类。将一个聚类子空间视为一个鸽群,相应的最优聚类中心则为鸽群各自的巢穴所在地,简化了标准PIO的寻优过程,并引入量子规则中的波函数完成鸽群中个体位置的更新,结合双种群思想改善了寻优过程中种群的多样性,通过对最优解进行混沌映射,有效提升了算法的收敛速度和寻优精度,避免算法过早陷入局部最优解。所述过程包括:
S4.1:初始化聚类个数n=1。
S4.2:令训练数据集的第一个数据向量为当前聚类中心cn,通过式(17)计算各输入数据对x(t)与cn间的相似度S(t):
其中,γ为相似系数,且γ∈(0,1],S(t)∈(0,1),且随着S(t)的增大,数据对间相似度升高。
S4.3:设置决策常数λ和阈值δ,若S(t)>λ,则x(t)属于以cn为中心的聚类,记该聚类中总的数据对个数为Nn,若Nn>δ,接受该聚类,转向S4.4,否则将cn所代表的数据对移到数据序列末端,返回S4.2。
S4.4:通过CBQPIO得到当前聚类的最优聚类中心。
S4.4.1:设双种群的鸽群规模均为M,即每个单量子鸽群中包含的个体数均为M。用式(18)所示Logistic混沌序列代替原有随机数的方式来初始化个体。第一个种群的混沌序列范围为[0,1];第二个种群的混沌序列范围为[-1,0]。
Zj(i+1)=4Zj(i)[1-Zj(i)](i=1,2,…,M;j=1,2) (18)
其中,Z1(1)和Z2(1)分别为(0,1)和(-1,0)之间的随机数。
在归巢的初始阶段,鸽巢位置未知,故假设当前最优候选解(当前聚类中心cn)为鸽巢位置,基于所得Logistic混沌序列,根据式(19)分别初始化两个种群的位置:
S4.4.2:将以上两个种群进行合并,再通过随机分组方式分成种群数相等的两个种群。然后通过式(21)所示适应度函数分别计算两个鸽群中每个个体的适应度,并将两个鸽群的最优解进行比较,选取其中适应度值最小者作为当前全局最优解
CBQPIO将上述两个基于不同混沌序列产生的单种群进行合并,再随机分为种群规模均为M的两个新种群,两个新种群分别执行以下步骤的寻优过程,使新种群的个体遍历[-1,1]的解空间,最后再将两个种群的局部最优解进行贪婪选择得到全局最优解,很大程度上提高了种群的多样性及寻优精度。
S4.4.5:将该局部最优解映射到Logistic混沌序列上,再映射回原变量中。若映射产生粒子的适应度小于当前局部最优解的适应度,则用映射产生位置向量替换原有局部最优解,否则,局部最优解保持不变。最后,将两个种群的局部最优值进行比较,保留下适应度值较小的作为本次迭代的局部最优解。
S4.4.6:判断上述寻优过程是否满足终止条件,即达到最大迭代次数,若满足,则结束地图和指南针算子导航阶段,将最终所得局部最优解作为当前全局最优解并记录其对应的适应度函数值,继续进行下一步,否则,返回S4.4.3。
S4.4.7:地标算子导航阶段。设地标算子的最大迭代次数为K2,每一次位置更新后通过冒泡排序将个体适应度值从小到大排列,舍弃对地标不熟悉而不再具有分辨路径能力的鸽子,优先选择适应度较小的个体,所保留个体的数目如下:
其中,k为地标算子当前迭代步,且k∈[K1+1,K1+K2],Mk均为正整数,且其初值为M。
保留的鸽子个体将朝着式(25)所示的鸽群中心位置飞行,并将其视为鸽巢位置的最大可能(即地标),然后通过式(26)更新鸽群中所有个体的位置信息:
式中,χ为学习因子,α2和α3为(0,1)之间的随机数。
本步骤引入学习因子对鸽子个体的位置更新公式进行修正以提高算法的收敛速度,并通过精英保留策略改善种群性能。
S4.4.9:分别计算两个种群经过位置更新后的个体的适应度函数值,两个种群中每个个体与各自当前全局最优解进行贪婪选择,若新个体的适应度值小于当前全局最优解的适应度值,则用该位置向量替换原有全局最优解,否则,全局最优解保持不变。
S4.4.10:将该全局最优解映射到Logistic混沌序列上,再映射回原变量中。若映射产生粒子的适应度小于当前全局最优解的适应度,则用映射产生位置向量替换原有全局最优解,否则,全局最优解保持不变。最后,将两个种群的全局最优值进行比较,保留下适应度值较小的粒子作为本次迭代的全局最优解。
S4.6:基于所得聚类结果,计算各聚类的聚类半径。
S4.6.1:初始化聚类半径ri=0(i=1,2,…,n),通过式(29)寻找距离各数据向量最近的聚类中心:
S4.6.2:通过式(30)对rs进行更新:
S4.6.3:重复S4.6.1和S4.6.2,直至获得全部聚类半径ri(i=1,2,…,n)。
6.根据权利要求1所述的面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法,其特征在于:所述步骤S5中通过带遗忘因子的指数加权最小二乘算法进行各子模型参数的辨识,包括:
其中,Pi(t)为参数估计方差矩阵,β为遗忘因子,且β∈(0,1],ζi(t)为修正因子,其初值ζ0∈(0,1),q为指数加权因子,且q=e-t/r,r为正整数,且r∈(0,100]。
S5.2:令t=t+1,返回S5.1,直到遍历所有训练数据,得到结论部分各子模型参数。
S5.3:基于T-S模糊增量结构和所得各子模型参数,通过式(33)计算模型的全局输出:
S5.4.1:通过式(35)得到距离该数据向量最近的聚类中心:
S5.4.2:将式(36)所示聚类s对应的子模型输出直接作为全局输出:
7.根据权利要求1所述的面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法,其特征在于:所述步骤S6中依托仿真平台进行所提建模方法的可行性验证及性能分析,包括:
S6.1:选取待辨识热电联产机组宽负荷工况下的N组实时运行数据,通过上述建模方法进行模型辨识,记录建模时间ts,并通过式(37)计算模型输出与机组实际输出间的平均绝对误差MAE和均方根误差RMSE:
S6.2:选取另外L组不同运行工况,尤其是低负荷工况下的机组运行数据对所建模型的通用性进行验证,并计算验证过程模型输出与验证数据间的平均绝对误差MAE和均方根误差RMSE。
S6.3:统计机组建模时间,建模过程及验证过程的MAE和RMSE,结合机组灵活性运行对机组建模速度和精度的要求对所提建模方法进行性能分析。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010515327.8A CN113095538B (zh) | 2020-06-08 | 2020-06-08 | 面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010515327.8A CN113095538B (zh) | 2020-06-08 | 2020-06-08 | 面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113095538A true CN113095538A (zh) | 2021-07-09 |
CN113095538B CN113095538B (zh) | 2024-03-19 |
Family
ID=76663725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010515327.8A Active CN113095538B (zh) | 2020-06-08 | 2020-06-08 | 面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113095538B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113591395A (zh) * | 2021-08-11 | 2021-11-02 | 重庆大学 | 热误差预测模型建模方法及基于霾-边缘-雾-云计算的智能热误差控制系统框架 |
CN113807196A (zh) * | 2021-08-24 | 2021-12-17 | 华能国际电力股份有限公司德州电厂 | 一种获得热电联产机组热电耦合特性的方法 |
CN113822496A (zh) * | 2021-10-27 | 2021-12-21 | 杭州英集动力科技有限公司 | 一种多机组热电厂供热模式及参数在线寻优方法 |
CN114004110A (zh) * | 2021-11-24 | 2022-02-01 | 天津大学 | 一种面向电-热综合能源系统的量子化事件驱动仿真方法 |
CN114386280A (zh) * | 2022-01-13 | 2022-04-22 | 北京卫星环境工程研究所 | 一种基于温度不均匀度预示的试验加热回路优化方法 |
CN114662398A (zh) * | 2022-04-02 | 2022-06-24 | 中国人民解放军海军工程大学 | 一种短初级双边直线感应电机优化设计方法、系统及终端 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007062164A2 (en) * | 2005-11-26 | 2007-05-31 | Gene Security Network Llc | System and method for cleaning noisy genetic data and using data to make predictions |
AU2016202118A1 (en) * | 2009-03-20 | 2016-04-28 | Amgen Inc. | Carrier immunoglobulins and uses thereof |
CN108919818A (zh) * | 2018-04-23 | 2018-11-30 | 南京航空航天大学 | 基于混沌种群变异pio的航天器姿态轨道协同规划方法 |
US20190035286A1 (en) * | 2017-07-27 | 2019-01-31 | Beihang University | Airplane flight path planning method and device based on the pigeon-inspired optimization |
CN110147099A (zh) * | 2019-04-30 | 2019-08-20 | 南京邮电大学 | 一种基于改进鸽群优化的多无人机协同搜索方法 |
CN110533246A (zh) * | 2019-08-30 | 2019-12-03 | 西安建筑科技大学 | 一种基于粒子群-鸽群混合优化算法的多金属露天矿多目标配矿方法 |
CN110989342A (zh) * | 2019-11-19 | 2020-04-10 | 华北电力大学 | 一种联合循环机组重型燃气轮机实时t-s模糊建模方法 |
CN113885320A (zh) * | 2021-09-26 | 2022-01-04 | 北京航空航天大学 | 一种基于混合量子鸽群优化的飞行器随机鲁棒控制方法 |
-
2020
- 2020-06-08 CN CN202010515327.8A patent/CN113095538B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007062164A2 (en) * | 2005-11-26 | 2007-05-31 | Gene Security Network Llc | System and method for cleaning noisy genetic data and using data to make predictions |
AU2016202118A1 (en) * | 2009-03-20 | 2016-04-28 | Amgen Inc. | Carrier immunoglobulins and uses thereof |
US20190035286A1 (en) * | 2017-07-27 | 2019-01-31 | Beihang University | Airplane flight path planning method and device based on the pigeon-inspired optimization |
CN108919818A (zh) * | 2018-04-23 | 2018-11-30 | 南京航空航天大学 | 基于混沌种群变异pio的航天器姿态轨道协同规划方法 |
CN110147099A (zh) * | 2019-04-30 | 2019-08-20 | 南京邮电大学 | 一种基于改进鸽群优化的多无人机协同搜索方法 |
CN110533246A (zh) * | 2019-08-30 | 2019-12-03 | 西安建筑科技大学 | 一种基于粒子群-鸽群混合优化算法的多金属露天矿多目标配矿方法 |
CN110989342A (zh) * | 2019-11-19 | 2020-04-10 | 华北电力大学 | 一种联合循环机组重型燃气轮机实时t-s模糊建模方法 |
CN113885320A (zh) * | 2021-09-26 | 2022-01-04 | 北京航空航天大学 | 一种基于混合量子鸽群优化的飞行器随机鲁棒控制方法 |
Non-Patent Citations (10)
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113591395A (zh) * | 2021-08-11 | 2021-11-02 | 重庆大学 | 热误差预测模型建模方法及基于霾-边缘-雾-云计算的智能热误差控制系统框架 |
CN113591395B (zh) * | 2021-08-11 | 2024-01-30 | 重庆大学 | 热误差预测模型建模方法及基于霾-边缘-雾-云计算的智能热误差控制系统框架 |
CN113807196A (zh) * | 2021-08-24 | 2021-12-17 | 华能国际电力股份有限公司德州电厂 | 一种获得热电联产机组热电耦合特性的方法 |
CN113822496A (zh) * | 2021-10-27 | 2021-12-21 | 杭州英集动力科技有限公司 | 一种多机组热电厂供热模式及参数在线寻优方法 |
CN113822496B (zh) * | 2021-10-27 | 2024-05-31 | 浙江英集动力科技有限公司 | 一种多机组热电厂供热模式及参数在线寻优方法 |
CN114004110A (zh) * | 2021-11-24 | 2022-02-01 | 天津大学 | 一种面向电-热综合能源系统的量子化事件驱动仿真方法 |
CN114004110B (zh) * | 2021-11-24 | 2024-04-12 | 天津大学 | 一种面向电-热综合能源系统的量子化事件驱动仿真方法 |
CN114386280A (zh) * | 2022-01-13 | 2022-04-22 | 北京卫星环境工程研究所 | 一种基于温度不均匀度预示的试验加热回路优化方法 |
CN114662398A (zh) * | 2022-04-02 | 2022-06-24 | 中国人民解放军海军工程大学 | 一种短初级双边直线感应电机优化设计方法、系统及终端 |
CN114662398B (zh) * | 2022-04-02 | 2024-10-15 | 中国人民解放军海军工程大学 | 一种短初级双边直线感应电机优化设计方法、系统及终端 |
Also Published As
Publication number | Publication date |
---|---|
CN113095538B (zh) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113095538B (zh) | 面向灵活性运行的热电联产机组宽负荷运行动态特性建模方法 | |
CN112633560B (zh) | 一种含燃煤热电联产机组的电站优化调度方法 | |
CN111242388B (zh) | 一种考虑冷热电联供的微电网优化调度方法 | |
CN114580265B (zh) | 一种多炉多机复杂生产系统的负荷调度分配方法及平台 | |
CN112377985B (zh) | 基于反馈神经网络的供热机组调峰下限评估方法及系统 | |
CN113469412B (zh) | 一种综合能源系统实时运行策略优化方法及系统 | |
CN114723136B (zh) | 计及光热电站镜场面积和储热容量的优化运行方法 | |
CN116681171A (zh) | 一种多场景综合能源系统分布鲁棒优化调度方法和系统 | |
CN109375503A (zh) | 一种蒸汽余热梯级利用优化控制方法 | |
CN113159983A (zh) | 离网型光气热电联产综合能源系统协调控制方法 | |
CN117993611A (zh) | 一种基于场景时序的灵活热源新能源消纳能力评估方法 | |
CN117592632A (zh) | 一种基于碳减排路径优化模型的机组容量规划方法及系统 | |
CN117424204B (zh) | 一种计及源-荷不确定性的源-网-荷-储协同规划方法 | |
CN113837459A (zh) | 一种基于rf-dtw的智能电厂燃煤发电机组短期负荷预测方法 | |
CN113624052A (zh) | 一种冷热电联供系统及其余热回收方法 | |
CN116009393A (zh) | 一种火力发电机组深度调峰下负荷偏差自动控制方法 | |
CN117109345A (zh) | 耦合火电机组的高温熔盐储热装置的优化配置方法及装置 | |
CN112001639A (zh) | 综合能源系统能源需求的可调能力评估方法及存储介质 | |
CN115712976A (zh) | 基于多元供热机组的热能及电负荷优化方法及相关设备 | |
Pan et al. | Electricity gain via integrated operation of turbine generator and cooling tower using local model network | |
CN114398777A (zh) | 一种基于巴什博弈理论的电力系统灵活性资源配置方法 | |
CN117148719A (zh) | 一种结合改进秃鹰搜索算法的超临界机组模糊建模方法 | |
CN113222216A (zh) | 冷热电负荷预测方法、装置及系统 | |
CN118333474B (zh) | 一种求解海岛综合能源系统容量规划问题的方法 | |
CN117077528A (zh) | 一种面向超临界机组超低负荷运行的灰箱建模方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |